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Abstract
We developed a variant database for diabetes syndrome genes, using the Leiden Open Variation

Database platform, containing observed phenotypes matched to the genetic variations. We pop-

ulated it with 628 published disease-associated variants (December 2016) for: WFS1 (n = 309),

CISD2 (n=3), ALMS1 (n=268), and SLC19A2 (n=48) forWolfram type1,Wolfram type2, Alström,

and Thiamine-responsive megaloblastic anemia syndromes, respectively; and included 23 previ-

ously unpublished novel germline variants in WFS1 and 17 variants in ALMS1. We then investi-

gated genotype–phenotype relations for theWFS1 gene. The presence of biallelic loss-of-function

variants predicted Wolfram syndrome defined by insulin-dependent diabetes and optic atrophy,

with a sensitivity of 79% (95% CI 75%–83%) and specificity of 92% (83%–97%). The presence of

minor loss-of-function variants inWFS1 predicted isolated diabetes, isolated deafness, or isolated

congenital cataracts without development of the full syndrome (sensitivity 100% [93%–100%];

specificity 78% [73%–82%]). The ability to provide a prognostic prediction based on genotypewill

lead to improvements in patient care and counseling. The development of the database as a repos-

itory for monogenic diabetes gene variants will allow prognostic predictions for other diabetes

syndromes as next-generation sequencing expands the repertoire of genotypes and phenotypes.

The database is publicly available online at https://lovd.euro-wabb.org.
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1 INTRODUCTION

Monogenic diabetes syndromes are characterized by glucose intoler-

ance together with extrapancreatic features, and result from one or

more defects in a single gene. There are about 40 different genetic

subtypes identified so far, with an estimated prevalence of 2%–5%

of all patients with diabetes (Schwitzgebel, 2014). The wide pheno-

typic and genetic heterogeneity poses significant problems for our

understanding of disease mechanisms, and for providing prognostic

information. This is compounded by the identification of diabetes

syndrome gene variants of uncertain significance, in isolated diabetes

through the widespread application of next-generation sequencing

(Alkorta-Aranburu et al., 2014; Ellard et al., 2013; Philippe et al.,

2015). There are no up-to-date variant databases for most monogenic

diabetes syndrome genes; those that do exist contain limited historical

variants on publicly available Websites (HGVS: http://www.hgvs.org/

dblist/dblist.html, GEN2PHEN: http://www.gen2phen.org/data/lsdbs,

LOVD: http://grenada.lumc.nl/LSDB_list/lsdbs, WAVe: http://bioin

formatics.ua.pt/WAVe, ClinVar: http://www.ncbi.nlm.nih.gov/clinvar).

Wolfram (type 1, MIM# 222300; type 2, MIM# 604928), Alström

(MIM# 203800), and Thiamine-responsive megaloblastic anemia

(MIM#249270) syndromes are rare,monogenic syndromeswheredia-

betes is a common feature. They are chronically debilitating, highly

complex, and in commonwith other rare diseases, often subject tomis-

diagnosis, delayed diagnosis, and nondiagnosis. The syndromes exhibit

clinical overlap: all can cause profound visual and hearing impairment,

and diabetes mellitus (DM) or impaired glucose tolerance. With 0.57,

0.14, and 0.1 cases per 100,000 (Prevalence of rare diseases: Biblio-

graphic data, 2013), all three syndromes also fall within the EU rare

disease definition of “a prevalence of notmore than 5 affected persons

per 10,000population” (Regulation (EC)No141/2000of the European

Parliament, 2000).

Recommendations issued by the European Council in 2009 high-

light the need for coordination and cooperation, and networking of

resources throughout Europe (The Council of the European Union,

2009). A number of projects including Orphanet, EUROPLAN, and

EURORDIS havemade progress in this field. The EURO-WABB project

is an EU initiative to widen access to genetic testing, clinical infor-

mation, and research for the overlapping rare diabetes syndromes

Wolfram, Alström, Bardet Biedl syndrome, and others, in Europe

(www.euro-wabb.org). As part of this project, we have created a new

locus-specific database to provide catalogs of gene variations involved

in monogenic diabetes syndromes. By building on the existing generic

frameworks andplatforms for rare diseases, this gene variant database

operates at a disease-specific level to support efficient diagnosis and

research for these syndromic diabetes diseases.

https://lovd.euro-wabb.org
http://www.hgvs.org/dblist/dblist.html
http://www.hgvs.org/dblist/dblist.html
http://www.gen2phen.org/data/lsdbs
http://grenada.lumc.nl/LSDB_list/lsdbs
http://bioinformatics.ua.pt/WAVe
http://bioinformatics.ua.pt/WAVe
http://www.ncbi.nlm.nih.gov/clinvar
http://www.euro-wabb.org
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2 THE GENES

This report focuses on four genes in the EURO-WABB locus-specific

database, namely ALMS1,WFS1, CISD2, and SLC19A2.

Pathogenic variants in the gene ALMS1 (MIM# 606844) on chro-

mosomes 2p13.1 have been identified in patients with Alström syn-

drome (AS), an autosomal-recessive disease characterized by retinal

dystrophy, childhood obesity, type 2 DM, and sensorineural hearing

loss (Collin et al., 2002; Hearn et al., 2002; Marshall et al., 2005;

Marshall et al., 2007; Marshall et al., 2015). Other features include

dilated cardiomyopathy (70% of patients), hepatic diseases, and uro-

logical abnormalities (Alstrom, Hallgren, Nilsson, & Asander, 1959;

Marshall et al., 2005;Marshall et al., 2007).ALMS1 consists of 23 exons

encompassing over 224 kb of genomic DNA encoding a centrosomal

protein of 4,169 amino acids, which contain a large tandem-repeat

domain consisting of 47 amino acids and has been implicated in the

assembly and maintenance of primary cilia (Hearn et al., 2005; Knorz

et al., 2010; Li et al., 2007) and in fibrosis (Zulato et al., 2011).

Pathogenic variants in WFS1 (MIM# 606201) cause Wolfram syn-

drome (WS) type 1, a rare neurodegenerative disease characterized

by DM and optic atrophy (OA). The gene is located on chromosome

4p16.1, and codes for an 890 amino acid protein (Wolframin) con-

sisting of eight exons spanning 33.4 kb of genomic DNA (Inoue et al.,

1998). Wolframin is an endoplasmic reticulum (ER) membrane pro-

tein (Takeda et al., 2001), thought to function as ER calcium chan-

nel or a regulator of ER calcium channel activity (Osman et al.,

2003) and is involved in the unfolded protein response via inter-

action with and regulation of the ER stress sensor ATF6𝛼 (Fonseca

et al., 2010). It is under regulation by ER stress sensors PERK, IRE 1-

alpha, and ATF6-beta (Fonseca et al., 2005; Odisho, Zhang, & Volchuk,

2015).

WS type 1 is also known as DIDMOAD due to the clinical features

associatedwith the disease (diabetes insipidus, diabetesmellitus, optic

atrophy, and deafness). Although nonautoimmune insulin-dependent

DM is themost commonmanifestation ofWS, themost frequent cause

of morbidity and mortality associated with the disease are neurologi-

cal disorders and urinary tract complications (Kinsley, Swift, Dumont,

& Swift, 1995).

Pathogenic variants in the CISD2 gene (MIM# 611507) have been

identified in patients with WS type 2 (Amr et al., 2007; Mozzillo et al.,

2014). WS type 2 differs from type 1 in respect that so far no diabetes

insipidus (DI) andpsychiatric disorderhasbeenassociatedwith thedis-

ease, and the novel presence of defective platelet aggregation leading

to peptic ulcer bleeding. CISD2 is located on chromosome 4q24, and

codes for a 135 amino acid protein ERIS (ER intermembrane small pro-

tein), which consists of three exons spanning a 64.7-kb genomic region.

ERIS is a highly conserved zinc finger protein of the ER membrane

involved in the regulation of cellular calcium homeostasis and mito-

chondrial biogenesis (Wang et al., 2014). Immunoprecipitation studies

showed that ERIS protein coded by CISD2 does not interact withWol-

fram protein (Amr et al., 2007). Studies in mice show that cisd2 defi-

ciency in these animals causes mitochondrial death and dysfunction

accompanied by autophagic death (Chen et al., 2009). To date, only 13

individuals with CISD2mutations have been reported in the literature

(Amr et al., 2007; Mozzillo et al., 2014; Rondinelli, Novara, Calcaterra,

Zuffardi, & Genovese, 2015).

Thiamine-responsive megaloblastic anemia syndrome (TRMA

syndrome) is a rare autosomal-recessive condition characterized

by nonautoimmune DM (nontype 1), sensorineural hearing loss,

and megaloblastic anemia. The gene responsible, SLC19A2 (MIM#

603941), is located on chromosome 1q24.2, consists of six exons with

497 amino acids spanning a 22.5-kb genomic region. It codes for a high

affinity thiamine transporter (Diaz, Banikazemi,Oishi, Desnick, &Gelb,

1999; Dutta et al., 1999; Labay et al., 1999). Although anemia can be

corrected by thiamine treatment, the hearing loss is progressive and

irreversible. In TRMA syndrome patients, DM and hearing loss can

manifest from infancy to adolescence.

3 THE DATABASE

We followed the guidelines for establishing locus-specific databases

(Celli, Dalgleish, Vihinen, Taschner, & den Dunnen, 2012; Vihinen, den

Dunnen, Dalgleish, & Cotton, 2012). We formed a consortium of sci-

entists and clinicians working with these diseases through the EU-

funded EURO-WABB European Registry project (Farmer et al., 2013).

The database is based on the Leiden Open-source Variation Database

(LOVD) platform V2.0-36 (Fokkema et al., 2011) and stores both

published and submitted variants.

Variations in the databases are named according to the HGVS

nomenclature (Den Dunnen et al., 2016; http://varnomen.hgvs.org)

and include descriptions at DNA and protein levels. Variants are num-

bered and described with respect to the NCBI reference sequences

NM_015120.4 (NP_055935.4), NM_006005.3 (NP_005996.2),

NM_001008388.4 (NP_001094344.1), NM_006996.2 (NP_008927.1)

for ALMS1, WFS1, CISD2, and SLC19A2, respectively, with +1 = A of

ATG start codon. Previously published variants that do not conform

are renamed accordingly with the original description included in

the entry to facilitate cross-reference. Mutalyzer (Wildeman, van

Ophuizen, den Dunnen, & Taschner, 2008) is used to verify variant

description.

We included the following minimum data item set: pathogenicity,

DNA change, genomic position in the reference sequence and genome

assembly (GRCh 38), predicted protein change, mutation type, variant

remarks (other information available for the variant), technique used,

link to published reference if applicable, and the following anonymized

clinical data: ethnic origin, gender, consanguinity, and clinical features.

As standard for the LOVD system, the database has links to other ser-

vices such as PubMed, HGNC, Entrez Gene, OMIM, and GeneCards, in

addition to sequence databases. The databases catalogs variants iden-

tified in patients reported to have been diagnosed with AS, WS type

1/type 2, and TRMA syndrome.

In predicting variant pathogenicity, we followed guidelines from

the American College of Medical Genetics and Genomics (ACMG) and

the Association of Molecular Pathology (AMP) (Richards et al., 2015)

and considered other supporting information such as experimen-

tal evidence, presence in multiple families, segregation with disease

http://varnomen.hgvs.org
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TABLE 1 Summary of the types of variants in ALMS1,WFS1, CISD2, and SLC19A2 database

Gene ALMS1 WFS1 CISD2 SLC19A2

Chromosomal
location

2p13.1 4p16.1 4q24 1q24.2

Disease Alström syndrome Wolfram syndrome
type 1

Wolfram syndrome
type 2

Thiamine-
responsive
megaloblastic
anemia (TRMA)
syndrome

Number of unique
variants

268 309 3 48

Substitutions 133 208 2 30

Deletions 90 64 1 13

Duplications 34 28 0 2

Insertions 7 5 0 1

Indels 3 4 0 2

Translocations 1 0 0 0

phenotypes, as well as the prediction algorithm SIFT (Ng & Hanikoff,

2003), and PolyPhen-2 (Sunyaev et al., 2001).

The database is implemented on a secure server held by University

of Melbourne, Australia, with only curators being able to modify

contents. All components of the server service are checked regularly

to ensure the long-term integrity of the server and the information

stored in it (LSDB software, operating system, back-end database,

andWeb server). Submitted variants are accepted and published after

curation. The databases are updated regularly, are publicly accessible

(https://lovd.euro-wabb.org), and have been included in the Human

Genome Variation Society (HGVS) list of locus-specific databases. The

summary of the types of variants stored in the ALMS1, WFS1, CISD2,

and SLC19A2 databases are shown in Table 1.

The ALMS1 database contains 268 unique variants, identified in

334 patients, including 17 previously unreported variants. The major-

ity (49.6%; 133/268) are single-nucleotide substitutions, of which 104

(78%; 104/134) of the base substitutions lead to codon termination.

Deletions make up 34% (90/268) of the total variants reported (83

frameshift, six nonsense, and one in-frame), with six variants having

deletions of more than 10 bases. The rest of the variants are duplica-

tions (13%; 34/268), insertions (2.6%; 7/268), insertion/deletions or

indel (1%; 3/268), and translocations (1/268). The majority of vari-

ants are reported in exons 8 (51.5%; 137/268), 16 (17.3%; 46/268),

and 10 (16%; 43/268). The most frequently reported variant is the

c.10775delC (p.Thr3592Lysfs6*) located in exon 16 that is reported

exclusively in 28 patients with English ancestry. Missense variants are

uncommon. Among the 24 missense variants in the ALMS1 database,

11 (45.8%) are predicted to be pathogenic, four (16.7%) are likely

pathogenic, four (16.7%) are benign or likely benign, and five (21%) are

variants of uncertain significance.

The geographic origin of reported AS patients includes Europe

(UK, Italy, Portugal, Sweden, Spain, France, Belgium, Germany, the

Netherland, Norway, Serbia, Macedonia, Romania, Bulgaria, Slovakia,

Yugoslavia, Poland, Ireland), North Africa (Morocco), the Americas

(US, Canada, Brazil, Argentina, the Caribbean), and Asia and Oceania

(Turkey, Israel, Iran, Iraq, Saudi Arabia, Lebanon, Japan, Taiwan, China,

India, Korea,Melanesia). The gender of 194 patients is known and con-

sists of 109males (56.2%) and 85 females (43.8%).

The WFS1 database currently contain 309 unique variants iden-

tified in 531 patients, including 23 previously unreported variants.

The frequency of WFS1 variant types consists of 67.3% (208/309)

substitutions, 20.7% (64/309) deletions, 9% (28/309) duplications,

1.6% (5/309) insertions, and 1.3% (4/309) insertion/deletions. More

than 50% (156/309) ofWFS1 variants are missense variants, 19% are

frameshifts (60/309), and 16.5% are nonsense changes (51/309). In-

frame deletions, duplications, insertions, and indels made up 11.6%

(36/309) of the variants, and eight (2.6%) affect putative splice or

regulatory sites. Of the missense variants in the database, 57%

(89/156) are predicted to be pathogenic, 32% (50/156) are likely

pathogenic, five (3%) are benign/likely benign, and 7.7% (12/156)

are variants of uncertain significance. Twenty-nine of the missense

variants are known to have an autosomal-dominant mode of inher-

itance, 28 are involved in sensorineural hearing loss, and one vari-

ant (c.1385A>G; p.Glu462Gly) is associatedwith autosomal-dominant

congenital nuclear cataracts. Private variants (reported once or

present in single family or small population) account for 43% (133/309)

of the total unique variants in theWFS1 database. The majority of the

variants reported (86%; 264/309) are located in exon 8. Most com-

monly reported variants are c.1362_1377del (p.Tyr454*) reported 35

times in 18 patients, c.1243_1245del (p.Val415del) reported 33 times

in 22 patients, and c.1230_1233del (p.Val412Serfs*29) reported 30

times in 26 patients. In 233 (44%) of WS patients in the database,

variants occur in the homozygous state.

The geographic origin of WS patients reported includes Europe

(UK, Italy, Germany, France, Denmark, Spain, the Netherland, Finland,

Hungary, Poland, Russia), Americas (USA, Canada Brazil), North Africa,

Middle East, and Asia (Lebanon, Iran, Iraq, Turkey, Japan, China, India,

Pakistan), and Australia.

To date, the CISD2 database contains three unique variants identi-

fied in 13 individuals, namely, c.109G>C (p.Glu37Gln), c.(103+1_104-
1)_(318+1_319-1)del, and c.103+1G>A. All result in exon deletion of

CISD2 leading to early termination of the ERIS protein. The first CISD2

https://lovd.euro-wabb.org
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mutation (c.109G>C, p.Glu37Gln) was identified in 10 family mem-

bers of three consanguineous Jordanian families (Amr et al., 2007)who

presentedwith DM, sensorineural hearing loss, optic neuropathy, pep-

tic ulcer, and defective platelet aggregation. The variant caused mis-

sense changes in a conserved amino acid as well as aberrant splic-

ing resulting in the deletion of exon 2. Recently, two CISD2 mutations

have been identified in patients of Italian origin, the c.(103+1_104-
1)_(318+1_319-1)del and the c.103+1G>A, causing deletions of exon
2 and exon1, respectively (Mozzillo et al., 2014; Rondinelli et al., 2015).

The exon 2 deletion of CISD2 is predicted to abolish the transmem-

brane domain of the protein.

Currently, there are 48 unique variants identified in 52 patients in

the SLC19A2 database. Most are substitutions (62.5%; 30/48) lead-

ing to missense (69%; 20/29) and early termination (27.6%; 8/29) of

the SLC19A2 protein, with the possibility of transcript degradation

via RNA-mediated decay. The rest of the variants are deletions (27%;

13/48), duplications (4.2%; 2/48), insertions, and indels (6.3%; 3/48)

causing frameshift and/or early termination of the SLC19A2 protein.

Among the20missensevariants in the SLC19A2database, 16 (80%) are

predicted to bepathogenic, two (10%) likely pathogenic, and two (10%)

variants of uncertain significance. Most of the reported variants are in

exon 2 with c.697C>T (p.Gln233*) being the most commonly reported

variant in TRMA patients originating from Iran and Turkey. From the

82 patients reported with TRMA syndrome, 27 (33%) are of Middle

Eastern origin, 24 (29%) have originated from the Mediterranean, and

14 (17%) are from South Asia.

3.1 AS andWS patient recruitment and variant

identification

Children and adult patients with AS were recruited to the DAS

study (defining the phenotype in AS) (UKCRN 9044, REC approval

10/H0203/33). Children with AS, and children and adults with WS,

were recruited to the EURO-WABB European Registry study (UK

REC approval 11/WM/0127). Appropriate informed consent was

obtained from adult patients and parents/guardians of children.

Assent was also obtained where possible from children under 16

years. Clinical histories and medical records were obtained for all

participants.

Genomic DNA were extracted from peripheral blood lympho-

cytes using standard protocols. Sequencing of WFS1 and ALMS1

exons were performed using ABI 3730 automated sequencer

(Applied Biosystems, Foster City, CA) after PCR amplifications.

Identified variants were checked against dbSNP, 1000 Genomes

Project, or ExAC (exac.broadinstitute.org) for the more recent

samples.

3.2 Novel variants inALMS1 andWFS1

We report 17 novel germline ALMS1 variants detected in 17 UK AS

patients from 16 families and one Slovakian patient (Table 2) and 23

novel WFS1 variants in 59 UK WS patients from 48 families (Table 3)

referred to the West Midlands Regional Genetic Service, Birmingham

Women’s Hospital and Department of Medicine, Padua University,

Italy. All novel variants identified were submitted to the EURO-WABB

database (https://lovd.euro-wabb.org).

ALMS1: six nonsense variants, c.800G>A (p.Trp267*),

c.1011_1012del (p.Cys337*) in exon 5, c.4321C>T (p.Gln1441*),

c.6325G>T (p.Glu2109*), c.6532C>T (p.Gln2178*) in exon 8, and

c.9258dup (p.Asp3087*) in exon 10, have been identified. This report

expands the spectrum of ALMS1 variants in exon 5 first described by

Marshall et al. (2015). Nine novel variants causing frameshifts are pre-

dicted to result in premature stop codon, and protein truncation have

been identified in exon 8, intron 9, exon 10, and exon 18. Six frameshift

variants identified in exon 8 are: c.224dup (p.Thr742Asnfs*2),

c.4025_4026delinsA (p.Gly1342Glufs*18), c.4053_4054del (p.His13

51Glnfs*5), c.4147_4150del (p.Ser1383Asnfs*19), c.5081del (p.Pro16

92Leufs*39), and c.6901del (p.Val2301Trpfs*43). The c.(7677+
1_7678-1)_(10387+1_10388-1)del (p.Gly2560Serfs*46) identified in

intron 9, a 362-bp deletion c.845brk6_8817del (p.Thr2819Argfs*29)

was identified in exon 10 and c.11738dup (p.Ser3914Lysfs*6) was

found in exon 18.

The significanceof themissense variant c.3392C>G (p.Ala1131Gly)

was unclear, although it is predicted to be probably damaging by

the PolyPhen-2 algorithm. In the patient, this variant occurs in

the homozygous state together with a homozygous pathogenic

frameshift-causing deletion (c.(7677+1_7678-1)_(10387+1_10388-
1)del; p.Gly2560Serfs*46). Homozygous missense variant c.4225G>A

(p.Val1409Ile; rs200529564) identified in exon 8 was likely benign,

as the patient also carries the homozygous novel pathogenic variant

c.5081del (p.Pro1692Leufs*39).

WFS1: twenty-three novel variants in the WFS1 gene have been

identified: two in intron 1, one in exon 4, and the rest are in exon 8

(Table 3). Seven of these are nonsense variants causing early termina-

tion of theWolframin protein, two are causing frameshift, three result

in in-frame deletions, nine are missense/nonsynonymous variants, and

two affect splice/regulatory regions.

A novel homozygous nonsense variant c.334C>T; p.Gln112* was

identified in six individuals from five different families of Middle East-

ern origin.Other novel nonsense variants identified are c.911_914dup;

p.Met306*, c.977C>T; p.Ala326Val, c.1944G>A; p.Trp648*,

c.2033G>A; p.Trp678*, c.2080G>T; p.Glu694*, c.2319C>G; p.Tyr773*,

and c.2425G>T; p.Glu809*. In addition to two novel frameshift

variants, c.1434del; p.Trp478Cysfs*4 and c.958_962delinsTCC;

p.Pro320Serfs*39, we also identified three novel in-frame deletions

in our cohort: c.1529_1543del; p.Tyr510_Leu514del, c.1699_1704del;

p.Leu567_Phe568del, and c.1727_1744del; p.Gly576_Gly581del.

Novel missense variants p.Pro292Thr (c.874C>T; rs746923441),

p.Pro428Arg (c.1283C>G), p.Ser446Arg (c.1338C>A), p.Pro533Ser

(c.1597C>T; rs146132083), and p.Tyr669Ser (c.2006A>C) are

predicted to be damaging/probably damaging by both SIFT and

PolyPhen-2, segregated with disease phenotypes, and are classified

as pathogenic. Four of the novel missense variants, p.Ala326Val

(c.977C>T), p.Glu385Lys (c.1153G>A; rs71524353), and p.Leu592Pro

(c.1775T>C) are predicted to be damaging/probably damaging by one

of the prediction algorithms and are classified as likely pathogenic.

The significance of p.Ile561Ser (c.1682T>G; rs776993839), predicted

to be damaging by SIFT, is yet uncertain. In patient WSUK-45, who

https://lovd.euro-wabb.org
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TABLE 2 Genetic and clinical finding in Alström syndrome patients

Patient Location Nucleotide changea Protein change Gender Clinical findings

ALSUK1 Exon 8
Exon 8

c.4025_4026delinsA
c.6325G>T

p.(Gly1342Glufs*18)
p.(Glu2109*)

F Severely impaired vision, hearing
difficulty requiring hearing aid,
heart defect (infancy), obesity
(infancy), raised creatinine (95
𝜇mol/L), bladder dysfunction, chest
infection, kyphoscoliosis.

ALSUK2 Exon 8
Exon 8

c.4053_4054del
c.4321C>T

p.(His1351Glnfs*5)
p.(Gln1441*)

M Impaired vision (infancy), obesity
(infancy), global developmental
delay.

ALSUK3.1 Exon 8
Exon 8

c.4225G>A
c.4225G>A
c.5081del
c.5081del

p.(Val1409Ile)
p.(Val1409Ile)
p.(Pro1692Leufs*39)
p.(Pro1692Leufs*39)

M Impaired vision (infancy), normal
hearing, obesity (infancy).

ALSUK3.2 Exon 8
Exon 8

c.4225G>A
c.4225G>A
c.5081del
c.5081del

p.(Val1409Ile)
p.(Val4091Ile)
p.(Pro1692Leufs*39)
p.(Pro1692Leufs*39)

M Impaired vision (infancy), hearing
difficulty requiring hearing aid,
Fallots tetralogy, obesity.

ALSUK4 Exon 10
Exon 8

c.9258dup
c.5145T>G

p.(Asp3087*)
p.(Tyr1715*)

M Cardiomyopathy.

ALSUK5 Exon 18
Exon 18

c.11738dup
c.11738dup

p.(Ser3914Lysfs*6)
p.(Ser3914Lysfs*6)

F Impaired vision (severe), heart
abnormality (infancy), obesity
(infancy).

ALSUK6 Exon 19 c.11881dup p.(Ser3961Phefs*12) M Photophobia and nystagmus (8 yr) but
not otherwise vision impaired,
cardiomyopathy, hyperlipidemia,
chronic renal failure, bladder
dysfunction.

ALSUK7 Exon 19 c.11881dup p.(Ser3961Phefs*12) M Photophobia and nystagmus (8 yr) but
not otherwise vision impaired,
hearing difficulties requiring
cochlear implants, cardiomyopathy
(50 yr), left bundle branch block,
hyperlipidemia (55 yr), chronic renal
failure (55 yr), bladder dysfunction

ALSUK8 Exon 5
Exon 8

c.1011_1012del
c.6590del

p.(Cys337*)
p.(Lys2197Serfs*10)

M Impaired vision (severe), hearing
difficulty requiring hearing aid,
heart defect (infancy), DM (18 yr),
NALFD, raised creatinine
(81𝜇mol/L).

ALSUK9 Exon 5
Exon 16

c.800G>A
c.11107C>T

p.(Trp267*)
p.(Arg3703*)

F Impaired vision (infancy), normal
hearing, cardiomyopathy (infancy),
heart transplant then hemiparesis.

ALSUK10 Exon 8
Exon 16

c.2224dup
c.10975C>T

p.(Thr742Asnfs*2)
p.(Arg3703*)

F Registered blind (1 yr), hearing
difficulty requiring hearing aid,
obesity (infancy), hyperlipidemia (18
yr), DM (18 yr).

ALSUK11 Exon 8
Exon 8

c.4147_4150del
c.4147_4150del

p.(Ser1383Asnfs*19)
p.(Ser1383Asnfs*19)

F Impaired vision (infancy), obesity
(infancy), hyperlipidemia, DM (8 yr),
raised liver enzymes, microcephaly.

ALSUK12 Exon 8
Exon 8
Intron 9

c.3392C>G
c.3392C>G
c.(7677+1_7678-
1)_(10387+1_10388-
1)del

p.(Ala1131Gly)
p.(Ala1131Gly)
p.(Gly2560Serfs*46)

F Impaired vision (severe), hearing
difficulty requiring hearing aid,
heart abnormality (infancy), obesity
(infancy), hyperlipidemia, NAFLD,
abnormal kidney function,
kyphoscoliosis, chronic chest
infections.

ALSUK13 Exon 8
Exon 8

c.6532C>T
c.11107C>T

p.(Gln2178*)
p.(Arg3703*)

M Impaired vision (severe), hearing
difficulty requiring hearing aid,
heart defect (infancy), obesity
(infancy), DM (18 yr), NALFD, raised
creatinine (81 𝜇mol/L).

ALSUK14 Exon 8
Exon 8

c.6829C>T
c.9541C>T

p.(Arg2277*)
p.(Arg3181*)

M Impaired vision (severe), obesity,
NAFLD

(Continues)
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Patient Location Nucleotide changea Protein change Gender Clinical findings

ALSUK15 Exon 8
Exon 8

c.6829C>T
c.9541C>T

p.(Arg2277*)
p.(Arg3181*)

F Impaired vision (severe), hearing
difficulty (infancy) requiring hearing
aid, obesity (infancy), NAFLD,
bladder dysfunction,
gastro-esophageal reflux,
kyphoscoliosis.

ALSUK16 Exon 8
Exon 8

c.6901del
c.11449C>T

p.(Val2301Trpfs*43)
p.(Gln3817*)

M Impaired vision (severe), hearing
difficulty (infancy) requiring hearing
aid, obesity (infancy),
hyperlipidemia, NAFLD, abnormal
kidney function, kyphoscoliosis (20
yr), hypogonadism.

SLO68-13 Exon 8
Exon 16

c.4156dupA
c.11207C>A

p.(Thr1386Asnfs*15)
p.(Ser3736*)

F Impaired vision, obesity, impaired
glucose tolerance (13 yr), bilateral
macular hypoplasia, bilateral
cataract, microcrania, psychomotor
delay.

SLO301-11 Exon 10
Exon 10

c.8456_8817del
c.8456_8817del

p.(Thr2819Argfs*29)
p.(Thr2819Argfs*29)

F Obesity, dilated cardiomyopathy, OA,
retinal dystrophy, sensorineural
hearing loss.

F, female; M, male; DM, diabetes mellitus; OA, optic atrophy; NAFLD, nonalcoholic fatty liver disease; yr, year.
Notes:Novel variants are in bold.
aNucleotide numbering:+1 is A of ATG start codon (NCBI Reference Sequence NM_015120.4).

presented with congenital hearing loss, childhood OA, and juvenile

DM, the p.Glu385Lys was present in a heterozygous state with no

other WFS1 mutation. This patient also presented with an OPA1

pathogenic mutation (duplication of exons 4–8) inherited from her

mother andmaternal grandfather. Both have OAwithOPA1 andWFS1

variants. Bonnycastle et al. (2013) identified a single-missense WFS1

mutation (p.Trp314Arg) segregatingwith diabetes in amultigeneration

Finnish family. It is possible that the c.1153G>A; p.Glu385Lys also has

a dominant effect and is responsible for the diabetes phenotype in

our WSUK-45 patient. Although the patient’s mother also presented

with insulin-dependent diabetes, no information is available on the

diabetes status of the maternal grandfather to further support this

claim. In our cohort, two families are also identified with a single non-

synonymous pathogenic WFS1 variant, interestingly both involving

substitution of amino acid glutamate to lysine (p.Glu385Lys and p.

Glu864Lys).

The effect of the novel intron 1 variants, the c.-6G>T substitu-

tion, and the c. -184_-179dup duplication is not yet clear. Fibroblasts

from the patient harboring this variant and a pathogenic c.937C>T;

p.His313Tyr shows significant reduction ofWFS1 expression in West-

ern blot analysis (data not shown). However, a single c.937C>T;

p.His313Tyr mutation has been shown to be capable of causing WS

(Hansen et al., 2005) and inducing ER stress (Bonnycastle et al.,

2013). One of our patients (WSUK-47) was also identified with the

p.His313Tyr variantwithout thepresenceof another pathogenicWFS1

variant.

3.3 WFS1 genotype–phenotype analysis

We collected information on the age of onset of DM, OA, deafness, DI,

and other reported clinical features from patients in the database and

categorized the disease by phenotype and genotype.

Disease phenotype was classified as: (1) WS, defined by biallelic

inheritance ofWFS1 variants and the presence of two major features

(DMandOA) at any age of onsetwith/without other associated clinical

features (deafness, DI, neurological disorders), or the presence of one

major feature accompanied by at least two associated clinical features;

(2)WFS1-related disorders (recessive form), defined by biallelic inher-

itance ofWFS1 variants and the presence of one major feature (DM or

OA) with none or only one associated feature; and (3) WFS1-related

disorders (dominant form), defined by dominant inheritance of aWFS1

variant and the presence of one or more clinical features (sensorineu-

ral deafness, DM, OA, DI, cataract).

The patients’ genotypes were classified into two variant

groups: group 1 are variants predicted to cause complete or

partial loss of function (N-terminal nonsense and frameshifts,

splice-site variants predicted to cause exon skipping/deletions;

C-terminal nonsense and frameshift; N-terminal small in-frame dele-

tions/duplications/insertions/indels); or compound heterozygous

where one variant is predicted to cause complete and the other

a partial loss of function. Group 2 are variants predicted to cause

minor loss of function (missense, C-terminal small in-frame dele-

tions/duplications/insertions/indels) or compound heterozygous for

a variant predicted to cause partial and minor loss of function (Supp.

Table S1).We defined theWFS1N-terminal as amino acids at positions

1–652 (cytosolic and transmembrane domain) and the C-terminal as

amino acids at positions 653–890 (ER lumen) (Fig. 1).

Patients whose phenotype could clearly be identified were

then assigned into respective genotype and phenotype categories

(Supp. Table S1). Vassar Stats Clinical Calculator 1 (vassarstats.net)

was used to estimate population prevalence, sensitivity, speci-

ficity, predictive values, and likelihood ratios. The age of onset

of DM, OA, and DI between genotypic groups were compared

using ANOVA. From 448 patients analyzed, 301 belonged to
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TABLE 3 Genetic and clinical finding inWolfram syndrome patients

Patient/
ethnicity Location Nucleotide changea Protein change Gender Clinical findings

WSUK-1 Exon 4 c.334C>T p.(Gln112*) M DM5 yr, OA 11 yr, hearing loss 8 yr, DI 26 yr,
learning difficulties.

Middle Eastern Exon 4 c.334C>T p.(Gln112*)

WSUK-2.1 Exon 8 c.1549delC p.(Arg517Alafs*5) F DM,OA, DI, hearing loss.

Caucasian Exon 8 c.2033G>A p.(Trp678*)

WSUK-2.2 Exon 8 c.1549delC Arg517Alafs F DM,OA, DI, hearing loss, psychiatric disorder.

Caucasian Exon 8 c.2033G>A p.(Trp678*)

WSUK-3.1 Exon 8 c.2146G>A p.(Ala716Thr) M DM3 yr, OA 9 yr, hearing loss.

Caucasian Exon 8 c.2648_2651del p.(Phe883Serfs*68)

WSUK-3.2 Exon 8 c.2146GA p.(Ala716Thr) M DM5 yr, OA 23 yr, psychiatric problems.

Caucasian Exon 8 c.2648_2651del p.(Phe883Serfs*68)

WSUK-4.1 Exon 8 c.1525_1539del p.(Val509_Tyr513del) M DM,OA 8 yr, DI 11 yr, bladder dysfunction,
learning difficulties.

Middle Eastern c.1525_1539del p.(Val509_Tyr513del)

WSUK-4.2 Exon 8 c.1525_1539del p.(Val509_Tyr513del) F DM,OA, DI 7 yr.

Middle Eastern Exon 8 c.1525_1539del p.(Val509_Tyr513del)

WSUK-5 Exon 8 c.911_914dup p.(Met306*) F DM5 yr, OA 6 yr, hearing loss (all frequencies) 4
yr, DI 16 yr, bladder dysfunction.

Caucasia Exon 8 c.1994G>A p.(Trp648*)

WSUK-6 Exon 8 c.2051C>T p.(Ala684Val) F OA (mild), hearing loss 5 yr, no DM.

Caucasian Exon 8 c.2452C>T p.(Arg818Cys)

WSUK-7 Exon 5 c.505G>A p.(Glu169Lys) F DM4 yr, OA, DI 4 yr, tinnitus.

Caucasian Exon 8 c.1558C>T p.(Gln520*)

WSUK-8 Exon 4 c.334C>T p.(Gln112*) F DM,OA, DI, hearing loss, sleep apnea, weak
bones, learning difficulties.

Middle Eastern Exon 4 c.334C>T p.(Gln112*)

WSUK-9 Exon 4 c.409_424dup p.(Val142Glyfs*110) F DM7 yr, OA 6 yr, DI, hearing loss, bladder
dysfunction, impaired renal function.

Caucasian Exon 8 c.2262_2263del p.(Cys755Serfs*3)

WSUK-10 Exon 8 c.1504_1527dup p.(Ser503_Val509dup) M DM13 yr, OA 15 yr, bladder dysfunction.

Caucasian Exon 8 c.2262_2263del p.(Cys755Serfs*3)

WSUK-11 Exon 8 c.1338C>A p.(Ser446Arg) F DM5.5 yr, OA 5.5 yr, hearing loss 3.5 yr.

Caucasian Exon 8 c.2327A>T p.(Glu776Val)

WSUK-12 Exon 8 c.1283C>G p.(Pro428Arg) F DM13 yr, OA 13 yr, hearing loss (high
frequency), oral pharyngeal dysphasia,
bladder dysfunction, psychiatric disorder.

Caucasian Exon 8 c.2319C>G p.(Tyr773*)

WSUK-13.1 Exon 8 c.1401_1403del p.(Leu468del) M DM4 yr, OA, DI, hearing loss, neuropathic
bladder.

Middle Eastern Exon 8 c.1401_1403del p.(Leu468del)

WSUK-13.2 Exon 8 c.1401_1403del p.(Leu468del) M DM7 yr, OA 7 yr, neuropathic bladder,
psychiatric disorder.

Middle Eastern Exon 8 c.1401_1403del p.(Leu468del)

WSUK-13.3 Exon 8 c.1401_1403del p.(Leu468del) F DM5 yr, OA, hearing loss (all freq.), ataxia,
psychiatric disorder.

Middle Eastern Exon 8 c.1401_1403del p.(Leu468del)

WSUK-14 Exon 8 c.906C>A p.(Tyr302*) F DM,OA, bulbar palsy with recurrent choking
episodes, sleep apnea, bladder dysfunction,
cerebellar pontine hypoplasia.

Caucasian Exon 8 c.2648_2651del p.(Phe883Serfs*68)

(Continues)



772 ASTUTI ET AL.

TABLE 3 (Continued)

Patient/
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WSUK-15 Exon 8 c.2099G>A p.(Trp700*) M DM6 yr, OA 9 yr, DI, hearing loss (high
frequency), bladder dysfunction.

South European Exon 8 c.2099G>A p.(Trp700*)

Exon 8

WSUK-16 Exon 5 c.505G>A p.(Glu169Lys) M DM14 yr, OA, DI, hearing loss (high frequency),
neurogenic bladder.

Caucasian Exon 8 c.874C>A p.(Pro292Thr)

WSUK-17 Exon 4 c.334C>T p.(Gln112*) M DM2 yr, OA 20 yr, DI, hearing loss 6 yr,
neurogenic bladder, learning difficulties,
psychiatric disorder.

Middle Eastern Exon 4 c.334C>T p.(Gln112*)

WSUK-18 Exon 8 c.2002C>T p.(Gln668*) F DM3 yr, OA 11 yr, hearing loss (high frequency,
mild).

Caucasian Exon 8 c.2080G>T p.(Glu694*)

WSUK-19 Exon 8 c.1727_1744del p.(Gly576_Gly581del) F DM8 yr, OA 34 yr, hearing loss 26 yr, bladder
dysfunction.

Middle Eastern Exon 8 c.1727_1744del p.(Gly576_Gly581del)

WSUK-20.1 Exon 8 c.2654C>T p.(Pro885Leu) M DM4 yr, OA 9 yr, DI 24 yr, deteriorating balance
andmobility, choking episodes, psychiatric
disorder.

Middle Eastern Exon 8 c.2654C>T p.(Pro885Leu)

WSUK-20.2 Exon 8 c.2654C>T p.(Pro885Leu) M DM5 yr, OA 11 yr, DI 20 yr, psychiatric disorder.

Middle Eastern Exon 8 c.2654C>T p.(Pro885Leu)

WSUK-21 Exon 8 c.1434del p.(Trp478Cysfs*4) F DM6 yr, OA, DI, bladder dysfunction,
psychiatric disorder (mild).

Caucasian Exon 8 c.2425G>T p.(Glu809*)

WSUK-22 Exon 8 c.1549C>T p.(Arg517Cys) F DM3yr, OA 5 yr, DI 8 yr, hearing loss, ataxia,
chronic fatigue syndrome, psychiatric
disorders.

Caucasian Exon 8 c.1682T>G p.(Ile561Ser)

Exon 8 c.1775T>C p.(Leu592Pro)

Exon 8 c.1944G>A p.(Trp648*)

WSUK-23.1b Exon 5 c.505G>A p.(Glu169Lys) M DM11 yr, OA 12 yr, DI, hearing loss 13 yr,
bladder dysfunction, cerebellar signs.

Caucasian Exon 7 c.817G>T p.(Glu273*)

WSUK-23.2b Exon 5 c.505G>A p.(Glu169Lys) F DM11 yr, OA 12 yr, DI, hearing loss 13 yr.

Caucasian Exon 7 c.817G>T p.(Glu273*)

WSUK-24 Exon 8 c.1433G>A p.(Trp478*) F DM10 yr, OA 11 yr, DI, bladder dysfunction,
delayed puberty, pharyngeal dysphasia,
cerebellar dysfunction.

Caucasian Exon 8 c.2648_2651del p.(Phe883Serfs*68)

WSUK-25 Exon 8 c.1049_1051del p.(Phe350del) M DM13 yr, DI 16 yr, bladder dysfunction.

Caucasian Exon 8 c.2206G>A p.(Gly736Ser)

WSUK-26 Exon 8 c.1309G>C p.(Gly437Arg) F DM,OA, DI

Caucasian Exon 8 c.1434del p.(Trp478Cysfs*4)

WSUK-27 Exon 8 c.1230_1233del p.(Val412Serfs*29) F DM5 yr, poor night vision, DI, hearing loss 15 yr,
bilateral cataract, microalbuminuria,
cerebellar signs (mild).

Caucasian Exon 8 c.1243_1245del p.(Val415del)

WSUK-28.1 Exon 8 c.2006A>C p.(Tyr669Ser) F DM,OA, DI, hearing loss 7 yr, congenital
hypothyroidism, diabetic retinopathy,
neuropathic bladder, psychiatric disorder.

Caucasian Exon 8 c.2006A>C p.(Tyr669Ser)

WSUK-28.2 Exon 8 c.2006A>C p.(Tyr669Ser) M DM4 yr, OA, DI, diabetic retinopathy, mild
ataxia, microcephaly.

(Continues)
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Caucasian Exon 8 c.2006A>C p.(Tyr669Ser)

WSUK-29 Exon 8 c.2099G>A p.(Trp700*) M DM,OA, hearing loss (high frequency).

South European Exon 8 c.2099G>A p.(Trp700*)

WSUK-30 Exon 8 c.1096C>T p.(Gln366*) F DM,OA

South European Exon 8 c.1672C>T p.(Arg558Cys)

WSUK-31.1 Exon 4 c.334C>T p.(Gln112*) F p.(Gln112*)

Middle Eastern Exon 4 c.334C>T p.(Gln112*)

WSUK-31.2 Exon 4 c.334C>T p.(Gln112*) M DM7 yr, OA 9 yr, coeliac disease, resting hand
tremors.

Middle Eastern Exon 4 c.334C>T p.(Gln112*)

WSUK-32.1 Exon 8 c.2643_2646del p.(Phe882Serfs*69) F DM4.5 yr, OA 9 yr, DI 13 yr.

Middle Eastern Exon 8 c.2643_2646del p.(Phe882Serfs*69)

WSUK-32.2 Exon 8 c.2643_2646del p.(Phe882Serfs*69) M DM2.5 yr, bladder dysfunction.

Middle Eastern Exon 8 c.2643_2646del p.(Phe882Serfs*69)

WSUK-33 Exon 8 c.958_961delinsTCC p.(Pro320Serfs*39) M DM,OA, hearing loss, bladder dysfunction,
primary testicular atrophy, psychiatric
disorder.

Middle Eastern Exon 8 c.958_961delinsTCC p.(Pro320Serfs*39)

WSUK-34 Exon 4 c.334C>T p.(Gln112*) M DM,OA, DI

Middle Eastern Exon 4 c.334C>T p.(Gln112*)

WSUK-35 Exon 8 c.2099G>A p.(Trp700*) F DM4 yr, OA 7 yr

South European Exon 8 c.2099G>A p.(Trp700*)

WSUK-36.1 Exon 8 c.1549del p.(Arg517Alafs*5) F OA, hearing loss, neurogenic bladder,
autonomic dysfunction.

Caucasian Exon 8 c.1597C>T p.(Pro533Ser)

WSUK-36.2 Exon 8 c.1549del p.(Arg517Alafs*5) M OA, hearing loss (high frequency), urinary
urgency, erectile dysfunction, restless leg
syndrome.

Caucasian Exon 8 c.1597C>T p.(Pro533Ser)

WSUK-37 Exon 8 c.1309G>C p.(Gly437Arg) F DM8 yr, OA 22 yr, hearing loss, bladder
dysfunction, ataxia, psychiatric disorder.

Caucasian Exon 8 c.1699_1704del p.(Leu567_Phe568del)

WSUK-38 Exon 5 c.605A>G p.(Glu202Gly) F DM14 yr, OA 14 yr, neurogenic bladder.

Caucasian Exon 7 c.817G>T p.(Glu273*)

WSUK-39 Exon 7 c.817G>T p.(Glu273*) M DM7 yr, OA 7 yr, DI 8 yr, hearing loss (high
frequency) 6 yr, bladder dysfunction.

Caucasian Exon 8 c.1504_1527dup p.(Ser502_Val509dup)

WSUK-40 Exon 4 c.376G>A p.(Ala126Thr) M DM10 yr, OA 8 yr, hearing loss (high freq.) 11 yr,
psychiatric disorder.

Caucasian Exon 8 c.1885C>T p.(Arg629Trp)

WSUK-41 Exon 8 c.1529_1543del p.(Tyr510_Leu514del) M DM2 yr, OA 7 yr, DI, mild cerebellar
dysfunction.

Caucasian Exon 8 c.2254G>T p.(Glu752*)

WSUK-42 Exon 8 c.2648_2651del p.(Phe883Serfs*68) F DM10 yr.

Caucasian Exon 8 c.2648_2651del p.(Phe883Serfs*68)

WSUK-43 Exon 8 c.2648_2651del p.(Phe883Serfs*68) F DM11 yr, OA 10 yr, learning difficulties,
reducedwhitematter onMRI brain scan.

Caucasian Intron 1 c. -6G>T p.?

WSUK-44 Exon 8 c.937C>T p.(His313Tyr) M DM1.5 yr, OA (mild), congenital hearing loss.

Middle Eastern Intron 1 c.-184_-
179dupTGCCCC

p.?

WSUK-45 Exon 8 c.1153G>Ac p.(Glu385Lys) F DM9 yr, OA 4 yr, congenital hearing loss.

(Continues)
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Caucasian

WSUK-46 Exon 8 c.2590G>Ac p.(Glu864Lys) M

Caucasian OA 10 yr, congenital hearing loss.

WSUK-47 Exon 8 c.937C>Tc p.(His313Tyr) F OA, DM, hearing loss, short stature

Caucasian

WSUK-48 Exon 8 c.977C>T p.(Ala326Val) F OA, DM

Caucasian Exon 8 c.1309G>C p.(Gly437Arg)

F, female; M, male; DM, diabetes mellitus; OA, optic atrophy; DI, diabetes insipidus; yr, year.
Notes:Novel variants are in bold.
aNucleotide numbering:+1 is A of ATG start codon (NCBI Reference Sequence NM_006005.3).
bTwin.
cOnly heterozygous variant identified.

F IGURE 1 WFS1 variant distribution based on disease phenotype. Position of the amino acid involved in the disease phenotype is indicated by
different shades. Position of the transmembrane regions were predicted based on TMHMM (Krogh, Larsson, von Heijne, & Sonnhammer, 2001)
and SMART (Letunic, Doerks, & Bork, 2015). ER, endoplasmic reticulum

TABLE 4 Number of patient classified according to genotype and phenotype

Phenotype Group 1 Group 2 Total

Wolfram syndrome 295 78 373

WFS1-related disorders (recessive form) 6 8 14

WFS1-related disorders (dominant form) 0 61 61

Total 301 147 448

Notes:Group 1: variants predicted to cause complete or partial loss of function (N-terminal nonsense and frameshifts, splice-site variants predicted to cause
exon skipping/deletions; C-terminal nonsense and frameshift; N-terminal small in-frame deletions/duplications/insertions/indels); or compound heterozy-
gous where one variant is predicted to cause complete and the other a partial loss of function.
Group 2: variants predicted to causeminor loss of function (missense, C-terminal small in-frame deletions/duplications/insertions/indels) or compound het-
erozygous for a variant predicted to cause partial andminor loss of function. See Supp. Table S1 for detail.

group 1 and 147 to group 2 genotypes. In patients with group

1 genotype, 295 have the WS phenotype and six have a reces-

sive form of WFS1-related disorder. In patients with group 2

genotype, 78 have WS phenotype, eight have recessive forms of

WFS1-related disorders, and 61 patients presented with dominant

forms ofWFS1-related disorders (Table 4). The classification of a group

1 genotype is highly sensitive (75%–83%) and specific (83%–97%)

in predicting a WS phenotype with a positive predictive value of

95%–99%. The classification of a group 2 genotype has a modest sen-

sitivity (30%–81%) and specificity (63%–72%) in predicting recessive

WFS1-related disorders; however, it has high sensitivity (93%–100%)

and specificity (73%–82%) in predicting the dominant form of WFS1-

related disorders (Table 5). Six of the patients harboring group 1

genotypes presented without a classic WS phenotypes (no reported

OA at adulthood or during data collection). Four of these patients are

brothers from a Latin American family and two are from different
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TABLE 5 Sensitivity and specificity ofWFS1 genotype to predict phenotype

Phenotype Genotype
Sensitivity
(95%CI)

Specificity
(95%CI)

Positive predictive
value (95%CI)

Negative predictive
value (95%CI)

Wolfram syndrome Group 1 79 (75, 83) 92 (83, 97) 98 (95, 99) 47 (39, 55)

Group 2 21 (17, 25) 8 (3, 17) 53 (45, 61) 2 (1, 5)

WFS1-related disorders
(recessive form)

Group 1 43 (19, 70) 32 (28, 37) 2 (1, 5) 95 (89, 97)

Group 2 57 (30,81) 68 (63, 72) 5 (3, 11) 98 (95, 99)

WFS1-related disorders
(dominant form)

Group 1 0 (0, 7) 22 (18, 27) 0 (0, 2) 58 (50, 66)

Group 2 100 (93, 100) 78 (73, 82) 42 (34, 50) 100 (98, 100)

CI, confidence interval.
Notes:Group 1: variants predicted to cause complete or partial loss of function (N-terminal nonsense and frameshifts, splice-site variants predicted to cause
exon skipping/deletions; C-terminal nonsense and frameshift; N-terminal small in-frame deletions/duplications/insertions/indels); or compound heterozy-
gous where one variant is predicted to cause complete and the other a partial loss of function.
Group 2: variants predicted to causeminor loss of function (missense, C-terminal small in-frame deletions/duplications/insertions/indels) or compound het-
erozygous for a variant predicted to cause partial andminor loss of function.
Sensitivity, specificity, positive predictive value, and negative predictive value was calculated using VassarStats Clinical calculator 1 (www.vassarstats.net).

TABLE 6 Age of onset of diabetes mellitus, optic atrophy, hearing loss, and diabetes insipidus based on genotype classification

Genotype
Diabetesmellitus
(Mean± SD)

Optic atrophy
(Mean± SD)

Deafness
(Mean± SD)

Diabetes insipidus
(Mean± SD)

Group 1 6.3± 3.5 years 11.7± 5.7 years 14.4± 7.2 years 13.9± 6.7 years

n= 300 n= 249 n= 142 n= 114

Group 2 12.0± 9.9 years 15.8± 11.4 years 18.0± 13.7 years 18.0± 10.2 years

n= 90 n= 81 n= 37 n= 29

P (t-test) <0.0001 0.0021 0.125 0.047

Notes:Group 1: variants predicted to cause complete or partial loss of function (N-terminal nonsense and frameshifts, splice-site variants predicted to cause
exon skipping/deletions; C-terminal nonsense and frameshift; N-terminal small in-frame deletions/duplications/insertions/indels); or compound heterozy-
gous where one variant is predicted to cause complete and the other a partial loss of function.
Group 2: variants predicted to causeminor loss of function (missense, C-terminal small in-frame deletions/duplications/insertions/indels) or compound het-
erozygous for a variant predicted to cause partial andminor loss of function.

UK-White European families. In these cases, we speculate that

genetic and environmental interactions may contribute to variable

expressivity.

Comparison of the age of onset of DM and OA in group 1 and

group 2 genotypes revealed a highly significant difference in pheno-

types between the two groups. The mean age of onset of DM was

6.3± 3.5 years in patients with group 1 genotypes and 12.0± 9.9 years

in individuals with group 2 genotypes (P < 0.0001), whereas the mean

age of onset of OA was 11.7 ± 5.7 years in individuals with group 1

genotypes and 15.8 ±11.4 years in individuals carrying group 2 geno-

types (P = 0.0023). A significant difference in the age of onset of DI

was also observed between individuals carrying group 1 and group 2

genotypes. The mean age of onset of DI was 13.9 ± 6 years and 18.0 ±
10 years in group 1 and group 2 genotypes (P = 0.047), respectively

(Table 6). Rohayem et al. (2011) and de Heredia, Clèries, and Nunes

(2013) also showed significant differences in the age of onset of

DM and DI among patients carrying predicted complete, partial,

or minor loss-of-function mutation. However, due to differences in

genotypic classification used by these authors, the mean age of

onset of DM and DI cannot be directly compared. It has been

previously reported that some patients harboring a homozygous

frameshift variant in the C-terminal end of WFS1 tend to have

a delayed onset of OA (Zalloua et al., 2008). We therefore ana-

lyzed 19 patients carrying homozygous frameshift variants in the C-

terminal of WFS1 (patients 265, 271–280, 285, 290, 295–298, 300,

and 301 in Supp. Table S1), and 33 patients harboring a homozy-

gous frameshift variant in the N-terminal region (patients 14–21, 58,

63, 87–91, 104, 112, 116, 118, 119, 123, 135, 198, 202, 235, 243–

247, and 252–254 in Supp. Table S1). There is a slight difference

in the age of onset of OA in patients with homozygous frameshift

C-terminal variant compared with the age of OA onset in patients

with homozygous frameshift N-terminal variants (13.2 ± 5 years

and 11.2 ± 6.1 years, respectively). However, this is not statistically

significant. Variants associated with aWS phenotype were distributed

inbothoutside and inside the transmembrane region,whereas variants

involved in the dominant form ofWFS1-related disorder were mainly

located at the C-terminal end of the protein (Fig. 1).

3.4 Future prospects and database update

The clinical overlaps and complexity exhibited by the syndromes men-

tioned in this report may lead to delayed or misdiagnosis. We have

demonstrated that a more detailed description of clinical phenotypes

in the patients coupled with genotype information can provide insight

http://www.vassarstats.net
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into genotype–phenotype correlations of these syndromes. Unfortu-

nately, the clinical phenotypes are difficult to access, not always avail-

able, and can be unreliable sometimes in terms of age of onset. We

hope that the information available for some of the patients in our

databases will allow for better understanding of the disease and reli-

able genetic counselling for the patients and their families. Ultimately,

functional studies of the variants will be necessary to further our

understanding of disease mechanisms that will lead to the develop-

ment of personalized therapies.

The EURO-WABB LOVD locus-specific databases for

ALMS1/WFS1/CISD2/ SLC19A2 have been available online since

2012 and have received submissions of variants identified in patients.

Future contributors can submit their variants online or by contact-

ing and providing curators with the necessary information. When

referring to the EURO-WABB ALMS1/WFS1/CISD2/ SLC19A2 LOVD

databases, we kindly ask users to cite this article.
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