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Information about environmental stimuli often can be
encoded by the dynamics of signaling molecules or transcription
factors. In the yeast Saccharomyces cerevisiae, different types of
stresses induce distinct nuclear translocation dynamics of the
general stress-responsive transcription factor Msn2, but the
underlying mechanisms remain unclear. Using deterministic
and stochastic modeling, we reproduced in silico the different
dynamic responses of Msn2 to glucose limitation and osmotic
stress observed in vivo and found that a positive feedback loop
on protein kinase A mediated by the AMP-activated protein
kinase Snf1 is coupled with a negative feedback loop to generate
the characteristic pulsatile dynamics of Msn2. The model pre-
dicted that the stimulus-specific positive feedback loop could be
responsible for the difference between Msn2 dynamics induced
by glucose limitation and osmotic stress. This prediction was
further verified experimentally by time-lapse microscopic
examinations of the snf1� strain. In this mutant lacking the
Snf1-mediated positive feedback loop, Msn2 responds similarly
to glucose limitation and osmotic stress, and its pulsatile trans-
location is largely abrogated. Our combined computational and
experimental analysis reveals a regulatory mechanism by which
cells can encode information about environmental cues into dis-
tinct signaling dynamics through stimulus-specific network
architectures.

An increasing number of studies have revealed that cells
transmit environmental information by controlling the tempo-
ral dynamics of signaling molecules (1, 2). For example, NF-�B
exhibits oscillatory nuclear accumulation in response to tumor
necrosis factor-� but prolonged nuclear accumulation in
response to bacterial lipopolysaccharide (3, 4). Similarly, the
tumor suppressor p53 shows oscillatory nuclear accumulation
in response to �-radiation but prolonged nuclear accumulation
upon UV radiation (5, 6). In some cases, the strength of stimu-
lus can also be encoded into the dynamics of signaling mole-
cules. For instance, the yeast calcium-responsive transcription

factor (TF)2 Crz1 exhibits rapid stochastic bursts of nuclear
localization, the frequency of which increases with extracellular
calcium concentration (7). We have recently discovered that
the yeast general stress-responsive TF Msn2 encodes both the
identity and strength of external stimuli into dynamic patterns
of nuclear translocation (8, 9). In response to glucose limitation,
Msn2 exhibits an initial uniform peak of nuclear localization
followed by sporadic nuclear pulses with dose-dependent fre-
quency, whereas in response to osmotic stress Msn2 undergoes
a single translocation peak with dose-dependent duration.
These different dynamic patterns of Msn2 have been shown to
be crucial for inducing specific gene expression programs (8,
10 –13); however, the mechanisms that give rise to distinct
Msn2 dynamics remain elusive. In this study, we combined
computational modeling with quantitative single-cell imaging
experiments to investigate the upstream signaling networks
that govern Msn2 dynamics under different stress conditions.

Results

A model of signaling circuits that drive Msn2 translocation

We have previously revealed that different stimuli induced
qualitatively distinct dynamics of Msn2 nuclear translocation
in single cells (8, 9). The response to glucose limitation features
two phases. During the first phase, cells exhibit an adaptive
translocation peak, the duration of which increases with the
intensity of glucose limitation. Following the first peak, cells
show persistent pulsatile nuclear localization with dose-depen-
dent frequency (Fig. 1A, left). In contrast, osmotic stress elicits a
similar single adaptive translocation peak with dose-dependent
duration but not the subsequent pulses of nuclear localization
(Fig. 1A, right). To investigate the mechanisms underlying the
differences in Msn2 dynamics, we considered the upstream sig-
naling pathways responsible for Msn2 nuclear translocation in
response to different stimuli. Under non-stress conditions,
Msn2 is phosphorylated by protein kinase A (PKA) and local-
ized in the cytoplasm (14). Upon glucose limitation, PKA activ-
ity is reduced, and as a result, Msn2 is dephosphorylated and
rapidly translocates into the nucleus (15). In addition to repres-
sion of the PKA pathway, glucose limitation activates the yeast
AMP-activated protein kinase (AMPK) Snf1 (16), which also
participates in regulation of Msn2 by phosphorylation (17).
Intriguingly, recent biochemical studies uncovered that Snf1
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directly phosphorylates adenylate cyclase and inhibits PKA
activity (18), while at the same time PKA also negatively regu-
lates Snf1 activity (19). These findings suggest the existence
of a mutual inhibitory network acting upstream of Msn2 in
response to glucose limitation. In contrast, osmotic stress does
not induce Snf1 activation (20) and triggers Msn2 nuclear local-
ization primarily through repressing PKA activity (21). Based
on these previous studies, we hypothesized that the difference
between glucose limitation- and osmotic stress-induced Msn2
dynamics might be attributed to specific upstream network
structures, in particular the glucose limitation-dependent Snf1
activation (Fig. 1B).

To test this hypothesis in silico, we developed a computa-
tional model of signaling circuits that process environmental
stimuli and drive Msn2 translocation. The model is centered on
the regulation of PKA signaling and includes a negative feed-
back loop mediated by the small G-protein Ras and its GTPase-
activating proteins (GAPs) (22) and a positive feedback loop
through Snf1. The inputs of the model are the levels of extra-
cellular glucose and osmotic stress, which are measured by
dimensionless parameters (Gluc and OsmStr, respectively).
The output is the nuclearly localized Msn2 (Msn2n). Previous
models of the yeast Ras– cAMP–PKA network proposed that
the negative feedback loop mediated by Ras plays a crucial role
in shaping Msn2 dynamics (23, 24). To further simplify the
system while keeping this core network structure, we assume
that the PKA activity is always proportional to and at equilib-
rium with the cAMP level and combined cAMP and PKA into a
single variable denoted as “cAMP/PKA.” Similarly, we com-
bined Ras and adenylate cyclase into a single variable “Ras/
CYCL.” Importantly, we also incorporated into the model the

AMPK Snf1, the activity of which is dependent on the glucose
level but not the osmotic stress level. Based on previous exper-
imental results, a positive feedback loop on PKA activity takes
the form of PKA inhibition of Snf1, which represses PKA acti-
vation. Finally, both PKA and Snf1 promote the exit of Msn2
from the nucleus. The schematic of the model is illustrated in
Fig. 1C, and the details are included in supplemental data, Com-
putational modeling.

Model simulations of Msn2 dynamics upon different stimuli

To examine whether this model can describe the observed
Msn2 dynamics under different conditions, we focused on
reproducing three primary dynamic features of Msn2 respons-
es: 1) the initial adaptive peak upon glucose limitation or
osmotic stress, 2) the persistent pulsatile pattern upon glucose
limitation but not osmotic stress, and 3) the dependence of
translocation duration or frequency on stress intensity (8).

The simulated time traces from the deterministic version of
the model are shown in Fig. 2A. Glucose limitation first triggers
a strong increase in Snf1 activity (green curve) and a strong drop
in PKA activity (black curve). Because of the effect of the nega-
tive feedback loop via GAP, PKA activity recovers and rises
after a short period of time. Meanwhile, due to the cross-inhi-
bition between PKA and Snf1, the increase in PKA activity
causes a decrease in Snf1 activity, which further pushes the rise
of PKA activity across the baseline. When PKA reaches its peak
value, the negative feedback loop takes effect to bring down
PKA activity. Snf1 then rises again to push the drop of PKA
activity across the baseline. In this way, the coupled negative
and positive feedback loops force PKA to overshoot and under-
shoot the steady state repeatedly, resulting in sustained oscilla-

Figure 1. A computational model for stimulus-dependent Msn2 dynamics. A, illustration of distinct Msn2 dynamics in response to glucose limitation and
osmotic stress. Representative single-cell time traces of Msn2 nuclear localization in response to 0.2% glucose (left; glucose limitation) or 1 M sorbitol (right;
osmotic stress) are shown. B, diagram of major signaling pathways that govern Msn2 responses. Glucose limitation is mediated by both PKA and Snf1 to drive
Msn2 dynamics (left). Osmotic stress is primarily mediated through PKA, so Snf1 is grayed out to illustrate that it is not activated by osmotic stress (right). C,
scheme of the computational model. The variables of the model include: RasGDP/CYCLi and RasGDP/CYCLa, the inactive and active fractions of Ras/adenylate
cyclase; GAPi and GAPa, the inactive and active fractions of GAP proteins; cAMP/PKA, the level of cAMP/active PKA; Snf1i and Snf1a, the inactive and active
fractions of Snf1; and Msn2c and Msn2n, the cytoplasmic and nuclear fractions of Msn2. The glucose level influences the activation of Ras/cyclase and the
inactivation of Snf1, whereas the level of osmotic stress represses only the activation of Ras/cyclase. A negative feedback loop through GAP and Ras/cyclase on
PKA is highlighted in pink, and a positive feedback loop via Snf1 on PKA is highlighted in blue. AU, arbitrary units.
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tions of PKA activity accompanied with the antiphase oscilla-
tion of Snf1 activity. These temporal patterns of PKA and Snf1
lead to an initial adaptive peak with subsequent pulsatile
dynamics of Msn2 translocation (red curve) (Fig. 2A, left). In
contrast, osmotic stress does not regulate Snf1 activity directly.
Instead, the stress induces a strong decrease in PKA activity,
which causes a slight increase of Snf1 that is insufficient to
enable dramatic overshooting of PKA from the steady state. As
a result, both PKA and Snf1 undergo rapidly damped oscilla-
tions that reach steady states quickly, and Msn2 exhibits a sin-
gle translocation peak without following pulsatile nuclear local-
ization (Fig. 2A, right). These distinct dynamic behaviors can
also be demonstrated by the corresponding phase plane trajec-
tories of PKA and GAP: the system approaches a stable limit
cycle under glucose limitation (solid trajectory) but spirals into
a steady state upon osmotic stress (dashed trajectory) (Fig. 2B).
To illustrate how stress intensity influences the oscillatory
behaviors, we used a bifurcation graph to show the transition
from a stable steady state to the oscillatory regime as a function
of the stress level. As shown in Fig. 2C, upon glucose limitation
beyond a critical level, PKA oscillations occur spontaneously

(solid curves; oscillation between maximal and minimal values);
by contrast, in response to osmotic stress, the system always
returns to the baseline as a stable steady state independent of
stress intensity (dashed line). Note that the level of the steady
state is independent of the osmotic stress level, which is a man-
ifestation of the perfect adaptation that many signaling cas-
cades exhibit (25) (see more details in supplemental data,
Achieving perfect adaptation). The robustness of the modeling
behaviors and, particularly, the dependence of oscillations on
the strength of negative and positive feedback loops have been
evaluated and discussed in detail in supplemental data, Robust-
ness of the modeling behaviors.

To account for the irregular nature of Msn2 dynamics
observed in single cells, we further performed stochastic simu-
lations of the model using the adaptive tau-leaping algorithm
(26). As shown in Fig. 2D, the time traces of Msn2 nuclear
translocation from stochastic simulations nicely resembled sin-
gle-cell time traces of Msn2 translocation in response to glu-
cose limitation and osmotic stress from experimental results
(Fig. 1A) (8, 9). In addition, to evaluate the effects of stress
intensity on Msn2 dynamics, we quantified the durations of the

Figure 2. Model simulations of Msn2 dynamics in response to different stresses. A, simulated time traces of active PKA (cAMP/PKA; black), active Snf1
(Snf1a; green), and nuclear Msn2 (Msn2n; red) in response to glucose limitation (left) and osmotic stress (right) from the deterministic model. The unit for the y
axis is molecules/cell. For glucose limitation and osmotic stress, we used the dimensionless parameters Gluc and OsmStr to measure the intensity of stresses.
Gluc � 1 and OsmStr � 0 are used for the non-stress condition; Gluc � 0.05 and OsmStr � 0 are used to generate the simulated time traces for glucose
limitation (left); Gluc � 1 and OsmStr � 0.95 are used to generate the simulated time traces for osmotic stress (right). As described in detail in the supplemental
data, the rate of Ras activation is assumed to depend linearly on both glucose and osmotic stress levels in the form of rate � Gluc(1 � OsmStr). The above values
of Gluc and OsmStr are selected so that glucose limitation and osmotic stress would have the same effect on Ras activation, and hence any difference in the
output can only be attributed to the Snf1-mediated positive feedback. B, phase plane trajectories of cAMP/PKA and active GAP (GAPa) corresponding to the
simulated system dynamics in A. The trajectory under glucose limitation is represented by a solid curve (use y axis on the right and x axis on the bottom);
the trajectory under osmotic stress is represented by a dashed curve (use y axis on the left and x axis on the top). C, bifurcation diagram showing the maximum
and minimum values of cAMP/PKA in the asymptotic regime (t3 �) as a function of the intensity of glucose limitation (solid curves; use x axis on the bottom)
or osmotic stress (dashed line; use x axis on the top). D, simulated time traces of nuclear Msn2 from the stochastic model. The values of Gluc and OsmStr are
identical to those used in A to simulate glucose limitation and osmotic stress. E, dependence of Msn2 dynamics on stress intensity. Top panels are model
simulations. The durations of the initial peaks for both glucose limitation (leftmost) and osmotic stress (rightmost) were quantified from deterministic simula-
tions, and the pulse frequencies under glucose limitation (middle) were calculated from stochastic simulations by setting a threshold for pulse identification
(see supplemental data for details). Bottom panels are experimental results. The plots were generated using single-cell data from Ref. 8.
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initial peak and the frequencies of subsequent pulses from sim-
ulations under various stress conditions. As shown in Fig. 2E,
top panels (“Model simulations”), the durations of the initial
peak increase with stress intensity upon glucose limitation (left-
most) and osmotic stress (rightmost). Furthermore, at low
intensities of glucose limitation below the critical point for PKA
oscillation (the transition point between the stable steady state
and the oscillatory regime in Fig. 2C), Msn2 pulses after the
initial peak are primarily driven by noise (but not PKA oscilla-
tions) and hence are with low frequencies; in contrast, the pul-
satile Msn2 dynamics at a high intensity of glucose limitation
above the critical point are driven by PKA oscillations and
thereby exhibit higher frequencies. As a result, increasing
intensity of glucose limitation results in a nonlinear increase in
the frequency of translocation pulses with a substantial increase
over the threshold intensity that corresponds to the critical
point (Fig. 2E, “Model simulations,” middle). These dynamic
modulations of Msn2 responses by stress intensity are consis-
tent with our previous experimental results (8) (Fig. 2E, bottom
panels, “Experimental results”). Taken together, our model
nicely reproduced the major dynamic patterns and dose depen-
dence of Msn2 responses to different stresses and suggested
that a glucose limitation-specific positive feedback loop medi-
ated by Snf1 might give rise to the differences in Msn2 dynam-
ics to stresses.

Model predictions and experimental validation

To examine the effects of the Snf1-mediated positive feed-
back loop on Msn2 dynamics, we removed Snf1 from our model
and simulated the time traces of Msn2 nuclear localization
under different stress conditions. The removal of the Snf1-me-
diated positive feedback loop slows down the effect of the GAP-
mediated negative feedback and results in a prolonged drop in
PKA activity (Fig. 3A, top panels; compare with Fig. 2A, top
panels). This leads to an extended duration of the initial nuclear
peak of Msn2 (Fig. 3A, bottom panels, versus Fig. 2D; an increase
of 26.9% in the simulated initial peak duration), consistent with
our experimental observations (an increase of 27.7% in the mea-
sured average duration of the initial peak) and previously pub-
lished literature (17, 21). More importantly, the model pre-
dicted that the deletion of SNF1 abrogates PKA oscillations,
and as a result, Msn2 responds similarly to glucose limitation
and osmotic stress, both with a single translocation peak but no
following pulses (Fig. 3A, bottom panels). We further showed
that the absence of oscillations is independent of the intensity
of glucose limitation (Fig. 3B). To test the model predictions, we
performed experiments using time-lapse microscopy to moni-
tor Msn2 nuclear localization in single yeast cells lacking the
SNF1 gene (Fig. 3C). We observed that the majority of snf1�
cells no longer exhibited persistent pulsatile Msn2 transloca-
tion following the initial peak in response to glucose limitation
(Fig. 3C, left), strikingly different from WT cells (Fig. 3D). In
contrast, upon osmotic stress, the absence of SNF1 did not alter
the dynamic response of Msn2 following the initial peak (Fig.
3C, right). As a result, in the snf1 mutant, glucose limitation and
osmotic stress induced similar dynamic patterns of Msn2 trans-
location with both showing a major adaptive peak. These exper-
imental results validated the model predictions and confirmed

the important role of Snf1 in generating persistent pulsatile
Msn2 dynamics.

In summary, our combined computational and experimental
analysis uncovered a mechanism that accounts for differential
Msn2 dynamics to distinct types of stresses. Glucose limitation
directly modulates both PKA and the AMPK Snf1 to activate a
positive feedback loop that is coupled with the PKA-driven neg-
ative feedback to enable persistent oscillations and pulsatile
dynamics. Osmotic stress, however, can only modulate PKA
activity and hence fails to activate the Snf1-dependent positive
feedback, resulting in rapidly damped oscillations and adaptive
Msn2 dynamics.

Discussion

Substantial modeling efforts have been devoted to simulating
the yeast cAMP/PKA pathway and the pulsatile dynamics of
Msn2 (21, 23, 24, 27, 28). Most of these models are derived from
an earlier work by Goldbeter and co-workers (23) in which a
negative feedback loop enables sustained PKA oscillations and
pulsatile Msn2 translocation. Building upon these previous
efforts, we took a step further to consider the signaling network
structures that give rise to the distinct Msn2 responses to dif-
ferent stresses. Importantly, we incorporated in our model the
stimulus-specific activation of the AMPK Snf1, which intercon-
nects with and constitutes a positive feedback on cAMP/PKA
signaling (Fig. 1C). Using modeling and experiments, we
showed that this newly added positive feedback loop, coupled
with the previously characterized negative feedback on PKA,
plays a crucial role in generating persistent pulsatile Msn2
translocation and producing specific dynamic responses to var-
ious stresses. Network topologies with these coupled feedback
loops have been proposed as a general design principle for
robust oscillators in various systems (29, 30). In addition,
because our aim was to identify the core network structures,
we significantly reduced the complexity of previous models
and constructed our model in a very concise manner with a
minimum number of variables and parameters. Remarkably,
whereas previous models focused primarily on describing the
persistent pulsatile patterns of Msn2 translocation, our model,
although very simple, was capable of reproducing both these
oscillations and other major dynamic behaviors of Msn2
observed experimentally, such as the initial adaptive peak and
the dose-dependent durations and frequencies (Fig. 2). Finally,
we want to note that about half of the cells exhibit a second
translocation peak of Msn2 following the initial peak in
response to the sorbitol treatment (see Fig. 3C, right column,
“Cell 3,” as an example). This second peak has been shown
to depend on stress-dependent downstream transcriptional
responses (21) and hence was not taken into consideration in
our model. We also noticed that some snf1� cells did not fully
recover to the baseline after adaptation or showed small fluctu-
ations around the steady state (with the amplitude way below
the threshold for pulse identification defined in the supplemen-
tal data and previous studies (8); see Fig. 3C, left column, “Cell
4,” as an example), which are distinct from translocation pulses.
These observations might suggest a role of Snf1in adaptation
and noise regulation that is not included in the current model.
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Biologically, our work revealed a novel mechanism for
encoding stimulus-specific dynamics in which the stimulus-de-
pendent integration of the AMPK Snf1 pathway with the PKA
pathway gives rise to distinct Msn2 dynamics upon glucose
limitation and osmotic stress. PKA and AMPK are both highly
conserved kinases and mediate parallel signaling pathways that
play important roles in regulating metabolism, cell growth, and
stress resistance in response to nutrients and stresses (31–33).
How these two pathways interact and coordinate is of signifi-
cant interest to the field (34). Previous studies have been pri-
marily focused on identifying the genetic and biochemical con-
nections between the pathways. The functional relevance of
pathway interconnectivity, however, remains largely unclear.
Our work demonstrated that the interconnections of the PKA

and AMPK pathways generate persistent pulsatile dynamics of
a common downstream TF, Msn2, and contribute to response
specificity to different stimuli. More generally, our findings rep-
resent a striking example in which the integration of different
signaling pathways leads to specific dynamic patterns of down-
stream TFs that encode environmental information.

Our work focused specifically on glucose limitation and
osmotic stress. How cells encode other stresses remains unad-
dressed. For example, oxidative or ethanol stress induces sus-
tained Msn2 accumulation in the nucleus, the amplitude of
which increases with stress intensity (8). It would be interesting
to investigate the signaling pathways and regulatory mecha-
nisms that underlie this amplitude modulation of TF dynamics.
The other remaining question is how cells respond to combi-

Figure 3. Model prediction and experimental validation of Msn2 dynamics in the absence of Snf1. A, simulated time traces of active PKA (cAMP/PKA;
black) and nuclear Msn2 (Msn2n; red) in the absence of Snf1 in response to glucose limitation (left) and osmotic stress (right) from the stochastic model. The
values of Gluc and OsmStr are identical to those used in Fig. 2A to simulate glucose limitation and osmotic stress. B, bifurcation diagram showing the maximum
and minimum values of cAMP/PKA during oscillations as a function of the intensity of glucose limitation in the presence (gray) or absence (black) of Snf1. C,
experimental results of Msn2 dynamics in the absence of Snf1. Representative single-cell time traces of Msn2 nuclear localization in the snf1� mutant are
shown for the responses to 0.2% glucose (left; glucose limitation; n � 186 total cells imaged) or 1 M sorbitol (right; osmotic stress; n � 176 total cells imaged, ).
D, experimental results of Msn2 dynamics in WT cells. Representative single-cell time traces of Msn2 nuclear localization in WT are shown for the responses to
0.2% glucose (glucose limitation; n � 212 total cells imaged). AU, arbitrary units.
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nations of stresses. As described in supplemental data, Stress
inputs, our current model was designed to simulate the
dynamic responses to glucose limitation or osmotic stress but
not combined stress treatments. A careful quantitative exami-
nation of the interaction between glucose and osmotic stress at
the level of Ras activation will enable us to incorporate a more
accurate mathematical description of this interaction and to
further improve the predictive power of our model toward
complex environmental cues. Finally, another important ques-
tion in the temporal coding of signals is how cells interpret the
dynamic patterns of TF activation to achieve specificity in cel-
lular responses (35). Our previous work has focused on the
simple scenario in which individual downstream genes directly
decode dynamic TF input into differential expression output
depending on their promoter affinity and activation kinetics
(8). Given that many TFs, such as Msn2, regulate a large set of
downstream genes that interact in a complex network, further
analysis is needed to understand how transcriptional networks
process TF dynamics to control cellular functions. In particular,
previous studies have identified a few recurring characteristic
circuit patterns, termed “network motifs” (36 –38), which are
considered the basic building blocks of transcriptional net-
works of diverse organisms from bacteria to humans (36). How
these network motifs function to decode TF dynamics would be
an interesting topic for future studies.

Experimental procedures

Strain construction

Standard methods for the growth, maintenance, and trans-
formation of yeast and bacteria and for manipulation of DNA
were used throughout. Saccharomyces cerevisiae strains used in
this study are derived from the W303 background (ADE�

MATa trp1 leu2 ura3 his3 can1 GAL� psi�). A list of strains is
provided in supplemental Table 1. Msn2 was C-terminally
tagged with a linker-yeast codon-optimized mCherry from a
pKT vector. The snf1� strain was generated by replacing the
endogenous SNF1 ORF with URA3.

Microfluidics and time-lapse microscopy

The fabrication and setup of the microfluidics device were
performed as described previously (8, 9, 13, 39). All time-lapse
microscopy experiments were performed on a Nikon Ti-E
inverted fluorescence microscope with Perfect Focus coupled
with an electron-multiplying charge-coupled device camera
(Andor iXon X3 DU897). The light source is a Spectra X light-
emitting diode system. Images were taken using a CFI Plan
Apochromat Lambda DM 60� oil immersion objective
(numerical aperture, 1.40; working distance, 0.13 mm). During
experiments, the microfluidic device was taped to a customized
device holder and inserted onto the motorized stage (with
encoders) of the microscope. Images were acquired every 2 min
for 3 h. When the image acquisition started, cells were main-
tained in low-fluorescence synthetic complete (SC) medium �
2% glucose for the first 5 min to obtain a baseline for each
fluorescence channel prior to the introduction of any stressor.
For glucose limitation, the medium was then switched to low
fluorescence SC medium � 0.2% glucose. For osmotic stress,

the medium was switched to low fluorescence SC medium �
2% glucose � 1 M sorbitol.

Computational modeling

The computational model and all the simulations were done
with the biochemical simulation software COPASI (40). The
adaptive stochastic simulation algorithm/tau-leaping algo-
rithm was used for all the stochastic simulations (26). A detailed
description of the model and simulations is provided in supple-
mental data. Detailed methods are provided in supplemental
data, Extended experimental procedures. The initial conditions
are provided in supplemental Table S2. Reactions and rate con-
stants are provided in supplemental Table S3.

Author contributions—Y. J. developed the computational models.
Z. A. performed the experiments. L. S. T. and N. H. supervised the
project. Y. J., Z. A., L. S. T., and N. H. wrote the paper.
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