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The onset of type 2 diabetes is characterized by transition
from successful to failed insulin secretory compensation to obe-
sity-related insulin resistance and dysmetabolism. Energy-rich
diets in rodents are commonly studied models of compensatory
increases in both insulin secretion and � cell mass. However,
the mechanisms of these adaptive responses are incompletely
understood, and it is also unclear why these responses eventu-
ally fail. We measured the temporal trends of glucose homeosta-
sis, insulin secretion, � cell morphometry, and islet gene expres-
sion in C57BL/6NTac mice fed a 60% high-fat diet (HFD) or
control diet for up to 16 weeks. A 2-fold increased hyperinsu-
linemia was maintained for the first 4 weeks of HFD feeding and
then further increased through 16 weeks. � cell mass increased
progressively starting at 4 weeks, principally through nonprolif-
erative growth. Insulin sensitivity was not significantly per-
turbed until 11 weeks of HFD feeding. Over the first 8 weeks, we
observed two distinct waves of increased expression of � cell
functional and prodifferentiation genes. This was followed by
activation of the unfolded protein response at 8 weeks and overt
� cell endoplasmic reticulum stress at 12–16 weeks. In sum-
mary, � cell adaptation to an HFD in C57BL/6NTac mice entails
early insulin hypersecretion and a robust growth phase along
with hyperexpression of related genes that begin well before the
onset of observed insulin resistance. However, continued HFD
exposure results in cessation of gene hyperexpression, � cell
functional failure, and endoplasmic reticulum stress. These data
point to a complex but not sustainable integration of � cell-
adaptive responses to nutrient overabundance, obesity develop-
ment, and insulin resistance.

Type 2 diabetes (T2D)2 is a complex metabolic disorder that
is characterized by progressive deterioration of glucose home-

ostasis, in part because of loss of pancreatic � cell mass (BCM)
and function (1– 4). The islet � cell is central to maintenance of
glucose homeostasis through secretion of insulin. Numerous
studies in animals have shown a substantial capacity for a com-
pensatory expansion of BCM and function in response to phys-
iological and pathophysiological changes in insulin demands, in
particular obesity-associated insulin resistance (3, 4). Multiple
factors have been identified that regulate the � cell growth
response: glycolytic flux through glucokinase (5), mild ER stress
(6), autophagy (7), and exogenous factors such as neural (8) and
humoral signals originating in the liver (9). Although the con-
tributions of existing � cell hyperplasia versus neogenesis from
pancreatic epithelial precursors, survival versus apoptotic
death, and hypertrophy are not fully resolved, abundant evi-
dence supports � cell hyperproliferation as the principal mech-
anism of postnatal � cell growth and mass maintenance in mice
(10 –12). In contrast, the loss of functional BCM under glucoli-
potoxic conditions is largely attributed to dedifferentiation or
apoptosis secondary to ER and oxidative stress, amyloid depo-
sition, or inflammation (3, 4, 13). Of particular importance is
that there is a prolonged period of normal glucose tolerance
during progressive insulin resistance before the onset of overt
T2D (3); however, the molecular mechanisms that account for
the transition from normoglycemia to overt hyperglycemia
remain poorly defined (14).

We previously characterized the sequence of events for � cell
adaptation following a 60% pancreatectomy (Px) in normogly-
cemic rodents (15–17). We identified phases of � cell compen-
sation that involved early hyperproliferation followed by acti-
vation of the Irs2-PI3K-Akt-FoxO1 pathway along with
up-regulation of PPAR� and its � cell gene targets Pdx1, pyru-
vate carboxylase (PC), and GIP receptor (Gipr) (18 –20). We
subsequently showed transcriptional regulation of PPAR� by
FoxO1 in � cells (20), suggesting that the Irs2-PI3K-Akt-
FoxO1-PPAR� pathway functions as a central regulatory
mechanism of � cell adaptation in response to Px.

The aim of this study was to define the timing and nature of
key molecular and physiological events that underlie � cell
compensation in a rodent model of diet-induced obesity and
insulin resistance and to identify mechanisms associated with �
cell transition from functional compensation to failure. Studies
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of diet-induced obesity models have revealed considerable var-
iation between and within mouse strains in their propensity to
develop obesity, insulin resistance, and hyperglycemia (21–23).
Here we have characterized the temporal profile of � cell func-
tion, mass, and expression of key genes, along with in vivo glu-
cose homeostasis and insulin sensitivity, in the C57BL/6NTac
(B6N) mouse substrain of obesity-susceptible C57BL/6 mice
fed a 60% high fat– enriched diet for 16 weeks. Our study high-
lights the extensive repertoire of � cell compensation responses
to this diet, with early increases in insulin secretion and BCM
coupled with hyperexpression of profunction, prodifferentia-
tion, and protective UPR genes, that precede overt whole-body
insulin resistance by several weeks. In contrast, continued
exposure to the HFD resulted in transition to reduced expres-
sion of these genes along with � cell functional exhaustion and
onset of uncompensated ER stress.

Results

General characteristics of HFD in B6N mice

Body mass was increased after 1 week of the HFD and con-
tinued to progressively increase to 50% above the chow-fed
control mice by 16 weeks (Fig. 1A). Also within the first week,
mild fed hyperglycemia (122 � 7 mg/dl versus 96 � 6 mg/dl,
p � 0.05) was present in the HFD mice and continued at �25
mg/dl above controls through 16 weeks (Fig. 1B). Likewise,
hyperinsulinemia developed within the first week of the HFD
(0.55 � 0.07 ng/ml versus 0.23 � 0.03 ng/ml, p � 0.05) and
increased to 4-fold at 9 weeks and 8-fold by 16 weeks over con-
trol mice (Fig. 1C). No differences in plasma triglycerides were
detected between the groups at 8, 12, and 16 weeks (data not
shown).

Early and progressive impairment of glucose tolerance in HFD-
fed mice

HFD-fed mice exhibited a gradual reduction in glucose tol-
erance starting within the first week of feeding (Fig. 2A). The
corresponding insulin secretion profiles revealed a progres-
sively exaggerated glucose-induced secretory response along
with fasting hyperinsulinemia in the HFD mice (Fig. 2B).
Whole-body insulin sensitivity was examined using ITT. At 4
and 8 weeks, the insulin-induced hypoglycemic response of
HFD-fed mice remained intact; it was not until 11 weeks that
insulin resistance was detectable in these mice (Fig. 3).

Transition from enhanced to impaired insulin secretion in
HFD-fed mice

To further assess � cell function in HFD-fed mice, we com-
pared isolated islet insulin secretion in the presence of low (2.8
mM) and high (16.7 mM) glucose with or without the incretins
GLP-1 and GIP between chow-fed and HFD-fed mice at 2 and
16 weeks. At 2 weeks, islets from HFD-fed mice displayed
nearly doubled insulin secretory responses to high glucose (16.7
mM), and to GLP-1 and GIP supplementation (Fig. 4A). In con-
trast, after 16 weeks of HFD, high glucose and GIP-augmented
insulin secretion were both markedly reduced compared with
islets from chow-fed mice; GLP-1–potentiated insulin secre-
tion remained intact but was no longer exaggerated (Fig. 4B).

BCM and islet number dynamics in response to HFD

We compared BCM and its contributing parameters. BCM
was increased 50% by 4 weeks of HFD feeding, almost doubled
by 8 weeks, was 2.5-fold increased at 10 weeks, and then leveled
off (Fig. 5A). Unexpectedly, � cell proliferation assessed by
Ki-67 immunostaining was only transiently increased (�4-fold)
in HFD-fed mice at 10 weeks (Fig. 5B). The lack of � cell hyper-
proliferation at earlier time points was corroborated by prolif-
erating cell nuclear antigen immunostaining (data not shown).
To ensure that we had not missed a � cell proliferation burst
during the first week of the HFD, we analyzed mice after 2 and
3 days of HFD feeding; there were no significant differences in

Figure 1. A chronic HFD leads to progressive hyperinsulinemia and
weight gain, but mild hyperglycemia is maintained. A, body mass mea-
sured weekly through 16 weeks in chow-fed and HFD-fed mice (n �
14/group). B, weekly morning nonfasting blood glucose concentrations in
chow-fed and HFD-fed mice through 16 weeks (n � 14/group). C, weekly
morning nonfasting plasma insulin concentrations in chow-fed and HFD-fed
mice through 16 weeks (n � 8/group). *, p � 0.05.
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proliferation between the groups (data not shown). Thus, we
found virtually no role for � cell hyperproliferation in BCM
growth response to the HFD in B6NTac mice. Furthermore,
only modest increases in � cell size were noted at the later time
points, when most of the BCM accrual was established (Fig. 5C).
As expected, TUNEL staining yielded staining frequencies that
were too low for comparison of apoptosis between the groups.

We examined how the HFD affected relative islet size and
numbers (Fig. 5D). At 2 weeks, there was a modest increase in
the number of small islets in the HFD group. By 4 weeks, coin-
ciding with the first identified BCM increase, the prevalence of
the largest islet size population was doubled in the HFD group.

Thereafter, the number of small and largest islets was increased
through 12 weeks, but these differences were no longer present
at 16 weeks, correlating with cessation of the BCM growth
response at the later time points.

Dynamic changes in islet gene expression over 16 weeks

We performed islet quantitative PCR analyses of key � cell
profunction and prosurvival genes, major transcription factors,
and metabolic stress–related genes at multiple time points to
gain insight into the molecular mechanisms that regulate the
adaptive and maladaptive � cell responses to the HFD (Fig. 6, A
and B). Within the first week, corresponding with the onset of

Figure 2. Progressive glucose intolerance in HFD mice. A, i.p. GTT (2 g/kg) results for chow-fed and HFD-fed mice at multiple time points through 16 weeks
of the respective diets. B, the corresponding insulin secretion curves for the i.p. GTT results. The ratios of the area under the curve (AUC) calculations for HFD
versus control diet mice are indicated. (n � 5/group). *, p � 0.01; **, p � 0.05.
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mild hyperglycemia and glucose intolerance, the HFD-fed mice
islet expression profile showed modest down-regulation of sev-
eral profunction genes (MafA, 0.35-fold; PC, 0.55-fold; Gipr,
0.7-fold). In contrast, by the second and third weeks, the pattern
switched to a surge in expression of several genes: restored
MafA expression and increased expression of the genes encod-
ing the glucose sensors Glut2 and Gck, the mitochondrial
anaplerotic enzyme PC, the incretin receptor Gipr, and the
transcription factors Ppar� and Pdx1. It is notable that Gipr,
Pdx1, Glut2, PC, and Gck are established targets of Ppar�-me-
diated transcriptional regulation (19, 20, 24 –26).

As stated above, we found that the onset of the BCM increase
was at the fourth week of HFD. This time point corresponded
with hyperexpression of the prodevelopment transcription fac-
tors MafA, Nkx6.1, and NeuroD. By the eighth week of HFD,
there were a second surge of Ppar� expression and its target
genes (Gipr, Pdx1, Glut2, PC, and Gck) and sustained hyperex-
pression of MafA and NeuroD that correlated with progressive
increases in hyperinsulinemia and BCM accrual. This period
was also characterized by the onset of UPR activation, as dem-
onstrated by a 2-fold increase in BiP/Grp78 expression without
significant changes in expression of the downstream UPR
markers (Fig. 6C).

At week 12, in the presence of profound insulin resistance
and �10-fold higher (fed) plasma insulin, a substantial, �3.0-
fold enhancement of PC expression was present, along with a
sustained increase in Ppar� expression (Fig. 6B). On the other
hand, significant reductions in islet MafA, NeuroD, Gck, and
Hif1a expression levels were found at this time point. Among

UPR-associated genes, a 1.9-fold increase in Chop (Ddit3) and a
6-fold increase in Xbp1-spliced were observed. We also exam-
ined expression of major calcium-binding ER chaperones
involved in the UPR. At both 12 and 16 weeks, calreticulin and
related calnexin mRNA levels were significantly up-regulated
in the HFD mice (Fig. 7A). This was corroborated at the protein
level by immunoblot (Fig. 7B) and by immunofluorescence
imaging, which showed increased � cell calreticulin immuno-
reactivity in the HFD mice above the age- and diet-matched
control mice (Fig. 7C). At 16 weeks, there were now significant
reductions in the expression of � cell profunction genes (Gck,
Glut2, PC, Irs1, Irs2, Gipr, and Glp-1r) and transcription factors
(MafA, Pdx1, Nkx6.1, Ppar, NeuroD). Also at this time point
was increased islet expression of the ER chaperone protein BiP
(4.5-fold) and the ER stress markers Xbp1-spliced (1.59-fold)
and Chop (2.64-fold) (Fig. 6C).

Ultrastructural evidence for islet ER stress at 16 weeks of HFD

To further investigate the gene expression profile that sug-
gested islet ER stress, we performed a transmission electron
microscopy comparison of pancreas sections from 16-week
HFD-fed and control mice. The control mice exhibited abun-

Figure 3. Insulin sensitivity assessed with ITT in chow-fed and HFD-fed
mice. A and B, ITT (0.75 units/kg) plasma glucose values (A) and glucose val-
ues (B) expressed as percentages of the time 0 value after 4, 8, and 11 weeks of
HFD and chow diet. (n � 7/group). *, p � 0.05.

Figure 4. Isolated islet in vitro insulin responses to high glucose and
incretin hormones in chow-fed and HFD-fed mice. A and B, glucose-stim-
ulated insulin secretion was measured with or without GLP1 and GIP peptides
in the presence of low or high glucose from triplicates of 15 equal-size islets
from chow-fed control or HFD-fed mice (n � 3). The graph shows the mean �
S.E. of insulin released to 2.8 mmol/liter or 16.7 mmol/liter glucose with or
without 10 nmol/liter GLP-1 or GIP peptide in three separate experiments
expressed as percent insulin content after 2 weeks (A) and 16 weeks (B) of HFD
or chow diet. *, p � 0.05.
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dant insulin granules in their � cells, with well-defined mito-
chondria (Fig. 8, A and C). In contrast, � cells of HFD-fed mice
generally displayed fewer insulin granules, grossly dilated ER
cisternae, and degenerating mitochondria (Fig. 8, B and D) that
are typical morphological features of ER stress and � cell
exhaustion (27).

Discussion

The general consensus is that genetic susceptibility, coupled
with a loss of functional BCM, is a major element of the patho-
genesis of T2D (1– 4). Genome-wide association studies have
identified many related genes and loci, but they account for
only a fraction of the total risk (28). Instead, a loss of functional
� cell compensation to metabolic stress over time appears to be
the key factor in the transition from normoglycemia to overt
T2D (3, 4). However, a detailed understanding of the precise
mechanisms that account for this � cell maladaptation remains
incomplete. Toward this end, a myriad of HFD-induced rodent
models have been studied, with a range of metabolic perturba-

tions and failed � cell-adaptive responses, although these find-
ings are impacted by variables such as genetic differences
among strains, sex, age of diet onset and its duration, and diet
composition. In this study, we sought to avoid some of these
confounding issues by using the B6N mouse, which lacks the
Nnt mutation and has been reported to exhibit uniform insulin
secretion profiles along with robust � cell responses to overnu-
trition (29). Indeed, our results showed a marked consistency
within the various in vivo and in vitro isolated islet measure-
ments in the HFD mice. The goal of this study was to charac-
terize the temporal sequence and � cell adaptation mechanisms
in male B6N mice fed a high-fat diet for up to 16 weeks that
spanned the compensation-decompensation transition.

We found that the B6NTac mice maintained mild fed hyper-
glycemia through the 16 weeks of the HFD despite a progressive
increase in obesity and glucose intolerance. Hyperglycemia
was minimized by an ordered succession of adaptive � cell
responses. Initially, insulin secretion was enhanced without a
change in BCM. However, at 4 –5 weeks, BCM increased and

Figure 5. Effects of a chronic HFD on � cell mass and related morphometrics. A, BCM measured at multiple time points in HFD- and chow-fed mice. B, � cell
proliferation assessed by quantification of the percentage of � cells positive for Ki-67 immunostaining at multiple time points in HFD- and chow-fed mice. C,
individual � cell size assessed by planimetry at multiple time points in HFD- and chow-fed mice. D, dynamic changes in islet size populations at multiple time
points in HFD- and chow-fed mice. (n � 6/group). *, p � 0.05.
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Figure 6. Profiles of islet gene expression in HFD- and chow-fed mice. The results show -fold expression (quantitative PCR) of mRNA expression of islets
from HFD mice (n � 4) compared with islets from chow-fed mice (n � 4) at selected time points through 16 weeks of the respective diets. Green rectangles
indicate significantly increased expression, whereas red rectangles show significantly reduced expression in HFD-fed mice relative to chow-fed control mice
(p � 0.05). A, selected � cell functional genes. B, selected � cell transcription factors. C, selected UPR and stress-related genes.

Figure 7. Relative expression of � cell ER calcium-binding chaperone proteins in HFD- and chow-fed mice. A, RT-PCR analysis of calreticulin and calnexin
in islets after 12 and 16 weeks of HFD or chow diet. #, calreticulin mRNA expression levels at 16-weeks compared to 12-weeks with a statistical significance of
p � 0.005; *, p � 0.05. B, representative immunoblots from islet extracts from two mice assessed for calreticulin protein after 16 weeks of HFD or chow diet. con,
control. *, mRNA expression levels of calreticulin and calnexin in HFD fed compared to chow fed mice with a statistical significance of p � 0.005. C, represen-
tative confocal fields showing islet calreticulin immunoreactivity (red) and corresponding fields immunomarked for insulin (green) after 12 and 16 weeks of HFD
or chow diet. Imaging conditions were identical for each panel. Scale bar � 50 �m.
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continued to expand for the next 6 weeks. Hyperinsulinemia
also surged, especially after the 9- to 10-week time point when
insulin resistance was first detectable by ITT. With continued
exposure to the HFD (12–16 weeks), these counter-responses
began to fail, with cessation of � cell growth, worsened glucose
intolerance, and uncompensated � cell ER stress. This transi-
tion from � cell adaptation to failure was most apparent in the
expression patterns of key profunction, prodifferentiation, and
UPR genes. It also correlated with markedly reduced islet insu-
lin secretory responses to high glucose concentrations and
incretins ex vivo at 16 weeks.

Many studies using various durations of fat feeding in
rodents reported early � cell compensation and/or later func-
tional failure or ER stress. The novelty of this study is the focus
on sequentially mapping the relative expression levels of key �
cell profunction and prodifferentiation genes, transcription
factors, and stress-related genes, which identified temporally
distinct patterns and allowed us to identify and track the
responses that account for the early � cell adaptation and later
transition to functional failure. After the first week of HFD
feeding, expression of the profunction genes MafA, PC, and
Gipr was modestly reduced. The following week, the pattern
switched to hyperexpression of genes, consistent with activat-
ing an array of compensatory responses related to enhanced
glycolysis, mitochondrial metabolism, and survival. A second
wave of enhanced gene expression occurred at 8 weeks with
ongoing � cell growth. These waves were both characterized by
hyperexpression of Ppar�, Pdx1, Gipr, PC, and Gck. We and

others have shown previously that Ppar� transcriptionally reg-
ulates Pdx1 (18, 24), Gipr (19), PC (20), Glut2 (25), and Gck (26).
In addition, PPAR� is known to mediate protection against �
cell ER stress and maintain euchromatin structure (30) and is an
important fatty acid sensor that, along with GPR40, is a key
regulator of fatty acid-induced insulin secretion (31, 32). Fur-
thermore, we have established that Ppar� is transcriptionally
regulated by FoxO1 (20). These findings likely support activa-
tion of the PPAR� signaling pathway as a link to the down-
stream � cell functional adaptive responses with fat feeding,
similar to our findings in Px rodent models (19, 20).

At 12 weeks of HFD, a transition in the expression of � cell
profunction genes occurred so that most were down-regulated,
but PPAR� and its target PC remained elevated. Although � cell
mitochondrial dysfunction in concert with reduced PC levels
are hallmarks of T2D (33), increased PC activity and metabolic
coupling of mitochondrial metabolism with enhanced insulin
secretion have been correlated with a heightened � cell com-
pensatory drive (34). Thus, the dramatic increase in PC expres-
sion at 12 weeks of HFD, despite the relative reductions in other
� cell function genes, may reflect a final effort to maintain high
levels of insulin secretion.

The 12- to 16-week interval was marked by another switch in
the gene expression profile to one of evolving � cell ER stress. A
single � cell synthesizes approximately one million molecules
of insulin per minute, which is achieved with highly efficient ER
and Golgi activity (35). Integral to ER function are molecular
chaperoning mechanisms that maintain correct protein folding
and assembly (35, 36). The � cell UPR is a protective system,
with BiP (GRP78) acting as the master regulator; when ER stress
is detected, it initiates mechanisms to degrade misfolded pro-
teins and arrest translation, thereby maintaining � cell function
(35–37). However, with persistent ER stress, a decompensating
UPR results in purging of dysfunctional � cells through C/EBP
homologous protein 10 (CHOP)-mediated apoptosis (38). At 8
weeks, among the tested UPR genes, BiP expression was
uniquely increased, indicating the onset of compensated ER
stress. However, 4 weeks later, expression of the stress response
genes Atf6 and Xbp1-spliced was increased, with a modest
increase of Chop. Furthermore, Irs1, but not Irs2, was hyperex-
pressed at 8 and 12 weeks, with a recent study having shown
that � cell Irs1 plays a role in activating ER stress–induced
apoptosis (39). Then, at 16 weeks, Chop expression was further
increased, along with widespread ER cisterna dilation by ultra-
structural analysis, which is a sign of decompensated ER stress.
Additional evidence for UPR activation was the increased
expression at 12–16 weeks of the chaperones calreticulin and
calnexin in the HFD mice (40). The importance of calreticulin
in � cell biology has recently been highlighted by studies that
have demonstrated its role in expression and stabilization of the
insulin receptor and the link between calreticulin mutations
and T2D (41– 43).

In addition to the profound changes in ER stress marker
expression during the 12- to 16-week interval, a striking
increase in Hif1-� expression was observed. Previous work has
identified a key role for � cell HIF1-� and the von Hippel-
Lindau protein in regulating glucose homeostasis. Chronic acti-
vation of HIF1-� impairs � cell function by switching glucose

Figure 8. � cell ultrastructural changes assessed by EM following 16
weeks of HFD or chow diet. A, overview of a typical islet field from a chow
diet mouse demonstrating abundant insulin granules in � cells. Typical elon-
gated � cell mitochondria (Mt) and a capillary (Cap) are indicated. B, overview
of � cells from a HFD-fed mouse showing fewer insulin granules and altered
ultrastructural features. Dilated ER cisternae (ER) and degenerating mito-
chondria (Mt) are labeled. C, higher magnification of a typical � cell from a
16-week chow diet-fed mouse reveals mitochondria with dense matrices and
prominent cristae (Mt) with an adjacent unaltered rough ER (ER). Go, Golgi
complex. D, comparable high-magnification field from an HFD-fed mouse
showing prominent dilated ER cisternae (ER) and a degenerating mitochon-
drion (Mt). Scale bars � 2 �m (A and B) and 1 �m (C and D).
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metabolism from aerobic oxidative phosphorylation to anaer-
obic glycolysis (44, 45). We observed a significant reduction of
Hif1-� at 12 weeks of HFD, along with a striking 3.5-fold
increase in PC, suggesting enhanced anaplerotic flux of metab-
olites. However, by 16 weeks, a substantial, �4-fold increase in
islet Hif1-� corresponded with a peak in proapoptotic Chop
expression, with a major reduction in expression of the princi-
pal profunction and prosurvival genes. Thus, the dramatic
switch in gene expression between 12 and 16 weeks is charac-
terized by reduced expression of � cell function genes and tran-
sition to gene expression that drives decompensated ER stress
and hypoxia.

We also investigated the cellular basis for the enhanced BCM
in HFD mice. Studies in fat-fed B6J mice observed early � cell
hyperproliferation coincident with increased expression of cell
cycle regulators as the basis for increased BCM (11, 12). In this
study, we found increased BCM at a similar time point (4
weeks) but did not find evidence of enhanced � cell prolifera-
tion, testing several early time points using two proliferation
markers resolved with high magnification. Also, hyperprolif-
eration was absent during the � cell growth surge in HFD mice
from 4 –10 weeks, except for a spike at 10 weeks, when BCM
was already 2.5-fold higher than in control mice. Furthermore,
only modest increases in individual � cell size were detected,
and just within the 8 –12 week interval. Instead, we did find a
higher prevalence of the largest islet size class from 4 –16 weeks.
As these islets contribute substantially to the total BCM, this
may indicate increased � cell life span in HFD mice, with
enhanced � cell survival/reduced apoptosis having been
reported in chronic HFD-fed mice (46, 47). Furthermore, the
greater number of the smaller islets at 2 weeks, followed by their
increased numbers up until 12 weeks, suggests potentially
enhanced development of new islets (neogenesis) that grow
into larger islets, thus contributing to the increased BCM. Sim-
ilar observations have been reported during human obesity,
pregnancy, and insulin resistance (48, 49) as well as in several
animal models (15, 17, 50, 51), with the BCM increase attrib-
uted to non-proliferative means, primarily through neogenesis
from the duct epithelium (52). Therefore, our data reveal pri-
marily non-proliferative means of BCM expansion in fat-fed
B6NTac mice.

It is generally believed the primary driver for the � cell adap-
tation in overnutrition/high-fat models is systemic insulin resis-
tance and the associated dysmetabolism. We instead found that
glucose intolerance with hyperinsulinemia was present after
just 1 week of HFD feeding, whereas whole-animal insulin sen-
sitivity as measured with ITT was not impaired until 11 weeks;
a similar observation has been reported in HFD B6J mice (11,
12). Also, BCM increased substantially over the 4- to 10-week
time frame in this study. However, reports on the B6J model of
diet-induced obesity that used the more sensitive euglycemic
clamp technique reported systemic insulin resistance much
earlier (53, 54). Park et al. (54) identified hyperinsulinemia, sys-
temic insulin resistance, adipose inflammation, and increased
hepatic glucose production after just 3 days of the same HF
formula that was used in this study. In addition, hypothalamic
inflammation and a host of secondary neural responses have
been detected after just 24 h of a HFD in B6 mice, possibly

implicating the CNS in directing at least the early systemic
compensation responses to nutrient overload (55). Thus, mul-
tiple elements of dysmetabolism and/or hyperglycemia, indi-
vidually or collectively, remain strong candidates as physiolog-
ical drivers for � cell adaptation.

In summary, a complex interplay of several � cell-adaptive
mechanisms underlie the � cell functional compensation in
B6NTac mice fed a HFD for 16 weeks. The first detectable � cell
response is enhanced insulin secretion in tandem with a surge
in Ppar� expression and its target genes. At 4 weeks, the gene
expression pattern switches from profunction to prodifferen-
tiation, whereas BCM increases by nonproliferative means. At 8
weeks, there is a second surge in Ppar� expression, along with
sustained hyperexpression of prodifferentiation genes and pro-
gressive increases in BCM and hyperinsulinemia. The 12-week
time point is characterized by a switch to reduced expression of
principal profunction and prosurvival genes, along with the
transition of compensated to decompensated ER stress. The
16-week time point is characterized by fully evolved ER stress
and insulin secretory failure. Our study highlights the
sequential repertoire of distinct mechanisms in response to
overnutrition that transition from � cell adaptation to fail-
ure, with PPAR� and its targets playing central roles in the
adaptation and ER stress eventually resulting from the met-
abolic decompensation.

Experimental procedures

Animals and feeding regimen

Six-week-old male C57BL/6NTac mice (B6NTac, Taconic),
housed in the UVM Animal Facility, were fed either a control
chow (LabDiet 5001, 13.5% fat) or an HFD (Research Diets,
D14292, 60% fat) for up to 16 weeks. Male mice were chosen
because female B6 mice are relatively refractory to HF-induced
� cell dysfunction (56). Body weight, fed blood glucose concen-
tration (FreeStyle monitor, Abbott) and plasma insulin (ELISA,
Alpco) values were measured weekly. The guidelines specified
by the UVM Institutional Animal Use and Care Committee
were strictly followed for these studies.

Glucose homeostasis

Fasting blood glucose concentrations as well as i.p. glucose
tolerance test (GTT, 2 g/kg) and ITT (0.75 units/kg) were per-
formed at weekly intervals through 15 weeks in different
cohorts of mice (n � 5/group).

Pancreas morphometry

At weekly intervals, cohorts of mice were euthanized by
exsanguination following i.p. sodium pentobarbital (n �
6/group). Pancreata were routinely processed, and a planimet-
ric method was used to measure BCM as detailed previously
(17, 50, 51). In brief, this entailed high-resolution immunoflu-
orescence imaging of 3–5 sections/pancreas with the sections
being at least 200 �m apart, digital measurements of fractional
� cell area, and the � cell mass calculated from the pancreatic
mass of each mouse. � cell proliferation was measured using the
markers Ki-67 and proliferating cell nuclear antigen, and � cell
apoptosis was determined by TUNEL staining as outlined pre-
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viously. � cell size (hypertrophy) was measured using the epi-
thelial membrane marker pan-cadherin with insulin immuno-
staining (50, 51). The relative size distribution of islets and
small endocrine cell clusters was measured using established
methods (50, 51). Morphometric data were acquired and
analyzed using a Nikon Ti-E workstation and NIS Elements
software. For each assay, a minimum of 6 mice/group was
measured.

In vitro insulin secretion

Islets were isolated by pancreatic duct infiltration with colla-
genase, Histopaque gradient separation, and handpicking. At 2
and 16 weeks, freshly isolated islets were subjected to a standard
static secretion protocol using 2.8 or 16.7 mM glucose with or
without GLP-1 or GIP-1 as described previously (19). Insulin
secretion, measured with ELISA (Alpco), was normalized to
total insulin content.

Islet gene expression studies

Total RNA was isolated from handpicked islets using the
RNeasy Micro Kit (Qiagen) with single-step on-column DNase
digestion, and the quality and quantity of total islet RNA were
analyzed by NanoDrop spectrophotometry (Thermo). Total
RNA (1 �g) was reverse-transcribed (ImProm-II reverse tran-
scription system, Promega), and the resulting cDNA was sub-
jected to quantitative real-time PCR analysis (ABI7300). Fluo-
rescein amidite-labeled primer probes (Applied Biosystems)
were used to amplify Pdx1, MafA, Nkx6.1, Ppar�, NeuroD,
Irs1/2, Gck, Glut2, Kcnj, Gipr, Glp1r, Pc, Atf4, Atf6, Bip, Actb,
and SYBR Green primer pairs for Chop, Hif-1�, Ins1, Ins2, and
Xbp1 total and spliced were used. The threshold cycle (CT)
method was used to determine relative enrichments of respec-
tive mRNAs of enlisted genes. All CT values of sample genes
were normalized for total RNA using CT values of Actb message
levels. The gene expression data presented are relative to con-
trol chow-fed samples, taking the average of triplicate gene
expression determinations in three independent experiments.

Immunofluorescence and immunoblot analyses for ER stress

The ER chaperone and stress marker calreticulin was exam-
ined in pancreas sections from 3 mice/group at 12 and 16
weeks. For immunoblotting, islets were extracted in lysis buffer
(19). Islet proteins (20 �g of whole-islet extract) were separated
by 10% SDS-PAGE, transferred onto PVDF membranes,
and probed with a rabbit anti-calreticulin antibody (Thermo
Fisher). Membranes were reprobed with anti–�-actin (Sigma)
to establish equivalent protein loading.

Electron microscopy

To examine potential ultrastructural signs of ER stress and �
cell deterioration, pancreata from control chow- and HFD-fed
mice (n � 3/group) at 16 weeks were minced in 2.5% glutaral-
dehyde in 100 mmol/liter cacodylate buffer, further fixed for
1.5 h on ice, washed, en bloc post-fixed in 1% osmium tetroxide,
and embedded in Spurr resin. Thin sections were contrasted
with uranyl acetate and lead citrate and finally imaged using a
JEOL 1400 transmission electron microscope (UVM Micros-
copy Imaging Center).

Statistical analyses

Data are presented as mean � S.E. as indicated. Statistical
significance (p � 0.05) was determined by unpaired Student’s
t test or one-way analysis of variance and plotted using
GraphPad Prism.
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