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Wnt3a induces the expression of acetylcholinesterase during
osteoblast differentiation via the Runx2 transcription factor
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Acetylcholinesterase (AChE) hydrolyzes acetylcholine to ter-
minate cholinergic transmission in neurons. Apart from this
AChE activity, emerging evidence suggests that AChE could also
function in other, non-neuronal cells. For instance, in bone,
AChE exists as a proline-rich membrane anchor (PRiMA)-
linked globular form in osteoblasts, in which it is proposed to
play a noncholinergic role in differentiation. However, this
hypothesis is untested. Here, we found that in cultured rat
osteoblasts, AChE expression was increased in parallel with
osteoblastic differentiation. Because several lines of evidence
indicate that AChE activity in osteoblast could be triggered by
Wnt/f-catenin signaling, we added recombinant human Wnt3a
to cultured osteoblasts and found that this addition induced
expression of the ACHE gene and protein product. This Wnt3a-
induced AChE expression was blocked by the Wnt-signaling
inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that
the Runt-related transcription factor 2 (Runx2), a downstream
transcription factor in Wnt/f3-catenin signaling, is involved in
AChE regulation in osteoblasts, confirmed by the identification
of a Runx2-binding site in the ACHE gene promoter, further
corroborated by ChIP. Of note, Runx2 overexpression in osteo-
blasts induced AChE expression and activity of the ACHE pro-
moter tagged with the luciferase gene. Moreover, deletion of the
Runx2-binding site in the ACHE promoter reduced its activity
during osteoblastic differentiation, and addition of 5-azacyt-
idine and trichostatin A to differentiating osteoblasts affected
AChE expression, suggesting epigenetic regulation of the ACHE
gene. We conclude that AChE plays a role in osteoblastic differ-
entiation and is regulated by both Wnt3a and Runx2.

The active and dynamic balance between bone resorption by
osteoclasts and bone formation by osteoblasts supports the life-
long bone remodeling. Imbalance of two processes results in
bone disease, e.g. osteoporosis (1). Considering the bone-form-
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ing cell nature of osteoblast and the medical need for therapies
based on stimulating anabolic pathways in bone, the study on
possible regulation during osteoblastic differentiation there-
fore has an urgent need. Wnt/B-catenin signaling plays a piv-
otal role in bone formation and osteoblastic differentiation.
Runt-related transcription factor 2 (Runx2)® is a downstream
component of the Wnt/B-catenin-signaling pathway, and
which is the master transcription factor required in determin-
ing the osteoblastic lineage (2, 3). In addition, DNA methylation
during osteoblastic differentiation might have profound effects
on gene expression and cell commitment, and these events
could lead to bone metabolism (4).

Acetylcholinesterase (AChE) (EC 3.1.1.7) is a key enzyme
needed for acetylcholine (ACh) hydrolysis in terminating cho-
linergic transmission in vertebrate. Three variants of tran-
scripts are generated by alternative splicing: “read-through
(AChEy),” “hydrophobic (AChE,;),” and “tailed (AChE})” (5).
AChE- exists in all vertebrates and is predominant in the brain
and muscle, generating different oligomers. AChEj, is gener-
ated as soluble monomers (G1) (6), which is proposed to be
responsible for a stress-related response (7, 8). AChE,; is
expressed as glycophosphatidylinositol-linked dimers (G2),
and anchored on the plasma membrane of erythrocytes and
lymphocytes (5, 9). AChE, well known for its cholinergic role
as a neurotransmission regulator, is produced and anchored on
neuronal and muscle synapses via association with anchoring
proteins, e.g. proline-rich membrane anchor (PRiMA) or colla-
gen Q (ColQ). The association forms a variety of oligomers,
e.g G4 and A12 (10, 11). The function of AChE.. essentially
depends on a tight interaction between its C-terminal peptide
with the anchoring proteins. The form of PRiMA-linked AChE
exists in the mammalian brain and muscle as amphiphilic tetra-
meric globular forms (detergent-interacting G4 components)
(12, 13).

In the last decade, the existence and function of AChE in
non-neuronal tissues have been extensively focused, and
emerging evidence suggests a possible non-cholinergic func-
tion of AChE in various cell types. In parallel, the non-hydro-

2The abbreviations used are: Runx2, Runt-related transcription factor 2;
AChE, acetylcholinesterase; ACh, acetylcholine; PRiIMA, proline-rich mem-
brane anchor; DKK-1, Dickkopf protein-1; 5-Aza, 5-azacytidine; TSA, tricho-
statin; ColQ, collagen Q; ALP, alkaline phosphatase; Con A, Canavalia ensi-
formis lectin; SNA, Sambucus nigra lectin; LiCl, lithium chloride; SP1,
specificity protein 1; EGR-1, early growth response protein 1; AP2, activat-
ing protein-2; obs/exp, observed to expected; GSK, glycogen synthase
kinase.
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Iytic action of AChE might have relevance to various diseases
(14, 15). For example, the existence of AChE in bone tissue,
osteoblasts, and osteoblast-like cell lines have been reported
(16, 17). The possible involvement of AChE in bone develop-
ment and skeleton remodeling has been proposed (18, 19). To
support the possible role of AChE in bone development, we
addressed a critical question here that how the enzyme being
regulated during osteoblastic differentiation.

Results
AChE expression during osteoblastic differentiation

The expression profiles of AChE in calvaria and femur at
different development stages, e.g. embryonic (E18), postnatal
(PO, P3, P6, P14, and 1 month) and adult (2 and 6 months), were
determined. A similar pattern was observed in alkaline phos-
phatase (ALP) activity, an indicative biochemical marker of
bone differentiation, in both calvaria and femur. ALP activity
was increased from E18 to P6: then this was decreased accord-
ing to age (Fig. 1A4). This result is consistent with a previous
study (20). In line with the elevated activity of ALP, AChE activ-
ity increased from E18 to P6, and then decreased afterward (Fig.
1A). Expression of the AChE protein (~68 kDa), as well as
mRNA levels, showed a similar pattern according to develop-
mental stages of bone, i.e. peak at earlier developmental stage
(Fig. 1B). The mRNAs encoding AChE (AChE; form) and
PRiMA I were revealed in bone tissue, as that in the cerebrum
(Fig. 1C, left panel). ColQ and PRiMA II mRNAs were below
detection. The molecular form of AChE was analyzed, and the
globular form (G4) of AChE was the major form being identi-
fied. Anti-PRiMA antibody precipitated the G4 form enzyme
suggesting this was PRiMA-linked (Fig. 1C, right panel).

Rat osteoblast was employed to investigate the regulation of
AChE during differentiation. In comparison with other osteo-
blastic cell lines, primary cultured osteoblasts could reflect
more phenotypic properties. Under the co-treatment of dexa-
methasone plus vitamin C, cultured osteoblasts were induced
to differentiate for 18 days. The activity of ALP was increased:
the maximal induction at 8-fold was at a treatment of 15 days
(Fig. 2A). In addition, recombinant human Wnt3a was applied
onto the cultures, which induced the differentiation of osteo-
blast. The Wnt3a-induced ALP activity was similar to that of
dexamethasone plus vitamin C. Under osteoblastic differentia-
tion, the expression of AChE was induced, and the induction
was similar to that of ALP (Fig. 2B). The enzymatic activity of
AChE was increased to ~2-fold, and the protein level was
induced to ~8-fold. The peak was identified at 12 days of treat-
ment with dexamethasone plus vitamin C, or 6 days after
Wnt3a treatment (Fig. 2B). An increase of AChE expression
corresponding with elevated ALP activity was consistent with a
previous report (21).

ACAhE is a highly glycosylated protein, and thus the N-glyco-
sylation profile of this enzyme was determined during osteo-
blastic differentiation. Similar to bone tissue, cultured osteo-
blasts expressed AChE at the G4 form with a sedimentation
index of ~10 S (Fig. 3A). The amount of G1/G2 peak (~4 S) was
very minimal. The amount of G4 AChE was increased during
the differentiation, as induced by dexamethasone plus vitamin
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Figure 1. Increase of AChE expression and activity during bone develop-
ment. A, calvarias and femurs from rats on different stages as indicated were
isolated and assayed for ALP and AChE activities. B, upper panel: protein
lysates from bone tissues were analyzed by Western blotting. AChE (~68 kDa)
and GAPDH (~35 kDa) were shown. Lower panel, quantitation of AChE pro-
tein, calibrated from the blots by densitometry. Right panel shows the real-
time PCR of AChE mRNA. Values are expressed as fold-increase to basal read-
ing. C, left panel, total RNAs were extracted from calvarias and femurs to
perform PCR to determine the presence of AChE;, PRIMA |, PRiIMA II, ColQ-1,
and ColQ-1a by using specific primers. PCR products were resolved on a 1%
SYBR safe-stained agarose gel and visualized under the UV light. The identi-
ties of PCR product was confirmed by DNA sequencing. Rat cerebrum and
mouse C2C12 RNAs served as positive controls. Right panel, molecular forms
of AChE in calvarias and femurs were determined by sucrose density gradient
analysis. PRiMA-linked G4 AChE was immunodepleted by anti-PRiMA anti-
body. Cerebrum served as a positive control for G4 AChE. Enzymatic activities
are expressed in arbitrary units. Values arein mean £ S.E, n = 4, %, p < 0.05; **,
p < 0.01;***, p < 0.001.

C or Wnt3a (Fig. 3A4). The specificity of G4 AChE was illus-
trated by precipitation with anti-PRiIMA antibody (Fig. 3B),
which was consistent with previous studies (11, 18).

The glycosylation profile of AChE during osteoblastic differ-
entiation was determined using two lectins, Canavalia ensifor-
mis lectin (Con A) and Sambucus nigra lectin (SNA). Con A
mainly binds to high mannose glycan chains, which is abundant
in both precursor and mature AChE; whereas, SNA specifically
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Figure 2. Increase of AChE expression and activity during the differenti-
ation of cultured osteoblasts. A, primary cultured osteoblasts were treated
with dexamethasone plus vitamin C (Dex, 20 nw; and Vit. C, 250 um) or Wnt3a
(200 ng/ml) for 18 days, cell lysates were collected on different days as indi-
cated for ALP assay. B, the cell lysates from A were analyzed by Western blot-
ting and Ellman assay. AChE (~68 kDa) and GAPDH (~35 kDa) are shown
(upper panel). The lower panel shows quantitation of AChE activity and pro-
tein, calibrated from the blots by densitometry. Values are expressed as fold-
increase to basal reading, and are in mean = S.E, n = 4, %, p < 0.05; **, p <
0.01; *** p < 0.001.

binds to sialic acid that mainly exists in complex chains of
mature AChE (22). The G4 form of AChE from differentiated
osteoblasts was fully precipitated by Con A; whereas a partial
enzyme was precipitated by SNA (Fig. 3C). Similar glycan com-
positions of AChE was also revealed in differentiated cultures
treated with dexamethasone plus vitamin C or Wnt3a (Fig. 3C).

The PRiMA-linked AChE in brain is known to be associated
with lipid-raft (13, 23). To determine the raft association of
AChE in osteoblasts, total membrane preparations were
obtained from cultured osteoblasts. The raft-enriched fractions
showed the presence of a raft-associated protein, flotillin-2 (Fig.
3D). These fractions contained 60% of total membrane-bound
ALP that served as a membrane raft marker here. About 50% of
the total membrane-bound G4 AChE activity in osteoblasts was
recovered in the raft-enriched fractions (Fig. 3D). Sedimenta-
tion analysis of the raft-enriched fractions showed that the
ACHhE tetramer (G4) was the major form (Fig. 3D).

Whnt3a induces AChE expression

To further investigate Wnt/B-catenin signaling in AChE reg-
ulation, the validation of Wnt signaling molecules in osteo-
blasts was first conducted. As a crucial step in the pathway, the
phosphorylation of GSK-3B8 was induced by treatment of
Wnt3aor LiClL. LiClis a GSK-3 inhibitor by inducing the phos-
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Figure 3. The G4 form of AChE remains unchanged during osteoblastic
differentiation. A, primary cultured osteoblasts were treated with dexam-
ethasone plus vitamin C (Dex. 20 nm, and Vit. C 250 um) or Wnt3a (200 ng/ml)
for a 3-day interval, cell lysates were collected on different days as indicated
and subjected to sucrose density gradient analysis. B, equal amounts of pro-
teins from differentiated cell lysates (day 9 and 15) were immune precipitated
by anti-PRiMA antibody. C, equal amounts of proteins from differentiated cell
lysates, the same control samples (day 9 and day 15) as in B, were incubated
with or without Con A or SNA overnight, unbound and lectin-precipitated
parts were separated by centrifugation. Supernatant from B and C was sub-
jected to sucrose density gradient analysis. D, left panel: AChE activity from
osteoblast membranes in detergent-resistant (Raft; fractions 5-8) and deter-
gent-soluble (non-raft) fractions was determined after flotation in discontin-
uous sucrose gradients with 0.5% cold Triton X-100. Aliquots of each even
fraction were analyzed by 8% SDS-PAGE, and the expression of flotillin-2 (~55
kDa) was shown in Western blots as control (upper panel). Enzymatic activities
of AChE and ALP are expressed in arbitrary units (lower panel). Right panel,
sedimentation profile of AChE solubilized from the raft-enriched fractions of
osteoblast was determined. Representative gradient profiles from four inde-
pendent experiments are shown.

phorylation of GSK-3f3, used as a positive control. After 10 min
of treatment, LiCl was able to induce GSK-38 phosphorylation
in a transient manner (supplemental Fig. S1A). Similarly,
Wnt3a was able to induce the phosphorylation of GSK-3 tran-
siently: the maximum induction was ~200% of increase, which
was shown at 30 min, as compared with the control. DKK-1, a
Wnt receptor antagonist, prevented the binding of Wnt3a onto
its receptors for signal induction, was applied onto the cultures
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2 h before application of LiCl, or Wnt3a. The phosphoryla-
tion of GSK-38, induced by Wnt3a or LiCl, was inhibited
after pre-treatment of DKK-1 (supplemental Fig. S1A4). The
nuclear translocation event of B-catenin, induced by Wnt3a,
was confirmed by an increased expression of 3-catenin in the
nuclear fraction, which was induced by ~3-fold (supplemen-
tal Fig. S1B).

The regulatory effect of the Wnt/B-catenin signaling path-
way on AChE expression was further determined. In cultured
osteoblasts, application of dexamethasone plus vitamin C, or
Wnt3a or LiCl, induced the expressions of ALP and AChE in a
time-dependent manner, and the induction could be blocked
by DKK-1 (Fig. 4A4). Moreover, the mRNA level of AChE was
also induced by Wnt3a or LiCl, to ~10-fold, and induced by
dexamethasone plus vitamin C to ~6-fold. The mRNA level of
PRiMA (PRiMA I) showed a minor response to the inducers
(Fig. 4B), which was consistent with the un-changed protein
expression of PRiIMA (data not shown). DKK-1 blocked the
induction of AChE mRNA expression. These lines of evidence
suggested that during osteoblastic differentiation, the elevated
ACHhE could be a result of the Wnt/B-catenin signaling cascade
activation. The transcriptional activities of Wnt3a-induced
genes were tested by using promoter constructs, i.e. pAChE-
Luc and pPRiMA-Luc, which were being transfected in cul-
tured osteoblasts. The induction effect of Wnt3a on pAChE-
Luc was robust in a dose-dependent manner (Fig. 4C). The
induction by dexamethasone plus vitamin C was used as a pos-
itive control here. The Wnt3a/dexamethasone plus vitamin
C-induced pPRiIMA-Luc activity was not significant (Fig. 4C).

Runx2 is an activator for AChE expression

In the mammalian ACHE gene, a possible binding site for
Runx2 was identified, and therefore was the target for analysis.
A DNA construct pRunx2-Luc was transfected into cultured
osteoblasts, and the differentiating inducers were applied.
Application of Wnt3a in the transfected cells induced the pro-
moter activity in dose- and time-dependent manners: the max-
imal induction was at ~9-fold after 3 days of treatment (Fig.
5A). The treatment of dexamethasone plus vitamin C was a
control having an induction of ~3-fold. The protein expres-
sion of Runx2 (~57 kDa) in cultured osteoblast was
enhanced under Wnt3a treatment (Fig. 5B). In parallel, the
mRNA level of Runx2 could be enhanced by both Wnt3a and
LiCl, to ~9- and ~7-fold, respectively, after 9 days of treat-
ment (Fig. 5B). The binding of Runx2 to the ACHE gene was
monitored by ChIP assay. The Runx2 occupancy at ACHE
promoter was barely detected in comparison to the input
control. After being exposed to Wnt3a, Runx2 occupancy
was induced to ~5-fold of enrichment relative to the input
control (Fig. 5C).

The inductive effect of Runx2 on AChE expression was fur-
ther demonstrated by the overexpression system. In Runx2
cDNA-transfected osteoblasts, the enzymatic activities of ALP
and AChE were induced (Fig. 6A4). Similarly, the mRNA levels of
bone differentiation markers, e.g. osterix, osteonectin, and
osteocalcin, were induced by 2—-3-fold in Runx2-overexpressed
osteoblasts. In addition, the amount of AChE mRNA was
increased to ~2.5-fold (Fig. 6A4). The Runx2 binding sequence
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Figure 4. AChE expression could be enhanced by activation of Wnt/g-
catenin signaling pathway. A, primary cultured osteoblasts were treated
with dexamethasone plus vitamin C (Dex. 20 nm, and Vit. C 250 um), Wnt3a
(200 ng/ml), or LiCl (10 mm) with or without pre-treatment of DKK-1 (100
ng/ml) for a 3-day interval, cell lysates were collected on different days as
indicated and subjected to ALP assay and AChE assay. B, as in A, total RNAs
were extracted from the cultures to perform real-time PCR analysis. The
mRNA expressions of AChE and PRIMA were determined by specific primers.
C, left panel: cultured osteoblasts were transfected with human ACHE pro-
moter tagged with luciferase reporter gene (pAChE-Luc) and PRiMA promoter
tagged with luciferase reporter gene (pPRiMA-Luc) before the application of
Wnt3a at the indicated concentrations for 3 days. Right panel, cultured osteo-
blasts were transfected with pAChE-Luc and pPRiMA-Luc before the applica-
tion of dexamethasone plus vitamin C for 3 days as in A. Cultures were col-
lected for luciferase assay. Values are expressed as fold-increase to basal
reading, and are mean = S.E.,, n = 4, each with triplicate samples, *, p < 0.05;
** p<0.01;*** p <0.001.

within the promoters of various mammalian ACHE genes are
conserved (Fig. 6B). To confirm the induction effect of Runx2
on the ACHE gene, pAChE \,.»-Luc, having mutation on the
Runx2-binding site of the ACHE promoter, was used in trans-
fected osteoblasts (Fig. 6B). The application of Wnt3a in the
transfected osteoblasts did not show any induction on
PAChE \runo-Luc activity, as well as the induction by Runx2
overexpression (Fig. 6C). Being a control, the activity of
pAChE-Luc was activated robustly in responding to the chal-
lenge of Wnt3a or Runx2. In contrast, the endogenous level of
ALP was fully responsive to Runx2 expression in the transfected
cells, i.e. serving as an internal control here (Fig. 6C).
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Figure 5. ACHE gene has a binding site of Runx2. A, cultured osteoblasts
were transfected with RUNX2 promoter tagged with a luciferase reporter
gene (pRunx2-Luc) before application of Wnt3a at the indicated concentra-
tions, or different days, under the treatment of dexamethasone plus vitamin C
(Dex. 20 nm, and Vit. C 250 um) or Wnt3a (200 ng/ml). Cultures were collected
forluciferase assay. B, left panel, cultured osteoblasts were treated with Wnt3a
(200 ng/pl) for 3-day intervals. Cell lysates were analyzed by Western blotting.
Runx2 (~57 kDa) and GAPDH (~35 kDa) are shown (upper panel). The lower
panel shows quantitation of protein from the blots by calibrated densitome-
try. Right panel, cultured osteoblasts were treated with LiCl (10 mm) or Wnt3a
(200 ng/ml) for 3-day intervals. Total RNAs were extracted from the cultures to
perform real-time PCR analysis. C, cultured osteoblasts were treated with or
without Wnt3a (200 ng/ml) for 6 days. The quantitative ChIP assay was per-
formed. The primers flanking the Runx2-binding site of the ACHE promoter
were used: sense: GAG CTG TCA GTG TGT CCT TCC GTC; antisense: GGG GCA
GAC ACC CAC GTG ACA. Results were normalized with each pull-down
GAPDH C, value. Values are expressed as fold-increase to basal reading, and
arein mean = S.E, n = 4,*, p < 0.05; **, p < 0.01; *** p < 0.001.

Epigenetic regulation of AChE during osteoblastic
differentiation

The regulation of AChE by DNA methylation was tested in
cultured osteoblasts during differentiation. 5-Azacytidine
(5-Aza), a DNA methyltransferases inhibitor, has been used
extensively as a demethylating agent to study DNA methylation
(24, 25); whereas trichostatin A (TSA) is widely used to inhibit
the histone deacetylases-mediated signaling pathway (26). Two
inhibitors were applied onto cultured osteoblasts. The bone
differentiation markers, ALP activity and AChE activity, were
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Figure 6. Runx2 regulates AChE transcription. A, cultured osteoblasts were
transfected with pcDNA3, or cDNA-encoding Runx2, and cell lysates were
collected 3 days after transfection. Left panel, cell lysates were subjected to
ALP and AChE assays. Right panel, total RNAs were extracted from the cultures
to perform real-time PCR analysis. B, deletion of the Runx2-binding site on the
ACHE promoter was shown. A schematic diagram of human ACHE promoter
with key transcription elements was shown. The Runx2-binding site
sequence (ACC GCC) was mutated into AGG GCC on the human promoter. C,
left panel, cultured osteoblasts were transiently transfected with pAChE-Luc
and its mutant pAChE yg,,»-Luc for 24 h before the application of Wnt3a (200
ng/ml) for 3 days. Right panel, cultured osteoblasts were transiently co-trans-
fected with pAChE-Luc, or pAChE yg,,«o-LUC, with or without cDNA encoding
Runx2. The cultures were collected 3 days later for luciferase assay and ALP
assay. Values are expressed as fold-increase to basal reading, and are mean =
S.E.,n =5, each with triplicate samples, ¥, p < 0.05; **, p < 0.01; ***, p < 0.001.

induced in the present of 5-Aza and TSA during osteoblastic
differentiation (Fig. 7A). In parallel, and mRNA levels of AChE
and Runx2 were increased by application of 5-Aza and TSA
(Fig. 7B). The amount of AChE protein was induced by 5-Aza
and TSA during the differentiation (Fig. 7C). Furthermore, the
pAChE-Luc activity in cultured osteoblasts was induced by
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Figure 7. Epigeneticregulation of AChE during osteoblastic differentiation. A, cultured osteoblasts were treated with dexamethasone plus vitamin C (Dex.
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5-Aza and TSA in dose- and time-dependent manners (Fig.
7D). Thus, ACHE gene transcription should be regulated
epigenetically.

DNA methylation of ACHE gene promoter

To determine DNA methylation on the ACHE promoter dur-
ing osteoblastic differentiation, the CpG site-rich region in the
5' region of the ACHE gene promoter was identified. The
sequence of the rat ACHE gene was searched from the NCBI
database (accession no. AF134349.1) for CpG island analysis
with the CpG plot tool provided by European Bioinformatic
Institute (Cambridgeshire, UK). The ratio of observed to
expected (obs/exp) CpG was determined. The CpG island was
defined as a sequence greater than 500 bp with the obs/exp
value greater than 0.6, and the GC content was greater than 55%
(25). The segment of sequence possessing a CpG obs/exp ratio
greater than 0.6 was identified from —1,400 bp to —2,000 bp
(Fig. 8A). This region of CpG island possesses multiple tran-
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scription factor-binding elements crucial in regulating AChE
expression, e.g. specificity protein 1 (SP1), activating protein-2
(AP2), and early growth response protein 1 (EGR-1)-binding
sites (Fig. 8B). The CpGs within this region and the Runx2-
binding site were selected for bisulfite sequencing analysis.
Pyrosequencing was performed on the genomic DNA of osteo-
blasts during a 9-day osteoblastic differentiation under the treat-
ment of dexamethasone plus vitamin C or Wnt3a, and the meth-
ylation rate of each selected CpG was determined (Fig. 8B).
During the differentiation, the methylation rate of the CpG
site within the Runx2 (at —307 bp) site was rather low (<5%).
The co-treatment of dexamethasone plus vitamin C and appli-
cation of Wnt3a did not alter the methylation (Fig. 8B). The
most methylated site was within the binding site for SP1 at
—1,698 bp (Fig. 8B). In addition, the promoter constructs of
Runx2 and SP1, i.e. pRunx2-Luc and pSP1-Luc, were trans-
fected into cultured osteoblasts. The transcriptional activity of
pSP1-Luc, but not pRunx2-Luc, was greatly affected by appli-
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under 5-Aza treatment is shown for comparison.

cation of 5-Aza or TSA (Fig. 9A). In parallel, the effects of 5-
Aza and TSA were maintained in affecting the activity of
PAChE \ runxo-Luc-transfected osteoblasts during differentia-
tion (Fig. 9B). Thus, the Runx2-mediated transcription rate of
the ACHE gene should be rather independent to the epigenetic
regulation; however, this regulation was significant in the SP1-
mediated transcription.

Discussion

The non-cholinergic function of AChE in bone development
has been proposed. Supporting this notion, AChE was detected
in avian cartilages (27) and in rat chondrocytes (28), and a spe-
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and pSP1-Luc (right panel) for 24 h before the application of dexamethasone
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cation of dexamethasone plus vitamin C as in A (left panel) or Wnt3a (200
ng/ml) (right panel) for 3 days. During the whole process, 5-Aza (5 um) or TSA
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and subjected to luciferase assay. Values are expressed as fold-increase to
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0

cific form of AChE (PRiMA-linked) was revealed in osteosar-
coma MG-63 cells (29) and primary osteoblasts (22). Moreover,
the amount of AChE secreted by cultured osteoblasts was
shown to increase after osteoblastic differentiation (21).Inan in
vitro study, the coating of the AChE protein onto the culture
plate could facilitate the adhesion of primary osteoblasts as well
as osteoblastic cell lines (16). Furthermore, the chondrogenic
expression of AChE in rats was in accord with the development
of lower limbs (30). These studies strongly supported the exist-
ence and a possible function of AChE in bone tissue and osteo-
blastic cell lines. Here, we provided different lines of evidence to
support AChE playing role in the development of osteoblasts.
More important, the expression of AChE in osteoblasts was
under a specific regulation profile.

The elevation of AChE expression, induced by Wnt3a, indi-
cated that AChE might be regulated by the Wnt/B-catenin-
signaling pathway. Osteoblastic differentiation is predomi-
nantly regulated by Wnts, which are mammalian homologs of
Drosophila-secreted morphogen wingless and bone morphoge-
netic proteins, which are members of the TGF-3 superfamily.
To confirm the response of AChE to Wnt signaling activation,
LiCl was applied onto the culture. As a bipolar disorder drug,
LiCl has been used for decades in patients. After LiCl treatment,
a reduced risk of fracture was observed in patients (31). The
osteogenic function of LiCl was driven by suppressing osteo-
blast apoptosis and adipogenesis while enhancing osteogenesis,
i.e. inhibition of GSK-3. As expected, the application of LiCl
further supported that AChE could be enhanced by activation
of Wnt/-catenin-signaling pathway.
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Runx?2 is the first transcription factor required for the deter-
mination of osteoblast lineage, and a downstream transcription
factor of the Wnt/B-catenin-signaling pathway. The early steps
of the differentiation of mesenchymal stem cells to osteoblasts
require the function of Runx2 to induce the differentiation of
osteoblasts (32). Runx2 has been identified as a controller
of the osteoblastic lineage differentiation. In the absence of
Runx2, osteoblasts did not form (2, 3). As identified here, the
binding site of Runx2 was found on the ACHE promoter, which
suggested that activated Runx2 could control the primary
expression of AChE in osteoblasts. By overexpression of Runx2
in osteoblasts, the expression of AChE and its transcriptional
rate were increased. In addition, the Runx2-induced AChE
expression was downstream of the Wnt-signaling pathway.
Several lines of studies supported that the activation of Runx2
could regulate downstream target genes to promote osteogen-
esis. Despite an extensive search for osteoblast-specific factors,
only expression and function of osteocalcin and Runx2 are lim-
ited to the osteoblast lineage (32, 33). The runt domain of
Runx2 that was found to selectively bind to the osteoblast-spe-
cific elements of the osteocalcin promoter has subsequently
been identified in genes of many proteins known to play signif-
icant roles in osteoblastic differentiation, including type I
collagen, osteonectin, and osteopontin (34, 35). These proteins
are commonly used as biomarkers of osteoblastic differentia-
tion at different stages. As Runx2-binding sites have been iden-
tified in the upstream promoter region of the ACHE gene and
the coincidence of AChE expression with the development of
active osteoblast, it further supported that AChE could be used
as a biomarker for osteoblastic differentiation.

In gene regulation, DNA methylation is an important mech-
anism underlying the cascade of events turning mesenchymal
stem cell into osteoblasts (24). Studies showed that tissue-spe-
cific expression of Runx2 and osteocalcin correlated with their
promoter methylation status, indicating the crucial role of
DNA methylation in osteoblast-specific gene regulation (36,
37). Apart from Runx2, several transcription factor-binding
elements were determined to be important for AChE transcrip-
tion in neuron or muscle, e.g. intronic E- and N-box motifs (38),
SP1, EGR-1, AP2, cyclic AMP-responsive element and Elk-
binding site (39, 40). In addition, the epigenetic regulation of
the AChE transcript was shown to be involved during muscle
and neuron differentiation, and this specific regulation was
proposed to be mediated by DNA methylation at a SP1 site
located on the ACHE promoter (25). Here, we provided several
lines of evidence supporting the hypothesis of ACHE gene tran-
scription being controlled by DNA methylation during osteo-
blastic differentiation. The expression of AChE was increased
during the differentiation under treatment of 5-Aza and TSA,
which indicated that transcriptional activation of the ACHE
promoter could be blocked by DNA methylation. During the
differentiation, the methylation rate on the ACHE promoter
was rather similar between the induction by dexamethasone
plus vitamin C or Wnt3a, suggesting the epigenetic regulation
probably triggered by the process of osteoblastic differentia-
tion. Moreover, this regulation could be mainly mediated by the
regions of SP1 sites in the ACHE promoter. This DNA methyl-
ation of SP1 site of ACHE gene transcription was also revealed
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in muscle differentiation (25). Nevertheless, these lines of evi-
dence indicated that DNA methylation is one of the potential
mechanisms to regulate AChE expression and histone modifi-
cation might be a factor in epigenetic regulation of AChE dur-
ing osteoblastic differentiation.

Our preliminary result of the decrease in differentiation
makers in osteoblasts from ACHE '~ mice provided strong
evidence for the participation of AChE in osteoblastic differen-
tiation. Particularly, a defect in Wnt/S-catenin signaling cas-
cade transduction was observed in osteoblasts from ACHE '~
mice, which may indicate the possible involvement of AChE in
the Wnt/B-catenin-signaling pathway to regulate bone differ-
entiation.” In addition, a preliminary result showed that osteo-
blastic differentiation markers could be down-regulated by
antisense inhibition of AChE. This indicated that AChE might
be involved in bone differentiation through a non-enzymatic
mechanism, but via the structural or special role of the protein
to perform a regulation in osteoblast activity. According to the
studies of Spieker et al. (19), inhibition of AChE by BW284c51,
or by the monoclonal antibody, delayed cartilage formation in
developing embryonic chicken limbs, which could possibly be
due to an enzymatic side activity of AChE. It is possible that
AChE may act differently at distinct points during bone
formation.

Experimental procedures
Chemicals

Vitamin C, dexamethasone, LiCl, and p-nitrophenyl phos-
phate were purchased from Sigma. Recombinant human
Wnt3a and DKK-1 were purchased from R & D Systems (Min-
neapolis, MN). All culture medium and reagents were from Life
Technologies.

Extraction of protein from bone

Calvarias and femurs from rats were carefully cleaned from
adhering connective tissue. The prepared bones were placed in
an earthen bowl to grind into powder under liquid nitrogen.
The bone powders were re-suspended by gentle shaking at 4 °C
in alysis buffer (0.1 g of bone tissue/ml of buffer) containing: 50
mM Tris, pH 8.0, 150 mm NaCl,, 2 mm EDTA, 1% Triton X-100,
1% SDS, 0.5% sodium deoxycholate with addition of protease
inhibitors (Sigma) (10 ug/ml of leupeptin, 10 wg/ml of apro-
tinin, and 2.5 mm benzamidine HCI). The supernatants were
collected after centrifugation at 13,200 rpm for 20 min at 4 °C.

Cell culture

Rat primary cultured osteoblasts were prepared by the
method previously described with minor modifications (41). In
brief, postnatal day 1 rats were decapitated to collect calvarias.
Tissues were sequentially digested by 1% of trypsin for 10 min,
0.2% of collagenase Type I (Life Technologies) for 20 min, and
0.2% of collagenase for another 40 min. The sequential diges-
tions were placed at 37 °C under constant agitation. After the
digestion, the supernatant was collected and centrifuged for 3
min at 1,500 rpm. Osteoblastic cells were re-suspended in mod-

3M L. Xu, C.W.Bi, E Y.Liu, T.T. Dong, and K. W. Tsim, unpublished results.
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ified Eagle’s medium « (MEMa) supplemented with 10% fetal
bovine serum (FBS; Life Technologies), 2 mm L-glutamine, 100
units/ml of penicillin, and 100 pg/ml of streptomycin, and
maintained in a water-saturated atmosphere at 37 °C in 5%
CO,, 95% air. Osteoblastic differentiation was induced by the
co-treatment of vitamin C (250 wM) and dexamethasone
(20 nm).

Qualitative PCR and real-time quantitative PCR

Total RNA from cultured osteoblasts was isolated by RNA-
zol® RT reagent (Molecular Research Center, Cincinnati, OH),
and 5 pg of RNA was reverse-transcribed by Moloney murine
leukemia virus reverse transcriptase (Invitrogen), according to
the manufacturer’s instructions. For qualitative analysis, stan-
dard PCR was performed for detecting AChE., PRiMA I,
PRiMA II, ColQ-1, and ColQ-1a. Real-time PCRs of AChE,
PRiMA, Runx?2, and 18S rRNA transcripts were performed on
equal amounts of reverse-transcribed products using Roche
SYBR Green according to the manufacturer’s instructions
(Roche Applied Science). Primers employed were as follows:
ACKhE catalytic subunit (5'-CTG GGG TGC GGA TCG GTG
TAC CCC-3" and 5'-TCA CAG GTC TGA GCA GCG TTC
CTG-3’; NM_015831); PRiIMA I (5'-TCT GAC TGT CCT
GGT CAT CAT TTG CTA C-3" and 5'-TCA CAC CAC CGC
AGC GTT CAC-3'; NM_133364); PRIMA II (5'-TCT GAC
TGT CCT GGT CAT CAT TTG CTA C-3' and 5'-TCC GAT
CCT CTG TGG GCC AAT C-3'; NM_178023); ColQ-1 (5'-
GGT GGT CCT GAA TCC AAT G-3' and 5'-GAA GGT TCT
TCA TGT CTG G-3'; NM_009937); ColQ-1a (5'-CTT CTC
CTCATCATT TCG G-3' and 5'-GAA GGT TCT TCA TGT
CTG G-3'; NM_009937); Runx2 (5'-AAC TTC CTG TGC
TCC GTG CT-3' and 5'-GAC TGT TAT GGT CAA GGT
GAA-3',NM_001146038); and 18S rRNA (5'-GAC TGT TAT
GGT CAA GGT GAA-3" and 5'-GAT AGT CAA GTT CGA
CCG TC-3'; NR_003286). The SYBR Green signals were
detected by 7500 Fast Real-time PCR system (Applied Biosys-
tems, Foster City, CA). The relative levels of transcript expres-
sion were quantified using the 2~ **“* method, where the values
were normalized by the 18S as a control. The PCR products
were analyzed by gel electrophoresis, and the specificity of
amplification was confirmed by a melting curve.

DNA constructions and transfection

The DNAs (~2.2 kb) encompassing the human ACHE pro-
moters (40) with and without the Runx2-binding site were sub-
cloned into pGL3 vector (BD Biosciences Clontech, Palo Alto,
CA) upstream of a firefly luciferase gene, designated as pAChE-
Luc and pAChE s .o-Luc, respectively (40). A plasmid con-
taining the Runx2 cDNA was a kind gift from Dr. Pdédbo and Dr.
Kuhlwilm (Max Planck Institute for Evolutionary Anthropol-
ogy, Leipzig, Germany) (42). The promoter constructs of
pRunx2-Luc and pSP1-Luc were described (25, 41). Tran-
sient transfection of osteoblasts with the cDNA constructs
was performed with a jetPRIME reagent (Polyplus Transfec-
tion, NY), according to the manufacturer’s instructions. The
transfection efficiency was consistently 20-30% in the
osteoblasts culture, as determined by another control plas-
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mid having a B-galactosidase gene under a cytomegalovirus
(CMV) enhancer promoter.

SDS-PAGE and Western blot analysis

For reducing SDS-PAGE, the protein lysate was denatured in
the presence of 2% SDS and 100 mm 3-mercaptoethanol. Anti-
AChE antibody E-19 (1:10,000, Santa Cruz Biotechnology,
Santa Cruz, CA), anti-PRiMA antibody (1:2000, self-generated)
(13), anti-Runx2 antibody (1:100, Abcam Ltd., Cambridge,
UK), anti-B-catenin antibody (1:1,000, Santa Cruz Biotechnol-
ogy), anti-GSK-3f antibody (1:1,000, Santa Cruz Biotechnol-
ogy), anti-phosphorylated GSK-38 antibody (1:1,000, Santa
Cruz Biotechnology), and anti-GAPDH antibody (1:50,000,
Invitrogen) were used for Western blot analyses. The immune
complexes were visualized using the enhanced chemilumines-
cence (ECL) method in strictly standardized conditions (13).
The intensities of bands were quantified by ImageJ2x analysis
software. The labeling intensities of the protein bands were in
the non-saturating range of calibration curves.

Sucrose density gradient analysis and Ellman assay

Separation of molecular forms of AChE was performed by
sucrose density gradient analysis, as described previously (13).
In brief, continuous 5-20% sucrose gradients containing deter-
gent-containing buffer (10 mm HEPES, pH 7.5, 1 mm EDTA, 1
mM EGTA, 0.2% Triton X-100, and 150 mm NaCl) were pre-
pared in 12-ml polyallomer ultracentrifugation tubes. Samples
of cell extracts (0.2 ml) containing equal amounts of protein
were mixed with sedimentation markers, alkaline phosphatase
(6.1 S; Roche Applied Science) and B-galactosidase (16 S; Roche
Applied Science), and loaded onto the gradients. Centrifuga-
tion was carried out in a SW41 Ti Rotor (Beckman, Palo Alto,
CA) for 18 h at 38,000 rpm at 4 °C. Approximately 45 fractions
of 0.3 ml each were collected and subjected to enzymatic activ-
ity assays. AChE activity was determined using the methods of
Ellman (43), a colorimetric assay of cholinesterase activity, with
minor modifications to allow microplate analysis for high-
throughput screening. The cell lysates were incubated with 0.1
mM tetra-isopropylpyrophosphoramide (Sigma) for 10 min to
inhibit butyrylcholinesterase activity. The amounts of AChE
forms were determined by summation of the enzymatic activi-
ties corresponding to the peaks of their respective sedimenta-
tion profiles. The sedimentation values of the enzymes were
calculated from the positions of the sedimentation markers.

Lectin binding analysis

Three hundred pl of cell lysates (at ~1 ug/ul) were added
onto 100 ul (hydrated volume) of agarose (control) (Vector
Laboratories, Burlingame, CA) or Con A (Sigma) or SNA (Vec-
tor Laboratories), immobilized in agarose. The enzyme/lectin
mixture was incubated overnight at 4 °C with gentle mixing.
The unbound and precipitated AChE were separated by cen-
trifugation at 1,000 X g for 15 min at 4 °C in a Beckman model
J2—21M/E centrifuge using a JA-20 rotor, and which were sub-
jected to further assays.

Nuclear localization assay of 3-catenin

Nuclear extract was collected according to Andrews et al.
(44). In brief, primary cultured osteoblast in a 100-mm tissue
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culture plate was washed by 1X PBS, and collected in a Eppen-
drof followed by centrifugation with 14,000 rpm for 10 min at
4 °C. The cell pellet was re-suspended by 800 ml of ice-cold
buffer A (10 mm HEPES, pH 7.9, 10 mm KCl, 0.1 mm EDTA, 0.1
mM EGTA, 1 mm dithiothreitol (DTT), and 0.5 mm PMSF), and
allowed to swell on ice for 15 min. Fifty ul of 10% Nonidet P-40
was added, and the mixture was vigorously vortex for 10 s, fol-
lowed by centrifugation with 14,000 rpm for 30 s at 4 °C. The
pellet was re-suspended in 100 ul of ice-cold buffer C (20 mm
HEPES, pH 7.9, 0.4 m NaCl, 1 mm EGTA, 1 mm EDTA, 1 mm
DTT, and 1 mM PMSF), and vigorously vortex for 15 min at
4 °C. The mixture was centrifuged with 14,000 rpm for 15 min
at 4 °C. Supernatant was kept in —80 °C. The recognition of
histone-1 by antibody (1:1,000, Cell Signaling Technology, Inc.)
served as a control for the enrichment of nuclear fraction.

Chromatin immunoprecipitation (ChIP) assay

Primary cultured osteoblasts were cultured with or without
Wnt3a treatment. After 48 h, cells were gently fixed with form-
aldehyde and lysed by sonication. The specific Runx2-DNA
complex was immune precipitated using anti-Runx2 antibody.
Primers flanking the Runx2-binding site of the ACHE promoter
(with reference to AF134349.1 Rattus norvegicus chromosome
12) were used (sense: GAG CTG TCA GTG TGT CCT TCC
GTC; antisense: GGG GCA GAC ACC CAC GTG ACA). The
quantitative ChIP assay was performed using the Qiagen
EpiTect ChIP OneDay Kit (Qiagen, UK), and the results were
normalized with each pulldlown GAPDH C, value.

Bioinformatics analysis

The presence of CpG islands on the 5'-flanking region of rat
ACHE gene was analyzed with the CpG plot tool of European
Bioinformatic Institute (http://www.ebi.ac.uk/Tools/deqgstata/
emboss cpgplot) (45).*

Bisulfite conversion and pyrosequencing

Genomic DNAs isolated from cultured rat osteoblast during
osteoblastic differentiation were subjected to bisulfite conver-
sion by the EpiTect® Bisulfite Kit (Qiagen, Germany) according
to the manufacturer’s instructions. Bisulfite-converted DNAs
were amplified by specific biotin-labeled primer (HPLC puri-
fied) sets flanking the CpGs of interest. Primers were designed
by Qiagen Gene Global Assay Design software (Qiagen, Ger-
many). To determine the methylation rate of the Cp@G sites in
osteoblast, the amplicons were sequenced with sequencing
primer sets by Biotage-Qiagen PSQ 96MA through sub-con-
traction with Center of Genomic Studies at The University of
Hong Kong. The primers for bisulfite-converted DNA and
pyrosequencing were as follows: ACHE CpG 1-4 (5'-TTA
GTT GAG GGG GTT TTT AGT TAG-3' and 5'-AAA ATC
AAAAACCTAATACTT AAA CAT CTA-3') and sequencing
primer (5'-ATA CTT AAA CAT CTATAA CCAC-3'); ACHE
CpG5-8(5'-GGTTTGTTT GAATTT ATT ATT GGA GTG
TG-3" and 5-AAC TAC CAC CTC CCC TTC TC-3') and
sequencing primer (5'-GGA GTG TGT TTG GGT-3'); ACHE

“Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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CpG 9-11 (5'-TTT TTA TTT TTT TTA AAG TTT GGG
GAT ATT-3" and 5'-CAA CCC TCA AAA TAA AAT AAT
ACA TTC-3') and sequencing primer (5'-GTT TGG GGA
TAT TGG AA-3'); ACHE CpG 12-16 (5'-AGG GGT TTG
AGTTTT GGT GA-3" and 5'-CACCTT ACCCCA CCCTAC
T-3') and sequencing primer (5'-GGG TGA GGT TGG TGT
AAA A-3'); ACHE CpG 17-18 (5'-GGT TGG AGA AGT AGG
AAT TAT AGT AGT-3' and 5'-ACC CCT ATT ACA TCC
CCA TAT T-3') and sequencing primer (5'-TTT TTA GAT
ATT TTT ATA TTA AGG-3'); ACHE CpG 19 (5'-TTT GTG
TTGTATATT AGGGGT TTT AG-3'and 5'-CTCCCT AAC
CCA ACA AAT TTT AA-3’) and sequencing primer 5'-TGT
ATA TTA GGG GTT TTA GT-3').

Other assays

For the ALP assay, the cells were collected in lysis buffer (10
mMm HEPES, pH 7.5, 1 mm EDTA, 1 mm EGTA, 150 mm NaCl,
and 0.5% Triton X-100) with addition of the following protease
inhibitors (Sigma): 10 pg/ml of leupeptin, 10 wug/ml of apro-
tinin, and 2.5 mM benzamidine HCL The cell lysate was
obtained by vortexing for 15 min and centrifuged for 10 min at
16,000 X gat4 °C. ALP activity was measured by mixing the cell
lysate with 5 mm p-nitrophenyl phosphate (Sigma) in a buffer
containing 0.1 M glycine (pH 10.4), 1 mm MgCl,, and 1 mm
ZnCl, at 37 °C, and absorbance was measured at 405 nm. Lucif-
erase assay was performed using a commercial kit (Thermo
Fisher Scientific, Waltham, MA). In brief, cell cultures were
washed with PBS and re-suspended in 100 mM potassium phos-
phate buffer (pH 7.8) containing 0.2% Triton X-100 and 1 mm
DTT. Forty ul of lysate per sample was used in the luciferase
assay. The luminescent reaction was quantified in a GloMax®
96 Microplate Luminometer, and the activity was expressed as
absorbance (up to 560 nm) per mg of protein. Protein concen-
trations were measured routinely by the Bradford method with
a kit from Bio-Rad. Statistical tests were performed using one-
way analysis of variance; differences from basal or control val-
ues were classified as *, p < 0.05; **, p < 0.01; and ***, p < 0.001.
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