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Abstract

Background—Sepsis remains a leading cause of death in most ICUs. Many deaths in sepsis are 

due to nosocomial infections in patients who have entered the immunosuppressive phase of the 

disorder. One cause of immunosuppression in sepsis is T-cell exhaustion mediated by programmed 

cell death-1 (PD-1) interaction with its ligand (PD-L1). Studies demonstrated that blocking the 

interaction of PD-1 with PD-L1 with knockout mice or inhibitory antibodies reversed T cell 

dysfunction and improved sepsis survival. This study assessed the efficacy of a novel short-acting 

peptide (Compound 8) that inhibits PD-1/PD-L1 signaling in a clinically-relevant second-hit 

fungal sepsis model.

Methods—Mice underwent cecal ligation and puncture to induce peritonitis. Three days later, 

mice received intravenous injection of Candida albicans. Forty-eight hours following Candida 
infection, mice were treated with Compound 8 or inactive peptide. The effect of Candida infection 

on expression of co-inhibitory molecules, PD-1 and PD-L1 were quantitated by flow cytometry on 
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CD4+, CD8+, natural killer (NK) cells, and NKT cells. The effect of Compound 8 on survival was 

also examined.

Results—Four days after fungal infection, PD-1 and/or PD-L1 expressions were markedly 

increased on CD4+, NK, and NKT cells in septic versus sham-operated mice (%PD-1 on CD4+, 

11.9% vs 2.8%; and %PD-L1 on NKT, 14.8% vs 0.5%). Compared to control, Compound 8 

caused a two-fold increase in survival from 30% to 60%, p < 0.05.

Conclusions—Compound 8 significantly improved survival in a clinically-relevant 

immunosuppressive model of sepsis. These results support immuno-adjuvant therapy targeting T-

cell exhaustion in this lethal disease.
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1. Introduction

Sepsis is defined as life-threatening organ dysfunction that occurs due to a dysregulated host 

response to infection (1). Sepsis affects millions of people around the world each year and 

the incidence is increasing (2, 3). In the United States, sepsis contributes to more than 

250,000 deaths annually and is the tenth leading cause of death (4, 5). Patients with sepsis 

often present with high fevers, shock, and some degree of organ dysfunction. For many 

years, the prevailing concept of sepsis was that it represented an unbridled cytokine-

mediated inflammatory response (6–9). Consequently, most novel therapeutic approaches to 

sepsis focused on blocking the initial hyper-inflammatory, cytokine-mediated phase of 

disorder. Recently, the prevailing concept of sepsis has changed (7, 10–12), and evidence 

supporting the development of a progressive immunosuppressive phase of the disorder has 

accumulated. Apoptosis-induced depletion of immune effector cells with loss of CD4, CD8, 

B, and dendritic cells has been demonstrated in patients with sepsis (13, 14). Blood and 

autopsy studies from patients with sepsis showed decreased production of proinflammatory 

cytokines, decreased monocyte HLA-DR and T cell CD28 expressions, increased number of 

T regulatory cells, and increased expression of PD-1 and/or PD-L1 on innate and adaptive 

immune cells (15–21). Thus, patients with sepsis have phenotypic and function evidence of 

impaired immunity. This new recognition of the importance of the immunosuppressive phase 

of sepsis has led to studies of various immune-adjuvant agents to boost host immunity with 

the aim to improve outcome (7, 11, 12).

Among immunomodulatory therapy, blockade of PD-1/PD-L1 signaling is one of the new 

promising approaches to reverse immunosuppression in sepsis (12, 22, 23). Anti-PD-1 and 

anti-PD-L1 blocking antibodies have had remarkable success in improving survival in 

patients with cancer (24, 25), a disorder which shares many immunosuppressive mechanisms 

Shindo et al. Page 2

J Surg Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with sepsis (26). Clinically-relevant models of bacterial sepsis showed that anti-PD-1 and 

anti-PD-L1 antibodies improved survival, reduced lymphocyte apoptosis, and improved 

cytokine production (27–29). Therefore, anti-PD-1 and anti-PD-L1 antibodies may be 

effective not only in cancer but in sepsis as well (24, 26).

A number of approaches are available for therapeutic blocking of harmful receptor:ligand 

interaction such as may occur with PD-1:PD-L1. Although competitive, i.e., blocking 

antibodies generally have high avidity and high target specificity, they may have limitations 

of long circulating half-life (preventing titration of effect), precipitation of immunogenicity, 

high production costs, and expense (29). Alternatively therapeutic peptides, whose 

molecular weight is lower than antibodies’, may be one of effective clinical applications for 

treatment because of the negligible antigenicity, lower production cost, and increased 

product reproducibility (30). Another potential advantage of therapeutic peptides as opposed 

to antibodies is their shorter half-life, i.e, duration of action, than most antibodies. Therefore, 

any potential harmful side effects might be ameliorated more quickly following drug 

discontinuation. Finally, in disorders like sepsis, it might be easier to titrate the degree of 

inhibition of the PD-1:PD-L1 pathway using peptides as opposed to antibodies. Therefore, 

we conducted this study to assess the effect of Compound 8, short acting peptide that 

inhibits PD-1 interaction with PD-L1 on survival in a clinically-relevant two-hit model of 

sepsis.

2. Materials and Methods

2.1. Mice

Six- to eight-week-old male CD1 mice were purchased from Charles River Laboratories 

(Wilmington, MA, USA). Procedures were approved by the Animal Studies Committee at 

Washington University School of Medicine.

2.2. Anti-PD-L1 peptide

The peptide, Compound 8, was developed at Aurigene Discovery Technologies Limited 

(Bangalore, Karnataka, India) (US patent #: 8907053) (31). Compound 8 is a 29 amino acid 

peptide that potently blocks PD-L1 signaling as demonstrated by an EC50 <50 nM in rescue 

of PD-L1 mediated inhibition of lymphocyte proliferation and effector functions in both 

human and mouse systems (US patent #: 8907053).

2.3. Flow cytometry antibodies

The fluorescently labeled antibodies used for flow cytometry were purchased from the 

following companies, and the company protocols were followed in all applications: 

BioLegend (San Diego, CA, USA): anti-CD3-FITC (Cat. # 100306), anti-CD4-PerCP/Cy5.5 

(Cat. # 100540), anti-B220-PerCP/Cy5.5 (Cat. # 103236), anti-CD3-PerCP/Cy5.5 (Cat. # 

100328), anti-CD8-PerCP/Cy5.5 (Cat. # 100734), anti-CD8-APC (Cat. # 100712), and anti-

CD279-APC (Cat. # 135209); eBioscience (San Diego, CA, USA): anti-DX5-FITC (Cat. # 

11-5971-85), anti-CD274-PE (Cat. # 551892), and anti-F4/80-APC (Cat. # 17-4801-80); and 

BD Biosciences (San Jose, CA, USA): anti-CD 279-PE (Cat. # 551892).
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2.4. Two-hit model of sepsis

The two-hit model of Candida albicans sepsis was used as previously described (32). The 

cecal ligation and puncture (CLP) model was used to induce a sublethal polymicrobial sepsis 

(28). Mice were anesthetized with isoflurane and a midline abdominal incision was 

performed. The cecum was ligated (at ~50%) and was punctured twice with a 27 gauge 

needle. The abdomen was closed in two layers and 1 ml of 0.9% normal saline mixed with 

0.05 mg/kg bodyweight buprenorphine (PharmaForce., Columbus, OH, USA) was 

administered subcutaneously in order to ensure hydration and provide pain control. A single 

dose of imipenem (25 mg/kg) was given subcutaneously 4 hours post CLP surgery. This 

level of injury combined with limited antibiotic therapy was utilized to create a protracted 

infection due to a contained intra-abdominal abscess with low mortality (33). Sham-operated 

mice were treated identically except there was no cecum ligation nor puncture.

Three days post-CLP, surviving mice received 50 μl of the 0.3 A600 Candida albicans 
suspension intravenously. This two-hit sepsis model of CLP followed by Candida albicans 
was developed because it reflected the impaired immune status of patients with protracted 

sepsis who have secondary nosocomial fungal infection (32). The time point to inject 

Candida albicans and the dose was determined on the basis of previous studies (28, 32, 33). 

Candida suspension was not administered to sham-operated mice.

2.5. PD-1 and PD-L1 expressions in splenic immune cells following Candida infection

Spleens were harvested from sham and septic animals at Day 7 post-CLP (4 days post 

Candida infection) and splenocytes were examined for surface expression of PD-1 and PD-

L1. Total cell count per spleen was performed using a ViCell Counter (Beckman Coulter, 

Brea, CA, USA). Splenocytes were prepared and were stained with the following 

combinations of fluorochrome-conjugated antibodies: CD3-FITC, CD279 (PD-1)-PE, CD4-

PerCP-Cy5.5, and CD8-APC; DX5-FITC, CD274 (PD-L1)-PE, B220-PerCP-Cy5.5, and 

F4/80-APC; CD3-FITC, CD274-PE, CD4-PerCP-Cy5.5, and CD8-APC; and DX5-FITC, 

CD274-PE, CD3-PerCP-Cy5.5, and CD279-APC. Flow cytometric analysis was performed 

on FACScan (Becton Dickinson, San Jose, CA, USA) and Cell Quest Pro software (BD 

Pharmigen, San Diego, CA, USA) was utilized to analyze the data.

2.6. Survival study

Septic mice were divided into two groups: one group was treated with active peptide 

(Compound 8) and another group was treated with an inactive scrambled peptide. Peptides 

were diluted with sterile phosphate buffered saline and 3 mg/kg peptide or scrambled control 

peptide was subcutaneously administered, in a blinded fashion, three times daily from Day 5 

through Day 13 post-CLP (Fig. 3B). Mice were observed for 14 days after CLP (27).

2.7. Statistical analysis

Data were analyzed using the statistical software Prism (GraphPad, San Diego, CA, USA). 

For analyses for PD-1 and PD-L1 expressions on splenocytes, data were described in scatter 

plots and mean values were presented. Mann-Whitney U test was used for analyzing 

continuous variables between two groups. For survival study, 14-day survivals between the 

Compound 8 and the inactive peptide groups were shown by Kaplan-Meier survival curves, 
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and a log rank test was performed for comparison. A p value less than 0.05 was considered 

statistically significant.

3. Results

3.1. PD-1 surface levels are higher on splenocytes from septic animals

PD-1 and PD-L1 surface expression were examined by comparing splenocytes from sham-

operated mice to those of CLP mice with second-hit Candida infection 7 days after surgery 

(Figs. 1 and 2). These results are the data from two separate experiments with a total of 6 

sham-operated mice and 12 mice that received CLP and Candida infection. CD4 T cells, 

natural killer (NK), and natural killer T-cells (NKT) had increases in both the percent of 

PD-1 positivity (p < 0.001, p = 0.008, and p = 0.010, respectively) and the PD-1 mean 

fluorescence intensity (MFI), (p = 0.010, p = 0.009 and p = 0.002, respectively) compared to 

comparable cells from sham-operated animals (Figs. 1A, 1B, and 1C). There was no 

difference in PD-1 surface expression on CD8+ T-cells (Fig. 1C)

3.2. PD-L1 surface levels are higher on splenocytes from septic animals

Like PD-1, PD-L1 exhibited higher surface levels on several cell types in septic animal 

spleens 7-days after surgery (Fig. 2). An increase in the percentage of NK, NKT, and CD4 T 

cells displaying PD-L1 was observed in septic animals compared to sham (p < 0.001, p < 

0.001 and p = 0.018, respectively); there was a concurrent increase of PD-L1 MFI on NK 

and NKT populations (p < 0.001 and p = 0.001, respectively, Figs. 2A and 2B). The increase 

in the PD-L1 MFI of macrophages in the septic mice compared to sham-operated mice 

approached statistical significance (p = 0.065) (Fig. 2B).

3.3. Compound 8 peptide improves survival in the two-hit sepsis model

The results presented are the combined results of three independent studies. Administration 

of the Compound 8 peptide which targets PD-L1 conferred a survival advantage on septic 

animals (p = 0.015, Fig. 3). The groups begin to separate within a few days of the initiation 

of treatment, with the anti-PD-L1 peptide treated group having a survival rate roughly 

double the survival of the group that was treated with the scrambled peptide, i.e., 59.4% 

(19/32) versus 30.3% (10/33) of surviving, respectively.

4. Discussion

This study demonstrated that Compound 8, a peptide inhibitor that inhibits PD-1/PD-L1 

signaling caused a two-fold improvement in survival in a clinically-relevant two-hit model of 

fungal sepsis. The current results are consistent with previous studies by multiple 

independent laboratories showing that anti-PD-1 and anti-PD-L1 antibodies can improve 

survival in a variety of clinically-relevant animal models of sepsis (27–29). The present 

model studied fungal infections. Candida infections are presently the third or fourth most 

common cause of bloodstream infections in many ICUs with a mortality of 30–40% (34). 

Thus, they represent a serious health problem. We used murine sepsis model in which mice 

were infected with Candida three days after a sub-lethal peritonitis infection. This fungal 

infection model reflects a more prolonged model of sepsis that allows for 
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immunosuppressive mechanisms to evolve (28, 32). The fact that mortality from invasive 

fungal infection remains stubbornly high despite use of antimicrobial agents that are highly 

active against fungal organisms, suggests that defects in host immunity contribute to the high 

lethality.

Flow cytometric analysis demonstrated increased expression of the negative co-stimulatory 

molecules PD-1 and/or PD-L1 on various immune effector cells including CD4 T cells, NK 

cells, and NKT cells. PD-1 and PD-L1 mediate immunosuppression by recruiting the 

tyrosine phosphatase SHP-2 which dephosphorylates and inactivates proximal effector 

molecules including AKT and ZAP70 (35–37). Compound 8 is a highly potent antagonist of 

the PD-1 signaling, which disrupts the interaction of PD-1 with PD-L1, and shows an EC50 

of <50 nM in rescue of PD-L1 mediated inhibition of lymphocyte proliferation and effector 

functions in both human and mouse systems (US Patent #: 8907053) (31). Compound 8 has 

several theoretical advantages over anti-PD-1 or anti-PD-L1 antibodies. Compared to 

antibodies, peptides will be less likely to induce immunogenicity and, because of their 

smaller size, may have a better distribution within the tissues. Finally, should it be desirable, 

it will likely be easier to titrate the amount of inhibition of the PD-1:PD-L1 pathway in 

sepsis using peptides as opposed to antibodies.

5. Conclusions

In conclusion, the present study demonstrates that, compared to cells from sham-operated 

mice, the co-inhibitory surface molecules PD-1 and PD-L1 are broadly expressed on 

immune effector cells following protracted fungal sepsis. The potent anti-PD-L1 peptide, 

Compound 8 caused an approximately two-fold improvement in survival in this clinically-

relevant model of sepsis. Given its favorable properties, Compound 8 should be considered 

as another potential immunoadjuvant in sepsis.
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Figure 1. Sepsis increases PD-1 expression in splenocytes in the two-hit sepsis model
FSC denotes forward scatter of cells on flow cytometry; MFI, mean fluorescent intensity. 

Mice underwent sham or CLP surgery (Day 0). Candida albicans was intravenously injected 

to CLP mice at 3 days post-CLP; sham-operated mice did not receive Candida infection. 

PD-1 expression on splenocytes was quantitated via flow cytometry at 7 days post-surgery 

(4 days after Candida infection). Results of two independent experiments were combined 

and the total numbers of mice in sham-operated mice and CLP mice with Candida infection 

were 6 and 12, respectively. CD4 T cells were identified as CD3+CD4+; CD8 T cells as 
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CD3+CD8+; NK cells as DX5+CD3−; and NKT cells as DX5+CD3+. PD-1+ cells were 

identified as CD279+.

(A) Representative flow diagrams of CD4 T cells are shown. The positivity of PD-1 

expression on CD4 T cells was evaluated.

(B) The representative flow diagrams of NKT cells are shown. The positivity of PD-1 

expression on NKT cells was evaluated.

(C) The percentages of PD-1+ cells and the MFI in CD4 T, CD8 T, NK, and NKT cells are 

shown.
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Figure 2. Increased PD-L1 expression in splenocytes in the two-hit sepsis model
FSC denotes forward scatter of cells examined by flow cytometry; and MFI, mean 

fluorescent intensity.

Mice underwent sham or CLP surgery (Day 0). Candida albicans was intravenously injected 

to CLP mice at 3 days post-CLP, and sham-operated mice did not receive Candida infection. 

PD-1 expression on splenocytes was quantitated via flow cytometry at 7 days post-surgery 

(4 days after Candida infection). Results of two independent experiments were combined 

and the total numbers of mice in sham-operated mice and CLP mice with Candida infection 
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were 6 and 12, respectively. T cells and NK cells were gated as indicated in Figure 2. 

Macrophages were identified as F4/80+; and B cells as B220+. PD-L1+ cells were identified 

as CD274+.

(A) Representative flow diagrams of NKT cells are shown. The positivity of PD-L1 

expression on NKT cells was evaluated.

(B) The percentages of PD-L1+ cells and the MFI in NK, NKT, B, CD4 T, and CD8 T cells, 

and macrophages are shown.
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Figure 3. Kaplan-Meier survival curves of septic mice treated with anti-PD-L1 peptide versus 
inactive peptide
(A) Solid line shows the Kaplan-Meier curve of 32 sepsis model mice treated with anti-PD-

L1 peptide, Compound 8; and dotted line shows the curve of 33 sepsis model mice treated 

with inactive peptide. The results represent the combined results from three independent 

survival studies. 19 of 32 (59.4%) mice survived in the anti-PD-L1 peptide treated group. 

However, only 10 of 33 (30.3%) mice survived in the inactive peptide treated group.

(B) Treatment schedule. Sepsis was induced by CLP surgery and Candida albicans was 

injected at Day 3 post-CLP. 3 mg/kg anti-PD-L1 peptide or inactive peptide was 

administered three times per day from Day 5 through Day 13.
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