New subgroups in the human T cell rearranging V_{γ} gene locus

A.Forster, S.Huck¹, N.Ghanem^{1,2}, M.-P.Lefranc¹ and T.H.Rabbitts

Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, UK and ¹Laboratoire d'Immunogénétique, UA CNRS 1191, Université des Sciences et Techniques du Languedoc, Place E Bataillon, 34060 Montpellier, Cedex, France

²Permanent address: Université Libanaise, Faculté des Sciences Médicales, Beyrouth, Lebanon

Communicated by T.H.Rabbitts

Two new V_γ genes in humans are described from rearrangement in T cell lines, which constitute single members of new V gene subgroups of the T-cell rearranging γ (TRG γ) locus. These two genes (herein designated as belonging to V_γIII and V_γIV subgroups) are located between V_γI/V_γII subgroups and the constant (C) γ genes. The existence of these new genes brings the number of different, potentially useable, human TRG V_γ genes to eight (excluding at least five pseudo V_γ genes) and the number of distinct subgroups to four. Polymorphism in the sequence of the V_γII subgroup gene is also described and rearranged fragment sizes which make possible an unequivocal assignment of a V_γ rearrangement are given. These results extend previous conclusions of the inherited diversity of the human TRG V_γ locus.

Key words: T cell rearranging γ gene/V $_{\gamma}$ subgroup/T cell receptor

Introduction

The T cell rearranging gene γ (TRG γ) was first recognized in mouse cells (Saito *et al.*, 1984). The TRG γ locus, like other studied rearranging genes, has variable (V) region genes, joining (J) and constant (C) region segments (Hayday *et al.*, 1985) which join during the early stage of T cell differentiation (Raulet *et al.*, 1985).

There are significant differences between the TRG γ locus in man and mouse. In man, there have been identified so far two C_{γ} genes (Lefranc and Rabbitts, 1985; Dialynas *et al.*, 1986; Lefranc *et al.*, 1986a) which are separated by 16 kb (Lefranc and Rabbitts, 1985; Lefranc *et al.*, 1986a) and a set of V_{γ} segments which are shared by the two C_{γ} genes (Lefranc *et al.*, 1986b,c). The situation in mouse is different since the four C_{γ} genes (Kranz *et al.*, 1985; Iwamoto *et al.*, 1986) each have associated V_{γ} and J_{γ} segments. This comparative anatomy of the human and mouse TRG γ loci draws a strong parallel with the immunoglobulin lambda light chain gene loci (Lefranc *et al.*, 1986a).

The function of the TRG γ gene product is presumably to form a surface receptor molecule on T cells, analogous to the TCR α/β heterodimer but the function of this TRG receptor and the T-cell type bearing this receptor is only just beginning to be clarified. A subset of T cells, expressing CD3 (T3) but not CD4 (T4) or CD8 (T8) has recently been identified which express γ chains (Brenner *et al.*, 1986; Bank *et al.*, 1986; Weiss *et al.*, 1986) possibly in association with a new chain, designated δ . γ expression has also been demonstrated on the surface of NK cells (Moingeon *et al.*, 1986). These studies support the view that the TRG γ locus codes for a diverse set of receptor proteins which, in turn, can recognize a diverse set of antigens. Sequence studies on a number of the human V_{γ} genes has allowed the assignment of two distinct subgroups $V_{\gamma}I$ and $V_{\gamma}II$ (Lefranc *et al.*, 1986b,c) but rearrangement patterns of TRG γ in the DNA of T cell leukaemias suggested the presence of, as yet, undetected V_{γ} subgroups (Lefranc and Rabbitts, 1985; Murre *et al.*, 1985; Quertermous *et al.*, 1986). We now describe a new V_{γ} subgroup ($V_{\gamma}III$) by the isolation of a gene from a γ rearrangement present in the cell line RPMI 8402 and identify a fourth V_{γ} subgroup ($V_{\gamma}IV$) by its rearrangement in the JM cell line. The localization of these new genes and a polymorphism of the $V_{\gamma}II$ subgroup is discussed.

Results

A new TRG γ subgroup gene, $V_{\gamma}III$

The set of V_{γ} genes previously described (Lefranc *et al.*, 1986b) as belonging to the $V_{\gamma}I$ and $V_{\gamma}II$ subgroups could be assigned to the major rearrangements observed in human foetal thymus samples but a further, very faint rearranged fragment could be detected in some samples. This, together with an analysis of a large number of T-cell lines (Lefranc and Rabbits, 1985; Murre *et al.*, 1985), suggested that there existed at least one other V_{γ} family, in addition to $V_{\gamma}I$ and $V_{\gamma}II$. Examination of the DNA of RPMI 8402 revealed two rearranged TRG γ alleles, one of which could be assigned to the $V_{\gamma}I$ family (unpublished, and see below) and the other which did not fit with any hitherto isolated genes (unpublished).

We have, therefore, isolated the rearranged V_{γ} genes from a λ phage library made from RPMI 8402 DNA by screening with a J_{γ} probe [pH60; Lefranc and Rabbitts (1985) and Materials and methods]. Two groups of clones were analysed representing the two rearranged alleles and the restriction maps appears in Figure 1. Both chromosomes are rearranged to the $C_{\gamma}2$ gene and both have joins to the $J_{\gamma}2$ segment previously identified (Lefranc *et al.*, 1986c). One allele (Figure 1A) had an unassigned V_{γ} gene joined to $J_{\gamma}2$ (see below) and the homologous allele (Figure 1B) has the $V_{\gamma}4$ gene (subgroup $V_{\gamma}I$) joined to $J_{\gamma}2$ as judged by the restriction map of λ R11 and λ R9 and comparison to unrearranged C_{γ} , J_{γ} and V_{γ} regions. Since the various segments in the latter have been previously analysed (Lefranc *et al.*, 1986b), we have carried out no further analysis on these rearranged λ phage clones.

A restriction map of the λ R12 and λ R7 clones which carried the unidentified, rearranged DNA segments is shown in Figure 1A. Comparison of this map with the map of the unrearranged C_{γ} locus (Lefranc *et al.*, 1986a) showed that a rearrangement had occurred at J_{γ} 2. This rearrangement was examined by DNA sequencing and revealed that a V-region gene had joined, nonproductively, to J_{γ} 2 (Figure 2A). The in-coming DNA segment

Fig. 1. Restriction enzyme maps of rearranged V_{γ} gene in RPMI 8402. λ phage clones were isolated from a library of RPMI 8402 DNA (in λ 2001) using the $J_{\gamma}l$ probe pH60. Two representative clones corresponding to each allele are shown together with the deduced restriction map. Black boxed areas represent V_{γ} genes, labelled accordingly. (A) Rearranged allele with $V_{\gamma}l0$ - $J_{\gamma}2$; (B) rearranged allele with $V_{\gamma}4$ - $J_{\gamma}2$. R, *Eco*RI; S, *SacI*, H, *HindIII*; P, *PstI* (only relevant sites shown); K, *KpnI*; B, *BamHI*.

could be readily identified as a V_{γ} gene by certain highly conserved codons present; e.g. the conserved cysteine codons (codons 18 and 93) which are probably responsible for intrachain disulphide bonding of the V region, the tryptophan-tyrosine dipeptide (associated with the conserved KpnI restriction enzyme site) at codons 32 and 33 and the codons for tyrosine-tyrosine-cysteine-alanine tetrapeptide around the C terminus of the V region. Although clearly a V-region sequence, the V gene rearranged in $\lambda R12$ and $\lambda R7$ has very limited homology to the other known V_{γ} genes and, therefore, this gene ($V_{\gamma}10$) belongs to a third, distinct subgroup which we term V, III. The lack of homology of this $V_{\rm v}$ III subgroup gene to, for instance, $V_{\rm v}9$ (V₁II subgroup) is illustrated in Figure 2B where an alignment of the derived V-region protein sequence is compared. The most homologous region is in the third framework region (from residues 83 to 94) and the overall homology (ignoring a simple space introduced into $V_{2}9$ to maximize homology) is 34%. This, and the previously reported homologies of $\sim 30\%$ between putative proteins of V,I and V,II (Lefranc et al., 1986b) show that subgroups are markedly different from each other and signify the ability of a putative receptor, involving the γ chain, to recognize diverse antigens.

Mapping of the $V_{\gamma}III$ subgroup

By studying the organization and rearrangement of the various V_{γ} genes, it was shown that the two identified C_{γ} loci could rearrange with any of the V_{γ} genes and that the $V_{\gamma}II$ gene ($V_{\gamma}9$) was located between the $V_{\gamma}I$ cluster and the C_{γ} genes on the chromosome (Lefranc *et al.*, 1986b). The chromosomal position of the $V_{\gamma}III$ subgroup was determined by deletion mapping using genomic DNA from a cell line (SUP-TI) which has both TRG γ alleles rearranged to $V_{\gamma}I$ subgroup genes [$V_{\gamma}3$ and $V_{\gamma}4$ respectively (Lefranc *et al.*, 1986b)].

The V_{γ} III subgroup probe is illustrated in Figure 1A and the hybridization of this probe to genomic DNA of various sources is shown in Figure 3. In an experiment, performed under low stringency, we detected one major component of hybridization

 $(\sim 1.7 \text{ kb in } EcoRI \text{ digests})$ in DNA from a non-lymphoid cell line (Colo 320) indicating that there is a single V_{γ} III gene in the human genome (i.e. the $V_{\gamma}10$ gene); no cross hybridization was observed between $V_{\gamma}III$ and either $V_{\gamma}I$ or $V_{\gamma}II$ genes. DNA from RPM1 8402 and from K1010 cells exhibit the hybridizing V_{γ} gene of the same mobility showing that these DNAs both carry the $V_{\gamma}10$ gene [using *Eco*RI digests, the $V_{\gamma}10$ gene does not appear rearranged since this enzyme cleaves within the V gene (see Figure 2A)]. However, no hybridization of the SUP-TI DNA was observed with the V_vIII probe showing that deletion of this gene has occurred on both chromosomes in this cell line. Since this cell has rearrangements involving C_{γ}^2 with V_{γ}^3 on one chromosome and with $V_{\gamma}4$ on the other the deletion of $V_{\gamma}10$ indicates that this gene is between $V_{\gamma}4$ and the two C_{γ} genes. Given the organization of the human V_{γ} locus, the most likely location for $V_{\gamma}10$ is between $V_{\gamma}9$ and $C_{\gamma}1$.

Polymorphism of the $V_{\gamma}9$ gene

Although there is no evidence for somatic mutation occurring in the V_{γ} genes (Hayday et al., 1985; Lefranc et al., 1986b), N-region diversity does contribute significantly to somatic variation of these genes (Hayday et al., 1985; Lefranc et al., 1986b; Quertermous et al., 1986). The inherited sequence variation of the V_{γ} genes in man may also be increased by genetic polymorphism within the human population as a whole. This possibility was investigated in the $V_{\gamma}9$ gene because we observed an RFLP within the region flanking $V_{\gamma}9$ in λ clones isolated from different cellular DNAs (Figure 4A). When the restriction map of λ K20 (isolated from K1010 DNA) was compared with those of λ A6 (isolated from AT5B1 DNA) and of λ SHV7 (isolated from a B-cell lymphoblastoid cell line), we noted an RFLP of a HindIII fragment adjacent to the 5' end of $V_{\gamma}9$; this fragment is 3.1 kb in λ K20 and 2.75 kb in λ A6 and λ SHV7. The nucleotide sequence comparison of an \sim 450-bp region obtained from both λ K20 and λ A6 V_y9 genes, shows that three nucleotide changes have occurred (Figure 4B). Two of these changes occur within the coding region and one of these results in a lysine-to-threonine

Fig. 2. Sequence of the $V_{\gamma}10$ rearrangement. (A) Nucleotide sequence and deduced amino acid sequence of $V_{\gamma}10$ non-productively joined to $J_{\gamma}2$. Cysteines probably involved in intra-chain disulphide bonds are circled. Position of relevant *KpnI* and *Eco*RI sites are shown. (B) Alignment of $V_{\gamma}10$ -derived protein sequence with $V_{\gamma}9$. Stars indicate identity of the amino acid and the intra-chain cysteines are specified by angled lines.

replacement. Although the effect of such a replacement on the folding of the V_{γ} protein is not clear, such a replacement is likely to be significant, and thus the V-region variability between polymorphic individuals would necessarily be increased by this change.

Localization of $V_{\gamma}II$ representing a $V_{\gamma}IV$ subgroup

JM cells (equivalent rearrangements to Jurkatt) have two rearranged TRG_{γ} alleles. The DNA cut with *Bam*HI, *Eco*RI or *Hin*dIII and hybridized with J_{γ} probes, shows two rearrangements one of which can be identified as a rearranged V_{γ 8 gene (4.2-kb *Eco*RI, Figure 5A and Table IIB). The other rearranged band (9.5-kb *Eco*RI, Figure 5A) corresponds to a new gene, V_{γ}11, which must belong to a new subgroup V_{γ}IV since there is no hybridization of a V_{γ}I probe to such a rearranged band (the only rearranged band detected is the 4.2-kb V_{γ 8) and since V_{γ}II and III subgroups only contain one member each. Furthermore,}}

Fig. 3. Mapping V_{γ} III subgroup within the human V_{γ} locus. Genomic hybridization using the V_{γ} 10 probe illustrated in Figure 1A. DNA from COLO32OHSR [a colon carcinoma (Alitalo *et al.*, 1983)] RPMI 8402, SUP-T1 [a T-cell lymphoma (Hecht *et al.*, 1984)] and K1010 (Lefranc *et al.*, 1986b) was digested to completion with *Eco*RI, separated on 0.8% agarose and transferred to cellulose nitrate as described (Lefranc *et al.*, 1986b). After hybridization with the V_{γ} III probe, the filter was washed at 6 × SSC, 0.1% SDS prior to autoradiography. Sizes shown are from λ DNA cleaved with *Hind*III.

Jurkatt cells have been shown to contain a previously unidentified rearranged gene by partial sequence data at the V-J junction (Quertermous *et al.*, 1986).

The location of this $V_{\gamma}11$ gene was deduced by V_{γ} gene hybridization to JM DNA. A $V_{\gamma}I$ subgroup probe (1.1-kb SacI $V_{\gamma}3$ fragment from λ SH4) detects a normal pattern of EcoRI bands, including $V_{\gamma}8$ in the unrearranged configuration (this band is faint and merges with the intense band due to $V_{\gamma}5$ and $\psi V_{\gamma}7$) plus the 4.2-kb $V_{\gamma}8$ rearranged band (Figure 5B). Hybridization of a $V_{\gamma}II$ probe [K20PR, the Pst-EcoRI $V_{\gamma}9$ -J_{γ} fragment from λ K20 (Lefranc *et al.*, 1986c)] detects, in addition to the fragments observed with a J_{γ} probe, the 5.2-kb fragment which represents the unrearranged $V_{\gamma}9$ gene (data not shown). Similarly, the $V_{\gamma}III$ probe shows the unrearranged 1.7-kb EcoRI (Figure 5C) band so that $V_{\gamma}8$, 9 and 10 genes must still be present on the chromosome with rearranged $V_{\gamma}11$. Therefore, $V_{\gamma}11$ must be downstream of $V_{\gamma}10$, assuming no inversion mechanism.

The germline $V_{\gamma}I$ genes can be assigned to the different bands in Figure 5B based on cloned DNA fragments (Lefranc *et al.*, 1986b). However, to confirm the assignment, we carried out deletion mapping in T cell lines with different rearranged V_{γ} genes and in so doing, identified a new $V_{\gamma}I$ subgroup gene herein designated $V_{\gamma}5$ and located between $V_{\gamma}4$ and $\psi V_{\gamma}5$. The *Eco*RI fragment containing $V_{\gamma}5$ comigrates with $\psi V_{\gamma}7$ but this doublet is separable into the two components on longer electrophoretic runs (data not shown).

Fig. 4. Genetic polymorphism of the $V_{\gamma}9$ gene. (A) RFLP in λ clones containing $V_{\gamma}9$. λ recombinant phage clones were isolated from either K1010 DNA, AT5B1 or SH DNA containing the $V_{\gamma}9$ gene. The restriction map revealed a *Hin*dIII RFLP (indicated by the horizontal arrow) just upstream of the V_{γ} coding region. R, *Eco*RI; S, *SacI*, H, *Hin*dIII. (B) Comparison of nucleotide sequence of $V_{\gamma}9$ genes from λ K20 and λ A6. Vertical arrows represent putative RNA splice sites.

The even genomic spacing of the V_γ genes implies the occurrence of an equal expansion of the V_γ repertoire in man during the evolution of the system; however, this equal spacing of ~5 kb, maintained between the $V_{\gamma}I$ family genes, was not found between the $V_{\gamma}I$ family and the $V_{\gamma}II$ gene distance of 15 kb (Lefranc et al., 1986b). This situation suggested the possibility that there might exist a further V_{γ} gene segment between $V_{\gamma}8$ and $V_{\gamma}9$. Furthermore, all of the $V_{\gamma}I$ family genes possess the conserved tryptophan-tyrosine codons which are associated with a KpnI restriction enzyme site. A similar situation occurs in the $V_{\gamma}10$ gene (Figure 2A). Since analysis of the λ A6 and λ K20 clones revealed a KpnI site ~6 kb upstream of $V_{\gamma}9$, this site might correspond to a new V_{γ} segment. This was investigated by nucleotide sequencing around this KpnI shown in Figure 6A. In confirmation of this idea that a V_{γ} segment occurs in this region, the conserved tryptophan-tyrosine and cysteine codons (Figure 6B) were found. However, a translation stop codon (TAG) occurs nine codons upstream of this conserved cysteine codon, thus making this segment a pseudo V_{γ} segment (here designated $\psi V_{\gamma} A$).

Mapping by Southern hybridization analysis allowed us (see above) to localize $V_{\gamma}11$ downstream of $V_{\gamma}10$ (summarized in Figure 7). Hybridization of *Kpn*I-digested JM DNA with the J_{γ} probe pH60 detected a 6.2-kb fragment instead of the 1.8-kb fragment expected from V_{γ} genes with internal *Kpn*I sites, indicating that $V_{\gamma}11$ (subgroup IV) like $V_{\gamma}9$ (subgroup II) probably has no *Kpn*I site in its sequence. However, a *Kpn*I site could be detected 4.3 kb from 5' of $V_{\gamma}11$ (unpublished data and Figure 7). If our previous argument about the spacing of the V_{γ} genes and the presence of a *Kpn*I site in most V_{γ} genes is again true, this could mean that a new gene is present between $V_{\gamma}10$ and $V_{\gamma}11$. No rearranged fragment sizes corresponding to this suspected gene have been detected so far in leukaemia samples and, therefore, if the presence of this gene is confirmed, it is probably a pseudogene (designated $\psi V_{\gamma}B$ in the map Figure 7, by analogy with $\psi V_{\gamma}A$, the pseudogene found 6 kb in 5' of $V_{\gamma}9$) which,

Fig. 5. Identification of $V_{\gamma}IV$ subgroup gene rearranged in JM DNA. Southern filter hybridization of JM genomic DNA digested with EcoRI and hybridized with J_{γ} probe M13H60 (A), $V_{\gamma}I$ probe (B), $V_{\gamma}III$ probe (C) (see Figure 1 and text). Each line represents a different gel run and sizes plus designations for each band are indicated. These designations are based on sizes of cloned DNA fragments (Lefranc *et al.*, 1986b). Genes $V_{\gamma}2$ and $V_{\gamma}4$ contain EcoRI sites so that they appear as two hybridizing bands. The $V_{\gamma}4$ germline does not exist as a clone and the assignment is to the only remaining fragment, 3.1 kb. This assignment is almost certain because T-cell lines with rearranged $V_{\gamma}4$ and $V_{\gamma}5$ possess the 3.1-kb band but those with both $V_{\gamma}4$ alleles rearranged do not have this band. The intense 3.6-kb band is a doublet containing $\psi V_{\gamma}7$ and a new gene; this band can be separated into two bands on long runs (unpublished data), and in this case, the upper band corresponds to the new gene, $V_{\gamma}5$, located between $V_{\gamma}4$ and $\psi V_{\gamma}5$. This gene belongs to subgroup I.

along with the other pseudo V_{γ} genes are rarely found to be rearranged [with the possible exception of $\psi V_{\gamma} 7$ (Chen *et al.*, 1987; Le Paslier *et al.*, 1987)].

Discussion

This paper describes a new V_{γ} gene ($V_{\gamma}10$) belonging to a new subgroup of which this gene appears to be the sole member. Two other subgroups having previously been described (Lefranc et al., 1986b) the V_{10} gene belongs to a subgroup we have designated V_vIII. A partial sequence of the Jurkatt rearranged V_{γ} gene (Quertermous et al., 1986) and rearrangement data above imply another, distinct subgroup, V, IV. This nomenclature has logic paralleled to the classification of the immunoglobulin subgroups (Kabat et al., 1983) and to the probable order of the V_{γ} subgroups in the genome (i.e. $V_{\gamma}I - V_{\gamma}IV$) (see above). The sum total of known human V_{γ} genes is summarized in Table I. The probable order of these subgroups is $V_{\gamma}I - V_{\gamma}II - V_{\gamma}III - V_{\gamma}IV - C_{\gamma}$ with there being a minimum of nine genes in V₁ but probably only single genes in subgroups V₁II, III and IV. This organization is illustrated in Figure 7. It is possible that other infrequently rearranged V_{γ} gene will be found but the limited number of V_{γ} gene rearrangements observed in unfractionated thymus cells (Lefranc et al., 1986b)

Fig. 6. Location of pseudogene $V_{\gamma}A$. (A) Restriction maps of λ K20 and λ A6 indicating positions of $V_{\gamma}9$, $\psi V_{\gamma}A$ and the *KpnI* site within $\psi V_{\gamma}A$ (this is the only *KpnI* site shown). R, *EcoRI*; S, *SacI*; H, *HindIII*; K, *KpnI*. (B) Nucleotide sequence and deduced protein sequence immediately upstream of the *KpnI* in $\psi V_{\gamma}A$; note the stop codon (indicated by * at the N terminal of this sequence). On the top line is the comparable protein sequence of $V_{\gamma}9$, with dashes indicating identical residues. The intra-chain disulphide bond is indicated.

or in leukaemia cell lines (Lefranc and Rabbitts, 1985; Murre *et al.*, 1985) argues that those giving functional γ protein are limited to the few so far described, viz. eight V_{γ} genes.

Since the majority of rearrangements occur to either of two J_{γ} segments adjacent to either $C_{\gamma}1$ or $C_{\gamma}2$ (Lefranc *et al.*, 1986a) and although other J_{γ} segments do occur (in preparation for publication), it is now possible to decide in the vast majority of cases which V_{γ} gene is rearranged in a T-cell clone, cell line or tumour sample simply by determination of the size of the rearranged fragments. This may be clinically useful in deciding clonality of leukaemia samples and provides an easy way to determine V_{γ} gene usage. The various rearranged fragment sizes expected are given in Table II. Table IIA gives the sizes of

Table I. Human TRG V_{γ} subgroups		
Gene	Subgroup	Reference
V.2	V _~ I	Lefranc et al. (1986b)
V_3	1	Lefranc et al. (1986b,c)
V_4		Lefranc et al. (1986b)
\mathbf{v}_{2}^{\prime} 5		This paper
$\mathbf{v}_{\gamma}^{\prime}8$		Lefranc et al. (1986b)
ψV_1		Lefranc et al. (1986b)
$\frac{1}{\sqrt{V_{5}}}$		Lefranc et al. (1986b)
√V.6		Lefranc et al. (1986b)
$\psi V_{\gamma}^{\gamma} 7$		Lefranc et al. (1986b)
V.9	V.II	Lefranc et al. (1986b,c)
V.10	v.'iii	This paper
v_{γ}^{γ} 11	ν _γ ίν	This paper

No subgroup has been assigned to $\psi V_{\gamma} A$ since no functional gene nor rearrangement have been described so far for this gene.

Table IIA.	Size	of	restriction	fragments	for	unrearranged human \mathbf{J}_{γ}	
segments							

Segment	BamHI	HindIII	EcoRI	SacI	
 J _v 1	20	2.1	1.5	6.4	
J _γ 2	13.0	2.1ª 5	3.2 ^a 1.5	7.0	

Sizes are derived from the analysis of cloned DNA segments previously described (Lefranc et al., 1986b).

^aAn RFLP occurs with J_{γ}^2 with these enzymes (Lefranc and Rabbitts, 1985; Lefranc *et al.*, 1986a). As a consequence of this polymorphism and because of this existence of the J_{γ} segments (e.g., $J_{\gamma}P$) (Lefranc *et al.*, 1986b) *Bam*HI is the most useful enzyme for detection of rearrangements.

Fig. 7. Diagrammatic representation of the human TRG V_{γ} locus. The estimated order of V_{γ} genes and spatial organization of the human TRG γ locus. Each individual V_{γ} gene is assigned to its subgroup as indicated. K, *Kpn*I.

Table IIB. Size of rearranged fragments (kb) when V_{γ} genes are joined to $J_{\gamma}l$ or $J_{\gamma}2$

Subgroup	Gene	Bam HI	HindIII	<i>Eco</i> RI	
I	V~2	11.7	4.3	0.9	
	V_3	16	3.7	$5.4 (+V_2)$	
	V ₂ 4	21	4.3	0.9	
	$V_{\gamma}^{\prime}5^{a}$	~25	3.6	2.2	
	$\psi \dot{\mathbf{V}}_{\mathbf{v}}$ 7ª	~ 35	2.9	3.1	
	V _γ 8	~40	2.9	4.2	
II	V _γ 9	15.5	4.0	2.4	
III	$V_{\gamma}10$	19	5.1	0.65	
IV	$V_{\gamma}11$	12	5.6	9.5	

Predicted sizes of rearranged restriction fragments resulting from

rearrangement of human TRG V_{γ} segments. Sizes are derived from the analysis of cloned DNA segments for subgroups I and II (Lefranc *et al.*, 1986b) and subgroup III (this paper) and deducted from rearrangement patterns observed in JM/Jurkatt cells for subgroup IV (our own unpublished data and Quertermous *et al.*, 1986).

^aSizes for $V_{\gamma}5$ (a new gene identified by deletion mapping of rearranged Tcell lines) and $\psi V_{\gamma}7$ have been deduced by the rearrangement sizes observed in some leukaemia cells (Chen *et al.*, 1987; Le Paslier *et al.*, 1987).

unrearranged J_{γ} segments and Table IIB the various sizes expected for rearrangement of each V_{γ} gene. The use of a suitable set of restriction enzymes (Table IIB) would therefore make an unequivocal assignment of V_{γ} rearrangement possible.

Materials and methods

$\boldsymbol{\lambda}$ phage isolation and mapping

Rearranged TRG γ genes were isolated from a *Sau*3A partial digest genomic library of RPMI 8402 (R.Baer, T.Boehm and T.H.Rabbitts, in preparation) using a J_{γ}1 probe [this probe, pH60, containing the 700-bp *Hind*III*–Eco*RI from M13H60 (Lefranc and Rabbitts, 1985) subcloned in pUC9]. Phage were mapped by standard procedures and relevant subclones prepared (see text) in pUC or M13 vector (Vieira and Messing, 1982).

Hybridization and sequencing procedure

Southern filter hybridization (Southern, 1975) was carried out with 10 μ g genomic DNA using nick-translated probes (Rigby *et al.*, 1977). Conditions for hybridization, washing and monitoring are previously described (Lefranc *et al.*, 1986b).

DNA sequencing was carried out using M13 vector and dideoxy chain termination methods (Sanger *et al.*, 1977; Bankier and Barrell, 1983). Sequences were aligned by computer comparison (Staden, 1986).

Acknowledgements

This work was supported in part by C.N.R.S., A.R.C., Fondation pour la Recherche Médicale and Ministère de la Recherche.

References

- Alitalo,K,. Schwab,M., Lin,C.C., Varmus,H.E. and Bishop,J.M. (1983) Proc. Natl. Acad. Sci. USA, 80, 1707-1711.
- Bank, I., De Pinho, R.A., Brenner, M.A., Cassimeris, J., Alt, F. and Chess, L. (1986) *Nature*, **322**, 179-181.
- Bankier, A.T. and Barrell, B.G. (1983) Nucleic Acid Biochem., B508, 1-34.
- Brenner, M.B., McClean, J., Dialynas, D.P., Strominger, J.L., Smith, J.A., Owen, F.L., Seidman, J.G., Ip, S., Rosen, F. and Krangel, M.S. (1986) Nature,
- **322**, 145–149. Chen,Z., Le Paslier,D., Loiseau,P., Degos,L., Cohen,D. and Sigaux,F. (1987),
- J. Exp. Med., 165, 1000-1015. Dialynas, D.P., Murre, C., Quertermous, T., Boss, J.M., Leiden, J.M., Seid-
- man, J.G. and Strominger, J.L. (1986) Proc. Natl. Acad. Sci. USA, 83, 2619-2623.
- Hayday, A.C., Saito, H., Gillies, S.D., Kranz, D.M., Taningawa, G., Eisen, H.N. and Tonegawa, S. (1985) Cell, 40, 259–269.
- Hecht, F., Morgan, R., Kaiser-McCaw Hecht, B. and Smith, S.D. (1984) Science, 226, 1445-1447.

- Iwamoto, A., Rupp, F., Ohashi, P.S., Walker, C.L., Pircher, H., Joho, R., Hengartner, H. and Mak, T.W. (1986) J. Exp. Med., 163, 1203-1212.
- Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Mitler, M. and Perry, H. (1983) US Department Health Services.
- Kranz, D.M., Saito, H., Heller, M., Takagaki, Y., Haas, W., Eisen, H.N. and Tonegawa, S. (1985) Nature, 313, 752-755.
- Lefranc, M.-P. and Rabbitts, T.H. (1985) Nature, 316, 464-466.
- Lefranc, M.-P., Forster, A. and Rabbitts, T.H. (1986a) Proc. Natl. Acad. Sci. USA, 83, 9596-9600.
- Lefranc, M.-P., Forster, A., Baer, R., Stinson, M.A. and Rabbitts, T.H. (1986b) *Cell*, **45**, 237-246.
- Lefranc, M.-P., Forster, A. and Rabbitts, T.H. (1986c) Nature, 319, 420-422.
- Le Paslier, D., Chen, Z., Dausset, J., Cohen, D., Flandrin, G. and Signaux, F. (1987), *Blood*, in press.
- Moingeon, P., Ythier, A., Goubin, G., Faure, F., Nowill, A., Delmon, L., Rainaud, M., Forestier, F., Daffos, F., Bohuon, C. and Hercend, T. (1986) *Nature*, **323**, 638-640.
- Murre, C., Waldmann, R.A., Morton, C.C., Bongiovanni, K.F., Waldmann, T.A., Shows, T.B. and Seidmann, J.G. (1985) *Nature*, 316, 549-552.
- Quertermous, T., Strauss, W., Murre, C., Dialynas, D.P., Strominger, J.L. and Seidmann, J.G. (1986) Nature, 322, 184–187.
- Raulet, D.H., Garman, R.D., Saito, H. and Tonegawa, S. (1985) Nature, 314, 103-107.
- Rigby, P.W.J., Dieckmann, M., Rhodes, C. and Berg, P. (1977) J. Mol. Biol., 113, 237-251.
- Saito, H., Kranz, D.M., Takagaki, Y., Hayday, A.C., Eisen, H.N. and Tonegawa, S. (1984) *Nature*, **309**, 757-762.
- Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA, 74, 5463-5467.
- Southern, E.M. (1975) J. Mol. Biol., 98, 503-517.
- Staden, R. (1986) Nucleic Acids Res. 14, 217-231.
- Vieira, J. and Messing, J. (1982) Gene, 19, 259-268.
- Weiss, A., Newton, M. and Grommie, D. (1986) Proc. Natl. Acad. Sci. USA, 83, 6998-7002.

Received on March 2, 1987; revised on April 16, 1987

Note added in proof

A genomic clone isolated from the JM cell line contained rearranged $V_{\gamma}11$ and unrearranged $V_{\gamma}10$. This confirms the location of $V_{\gamma}11$ at 8.5 kb downstream of $V_{\gamma}10$ as well as the presence of pseudo $V_{\gamma}B$.