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Abstract

The brain-derived neurotrophic factor (BDNF) Val66Met single nucleotide polymorphism (SNP) 

has been associated with individual differences in brain structure and function, and cognition. 

Research on BDNF’s influence on brain and cognition has largely been limited to adults, and little 

is known about the association of this gene, and specifically the Val66Met polymorphism, with 

developing brain structure and emerging cognitive functions in children.

We performed a targeted genetic association analysis on cortical thickness, surface area, and 

subcortical volume in 78 children (ages 6–10) who were Val homozygotes (homozygous Val/Val 

carriers) or Met carriers (Val/Met, Met/Met) for the Val66Met locus using Atlas-based brain 

segmentation. We observed greater cortical thickness for Val homozygotes in regions supporting 

declarative memory systems (anterior temporal pole/entorhinal cortex), consistent with adult 

findings. Met carriers had greater surface area in the prefrontal and parietal cortices and greater 

cortical thickness in lateral occipital/parietal cortex in contrast to prior adult findings that may 

relate to performance on cognitive tasks supported by these regions in Met carriers. Finally, we 
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found larger right hippocampal volume in Met carriers, although inconsistent with adult findings 

(generally reports larger volumes for Val homozygotes), is consistent with a recent finding in 

children.

Gene expression levels vary across different brain regions and across development and our 

findings highlight the need to consider this developmental change in explorations of BDNF-brain 

relationships. The impact of the BDNF Val66Met polymorphism on the structure of the developing 

brain therefore reflects regionally-specific developmental changes in BDNF expression and 

cortical maturation trajectories.
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Introduction

Multiple genes and gene by environment interactions regulate the emerging cognitive 

abilities in the child’s developing brain. The BDNF gene (located on chromosome 11p14.1) 

encodes for the brain-derived neurotrophic factor, a member of the nerve growth family of 

proteins, and has been implicated in brain development, maturation and cognition (Alfimova 

et al., 2012, Bath & Lee, 2006, Dincheva et al., 2012, Egan et al., 2003, Hariri et al., 2003, 

Harrisberger et al., 2014, Molendijk et al., 2012, Yin et al., 2015). More specifically, BDNF 

influences the proliferation, differentiation and survival of neurons, neural morphology and 

function, synaptic changes (i.e. long-term potentiation [LTP] in the hippocampus), and, 

correspondingly, neuroplasticity (Frielingsdorf et al., 2010). The listed pathways and 

processes depend on the amount of neurotrophin present, its appropriate release, and its 

binding affinity to target cell membranes (Bath & Lee, 2006). Both animal and human 

studies suggested that common genetic polymorphisms in bdnf/BDNF are related to the 

structure and function of the developing brain; see Bath and Lee (2006) for a review of 

human and animal findings and see Hanover et al. (1999), Huang et al. (1999) for studies of 

mouse visual cortex. Despite these studies having established a link between BDNF and 

synaptic changes over development, few studies have examined the relationship between 

BDNF and brain function or structure in young children (Hashimoto et al., 2016, Marusak et 
al., 2015, Thomason et al., 2009). Here, we examine the association between the BDNF 
Val66Met polymorphism (dbSNP rs6265) and individual differences in brain structure in a 

sample of neurotypical children.

A common missense (i.e., leading to the alteration of the amino acid composition of the 

protein) single nucleotide polymorphism (SNP) in the BDNF gene, rs6265 or Val66Met, 

affects production of the BDNF protein (Egan et al., 2003). Specifically, this polymorphism 

results in a single amino acid substitution (valine to methionine) in the proBDNF peptide [a 

precursor peptide to BDNF (Hariri et al., 2003, Mowla et al., 2001)], at codon 66. Two 

alternative alleles (G/A) are possible at this locus, with G being the ancestral allele, and A – 

the derived one. Thus, three genotypes are possible: GG, AG, and AA, corresponding to Val/

Val, Val/Met or Met/Met, respectively. Activity-dependent BDNF release is highest in 
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Val/Val individuals relative to Val/Met and Met/Met individuals (however as discussed 

below this may vary with development). Moreover, differences in the activity-dependent 

BDNF release between Val/Val, Val/Met and Met/Met carriers have been observed to be 

associated with behavioral differences as well as differences in brain structure (e.g., white 

matter architecture; Ziegler et al., 2013) and function, in animals (Bath & Lee, 2006, 

Hanover et al., 1999, Huang et al., 1999) and human adults (Egan et al., 2003, Hariri et al., 
2003).

Behaviorally, the BDNF Val66Met polymorphism has been associated with multiple aspects 

of cognition and, most notably, memory function. In studies with adult samples, Val 

homozygotes generally perform better than Met carriers on measures of declarative and 

working memory (Brooks et al., 2014, Galloway et al., 2008, Hansell et al., 2007), as well as 

other aspects of cognition, including attention (Scassellati et al., 2014, Shim et al., 2008, 

Zeni et al., 2012), and executive function (Alfimova et al., 2012, Smith et al., 2004). 

Working memory (WM) capacity involves a system for combining information storage and 

manipulation to involved in cognitive activities. This is often measured using an n-back task, 

where the participant is asked to monitor a series of stimuli (e.g., numbers, letters) and make 

a response when a stimulus presented is same as that presented n trials previously. During 

such an n-back working memory task, Met carriers were found to show reduced brain 

activation, compared to Val homozygotes, in brain regions including the frontal lobe (Chen 

et al., 2015). Compared to Val homozygotes, Met carriers also demonstrate reduced 

declarative memory, which includes long term storage of episodic and semantic knowledge 

(Kambeitz et al., 2012). However, Dodds et al. (2013) suggests that the Val66Met 

polymorphisms may have an effect on memory retrieval, and not on memory encoding.

However, the relationships between the BDNF gene and cognition have been almost 

exclusively documented in samples of healthy adults (Hashimoto et al., 2016, see Thomason 

et al., 2009) and psychiatric patient populations (Dias et al., 2009, Gatt et al., 2009, Lau et 
al., 2010, Scassellati et al., 2014, Shim et al., 2008, Smith et al., 2004, Song et al., 2015, 

Zeni et al., 2012), but see Hashimoto et al. (2016) for relevant research on the Val66Met 

polymorphism in child and adolescent brain structure. The impact of this polymorphism on 

the healthy development of the brain and cognition in children is not fully understood.

At the neural level, studies with adults have revealed that the Val66Met polymorphism is 

associated with structural variation in both cortical and subcortical grey and white matter 

structure, including volume, cortical thickness, and white matter integrity (Chen et al., 2007, 

Egan et al., 2003, Hariri et al., 2003, Pezawas et al., 2004, Szeszko et al., 2005), and brain 

function (Dodds et al., 2013, Egan et al., 2003, Hariri et al., 2003, Kauppi et al., 2013, Lau 

et al., 2010). Most prominently, this polymorphism has a well-documented effect on 

hippocampal structure and function, with most studies finding that the Val66Met 

polymorphism has an atrophic effect on the hippocampus. Indeed, murine studies have 

found that homozygous carriers of the Met allele have reduced hippocampal volumes, less 

dendritic arbors, and a 30% reduction in activity-dependent release of bdnf protein (c.f. 

Chen et al., 2007). In human neuroimaging studies, reduced hippocampal volume has also 

been observed in Met carriers, compared to Val homozygotes (Egan et al., 2003, Hariri et al., 
2003, Kambeitz et al., 2012, Pezawas et al., 2004, Szeszko et al., 2005).
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BDNF is also abundantly expressed in the frontal lobes, the occipital lobe and in the 

temporal lobe, which connect with the hippocampus through its afferent connections 

(Baquet et al., 2004, Bartsch & Arzy, 2014). Correspondingly, the Val66Met polymorphism 

has also been associated with cortical structure in these regions, specifically, Met carriers 

have generally demonstrated reduced gray matter volume in the superior and middle frontal 

gyri, including the dorsolateral prefrontal cortex (Forde et al., 2014, Matsuo et al., 2009, 

Pezawas et al., 2004) anterior cingulate cortex (Gerritsen et al., 2012, Matsuo et al., 2009, 

Mueller et al., 2013), lingual gyri (Forde et al., 2014), and fusiform gyri (Montag et al., 
2009), compared to the Val homozygotes.

In addition to these structural brain differences, there are also differences in functional brain 

activation observed between Val homozygotes and Met carriers. Hariri et al. (2003) found 

reduced activation of the hippocampus during a declarative memory task among Met carriers 

as compared with Val homozygotes. Further, Chen et al. (2007) found that Met allele 

carriers showed consistently lower brain activation in the right superior frontal gyrus (SFG) 

and the middle occipital gyrus during a N-back working memory task. Using resting state 

MRI, Wei et al. (2012) also found reduced functional connectivity between the right 

hippocampus and left parahippocampal gyrus with cortical regions (middle temporal gyrus, 

inferior and middle frontal gyrus, fusiform gyrus) in Met carriers compared to Val 

homozygotes. These differences in brain activation between Met carriers and Val 

homozygotes generally correspond to observed differences in memory and general cognitive 

performance in adults (Brooks et al., 2014, Galloway et al., 2008, Hansell et al., 2007, 

Kambeitz et al., 2012). Generally, reduced activation and smaller volume of the 

hippocampus is associated with poorer memory performance (Rahman et al., 2016, Riggins 

et al., 2015, Van Strien et al., 2009, Yonelinas, 2013). Indeed, Kambeitz et al. (2012)’s meta-

analysis of relation between BDNF and memory performance and both brain structure and 

function observed this relationship.

With respect to neural development in humans, there is currently very limited research that 

has explored this polymorphism in children, and findings to date are not completely 

consistent with the adult data. For example, in a cohort of Japanese children aged 5–18, 

Hashimoto et al. (2016) found greater grey matter volume in the right cuneus for Met 

homozygotes (Met/Met) relative to Val homozygotes (a finding not previously observed in 

adults), whereas they observed greater left insula and left ventromedial prefrontal cortex 

volumes in Val homozygotes relative to Met homozygotes which is consistent with the adult 

studies. Further, Marusak et al. (2015) reported larger right hippocampal volume among 

children and adolescents aged 7–15 who were Met carriers, whereas adult studies report 

larger volumes for Val carriers. Finally, Thomason et al. (2009) found that 11–12-year-old 

children who were Met carriers showed reduced resting state connectivity between the 

hippocampus and parahippocampal gyrus with cortical regions (middle temporal lobe, 

posterior cingulate, inferior parietal lobule, precuneus), compared to Val homozygotes, 

which is consistent with the adult literature and may reflect less robust hippocampal-cortical 

projections among children who are Met carriers.

In sum, there are demonstrated relationships between the BDNF Val66Met polymorphism, 

and brain structure and function; yet, the effects of this polymorphism on the developing 
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brain are poorly characterized given the limited research on children to date. In the present 

study, we aimed to bridge this gap in the literature by performing a targeted genetic 

association study focusing on the role of the BDNF Val66Met polymorphism on the structure 

(cortical thickness and surface area, and subcortical volume) of developing brain systems in 

a sample of school-aged children. To this goal, we investigated cortical and subcortical 

structure in children who were homozygous for the Val allele (Val/Val), as compared with 

children who were Met allele carriers (Val/Met and Met/Met). We examined cortical surface 

area, cortical thickness, and subcortical volume differences related to the BDNF Val66Met 

polymorphism because these indices of brain structure are heritable, yet, reflect distinct 

components of brain maturation (Chouinard-Decorte et al., 2014, Panizzon et al., 2009, 

Winkler et al., 2010). The present study investigates whether this common genetic variant 

impacts brain structure in the human developing brain in ways that are relevant for 

children’s emerging cognitive abilities, with the goal of better understanding the complex 

pathways that link variation in genetic and brain structure during the course of development.

Materials and Methods

Experimental Subjects

Seventy-eight children between the ages of 6 and 10 (47 males, 31 females, mean age = 8.1, 

SD = 1.2) participated in this study. Participants were part of a larger longitudinal study 

investigating the genetic underpinnings of structural and functional brain changes over a 

period in development corresponding to rapid acquisition of reading and other academic 

skills (Landi et al., 2013, Palejev et al., 2011). Participants were divided into two groups 

based on their BDNF genotype: Val homozygotes (Val/Val; n=49) and Met carriers (n=29; 

this group included Val/Met [n=26] and Met/Met [n=3] individuals). The minor allele 

frequency (MAF, here for the Met allele) in the sample was 23%. As noted above, given the 

low frequency of the Met allele, we collapsed Val/Met and Met/Met individuals into one 

group: Met carriers (Petryshen et al., 2010, Tost et al., 2013, Yang et al., 2012, Ziegler et al., 
2013), which is a common practice in the studies of this polymorphism in specific and low-

MAF variants in general. But see recent work on differences between Val/Met and Met/Met 

animal models (Notaras et al., 2016).

There were no significant differences between the Val66Met genotype groups with respect to 

age, F(1,76) =.311, p = .578, or gender distribution, χ2 (1) = 2.098, p = .07. Table 1 presents 

summary of the participants’ demographics and genotypic status. Further, given reported 

associations between the Val66Met polymorphism and cognitive ability in adults, children in 

our study completed the Weschler Abbreviated Scales of Intelligence (WASI) IQ. Children 

in this study all had IQ scored in the normal range (Performance IQ: 79–146; Verbal IQ: 70–

141) and there were no significant differences in verbal or performance IQ between the two 

genotype groups (Verbal IQ: F(1,76) =0.001, p>.05; Performance IQ: F(1,76)=0.705, p>.05).

Procedure

MRI Processing and Analysis—Structural MRI data were acquired using a Siemens 

1.5T Sonata scanner with 8-channel receiver array head coil. We employed the 3D 

magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence (TR=2000ms, 
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TE=3.65ms, flip angle=8 degrees, 160 slices, 256×256 matrix), most data were acquired 

using a 1mmˆ3 resolution, however, 14% of the data were acquired using the same sequence 

under the 1.3mmˆ3 resolution, which was resampled to 1mmˆ3 for the analysis. Each 

participant’s anatomical scan and resulting segmentation were visually inspected. Image 

processing and statistical analyses were completed with the software packages Freesurfer 

version 5.3.0 (Fischl et al., 2002) and R (The R Core Team, 2013).

Using Freesurfer, each high-resolution anatomical scan was registered to the Talairach space 

and voxels were classified as gray or white matter based on intensity and neighborhood 

constraints. Images were parcellated into specific regions by white and grey matter based on 

Desikan-Killiany Atlas (Destrieux et al., 2010) to examine volumetric, surface area, and 

cortical thickness differences between groups.

Surface based analysis: Individual cortical reconstructions were smoothed using a Gaussian 

kernel of 10 mm FWHM. Differences in cortical thickness at each vertex and differences in 

surface area between Val homozygotes and Met carriers were determined using Freesurfer’s 

QDEC (Query, Design, Estimate, Contrast) and a general linear model (GLM) with a 

different offset different slope (DODS) design matrix that controlled for age, and for mean 

cortical thickness and mean surface area by hemisphere respectively. We performed a Monte 

Carlo simulation with a 2-sided vertex-wise threshold of p < .05 to correct for multiple 

comparisons (Hagler et al., 2006). Effect size maps were calculated using Cohen’s d formula 

whereby the contrast effect size (Freesurfer gamma) was divided by the square root of 

product of the contrast variance (Freesurfer gammavar) and sample N. Surface areas were 

reported as number of voxels in mm2. Cortical thickness was computed as the distance 

between the white and plial surfaces at each vertex as described in Fischl and Dale (2000).

Subcortical volume analysis: Subcortical volumes were exported using Freesurfer’s 

“asegstats2table” function for additional analyses in R. We compared subcortical values 

between Val homozygotes and Met carriers in R using a linear regression model with 

participant age and overall cortical volume as covariates. Nonparametric permutation testing 

(1000 permutations) was performed to estimate the significance of each linear model and 

adjust for multiple statistical tests. Subcortical gray matter volumes were reported as the 

number of voxels in mm3 within each segmented region.

DNA Collection and Analysis—We obtained biological samples from all participants 

using sterile Oragene™ saliva collection kits (DNA Genotek, Inc). DNA was collected, 

extracted, and stored according to the manufacturer’s protocols. We used the Applied 

Biosystems Inc. (ABI) TaqMan protocol for SNP genotyping. Specifically, the Assays-on-

Demand™ SNP Genotyping Product containing forward and reverse primers as well as the 

probe for the SNP of interest was utilized. In order to amplify the region of interest, a 

polymerase chain reaction (PCR) was carried out using MJ Research Tetrad Thermocycler 

on a 384-well plate format. TaqMan reactions included 100 ng of genomic DNA, 2.5 μl of 

ABI Taqman® Universal PCR Master Mix, 0.2 μl of ABI 40X Assays-on-Demand™ SNP 

Genotyping Assay Mix (assay ID C_11592758_10), 2.0 μl of sterile H2O and 0.5 μl of 

Bovine Serum Albumin (BSA). The genotyping call rate was 92%; quality was controlled by 

regenotyping.
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Results

Cortical Thickness

With respect to cortical thickness, children who were Val homozygotes showed greater 

thickness than Met carriers in a cortical region encompassing the left superior temporal 

gyrus (STG), anterior temporal pole (ATP) and the entorhinal cortex (EC). On the other 

hand, children who were Met carriers showed greater cortical thickness relative to Val 

homozygotes in bilateral lateral occipital/superior parietal gyri, and in a region 

encompassing the left para-, post-, and precentral gyri (see Figure 1 and Table 2).

Centroid of significant clusters are reported in MNI coordinates. Cohen’s d effect sizes are 

reported. Val and Met notation refer to Val homozygotes (Val/Val) and Met carriers (Val/

Met, Met/Met), respectively. Differences in structure between groups for surface areas are 

reported as number of voxels in mm2. Cortical thickness was computed as the distance 

between the white and plial surfaces at each vertex as described in Fischl and Dale (2000).

Cortical Surface Area

Children who were Met carriers showed greater surface area than Val homozygotes in the 

right lateral occipital and superior parietal gyri, in bilateral rostral middle frontal gyri, left 

pars opercularis, and right pars orbitalis (see Figure 2 and Table 2).

Subcortical Volume

Children who were Met carriers showed greater right hippocampal volume than Val 

homozygotes (see Table 3). Additionally, we examined whether hippocampal size was 

related to either verbal or performance IQ and found significant relation with performance 

IQ (F(1,70)=5.653, p<.05); this finding is discussed below, with particular relevance for 

future research directions.

Discussion

In this study, we asked whether common genetic variation in the BDNF gene (specifically, 

the Val66Met polymorphism) is related to brain structure in children. To this end, we 

examined cortical surface area, cortical thickness and subcortical volume in children who 

were Val homozygotes (Val/Val) and Met carriers (Val/Met and Met/Met).

The majority of the published literature on the neural phenotypes associated with the 

Val66Met BDNF polymorphism has focused on hippocampal differences. However, BDNF is 

widely expressed in the brain – correspondingly, our investigation examined both cortical 

and subcortical structures, including the hippocampus. Differences in hippocampal and 

prefrontal regions related to the BDNF Val66Met polymorphism have previously been 

reported, but these findings were largely restricted to patient and adult populations (Matsuo 

et al., 2009), despite findings from the animal and human literatures documenting significant 

developmental changes in BDNF expression (Webster et al., 2006). Here, we provide one of 

the first accounts of BDNF-related neuroanatomical differences in school-aged children. 

Critically, our findings revealed a host of neuroanatomical differences associated with the 
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BDNF Val66Met polymorphism, in particular in the prefrontal cortex, parietal lobes, lateral 

occipital area, and the hippocampus.

Cortical Thickness and Surface Area

Cortical Thickness—Previous research generally suggests that increased cortical 

thickness is associated with better cognitive function (Knierim et al., 2014). Here we find 

that children who were Val homozygotes have greater cortical thickness in the left anterior 

temporal lobe/entorhinal cortex – a large region that is involved in semantic processing and 

declarative memory (Bonner & Price, 2013), and is a primary sources of cortical projections 

to the hippocampus (Knierim et al., 2014). This finding is consistent with previous adult 

studies that report superior declarative memory performance in Val homozygotes (Egan et 
al., 2003, Hariri et al., 2003).

Interestingly, we also identified several regions where Met carriers showed greater cortical 

thickness, compared to Val homozygotes, including bilateral lateral occipital/superior 

parietal gyri, which are involved in comprehension, working memory, and reading (Binder et 
al., 2009, Chertkow et al., 1997, Ullman et al., 2014), and in a region encompassing the left 

para-, post-, and precentral gyri (somatosensory cortex and motor cortex).

Cortical Surface Area—With respect to surface area, all of our findings indicate larger 

surface area for Met carriers relative to Val homozygotes, which is somewhat unexpected 

given extant reports of poorer cognitive performance in adult Met carriers. Specifically, 

children who were Met carriers showed greater surface area relative to Val homozygotes in 

the right lateral occipital/superior parietal gyri (an overlapping region to that reported 

above), in bilateral rostral middle frontal gyri, and in a region of the inferior frontal cortex 

(encompassing IFG [left pars opercularis, and right pars orbitalis] near the dorsolateral 

prefrontal cortex: DLPFC). This region of inferior frontal cortex is involved in higher-level 

cognition including attention and executive function as well as language processing, task-

switching, attention and working memory (Balconi, 2013, Bookheimer, 2002, Caplan, 2001, 

Petrides, 2005, Price, 2012).

Our analysis revealed some regions that showed similar genotype group effects for cortical 

thickness and cortical surface area (e.g., lateral occipital/superior parietal gyri), whereas 

other regions did not pattern consistently. Such differences across brain regions are 

unsurprising given that cortical surface area and cortical thickness reflect unique structural 

properties of the brain that have been found to be independent of each other and genetically 

uncorrelated (Panizzon et al., 2009, Winkler et al., 2010). Heritability estimates for cortical 

surface area and cortical thickness are high in prefrontal regions but heritability estimates for 

other regions vary considerably between the two measures (Hulshoff Pol et al., 2006, Joshi 

et al., 2011, Kremen et al., 2010, Lenroot et al., 2009, Rimol et al., 2010). Further, differing 

maturational rates of brain structures may interact with heritability, which is likely to 

influence both the overall pattern of gene-brain associations observed here, as well as the 

consistency between measures of thickness and surface area. Developmental changes in 

genetic variance offer support for this view: genetic variance increases in the frontal and 

temporal lobes until adulthood, which suggests higher initial heritability in early-maturing 
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regions of the brain (e.g., occipital cortex) and higher heritability later in development in 

later-maturing regions (e.g., frontal cortex) such as those associated with higher cognitive 

functions (Chouinard-Decorte et al., 2014, Lenroot et al., 2009). This heritability pattern 

also matches findings from gene-expression studies showing greater variance in expression 

levels in childhood versus adulthood (Sterner et al., 2012). Thus, it is expected that changing 

genetic variability in brain structures and independent measures of those structures 

(thickness, surface area) may pattern differently over development.

With respect to extant cognitive-behavioral findings associated with the BDNF Val66Met 

polymorphism, our finding of greater cortical thickness for Val homozygotes in a region 

serving higher cognitive function was expected, given the oft observed superior performance 

of adult Val homozygotes on cognitive tasks that rely on these networks, and the fact that 

studies of cortical thickness and cognition typically find greater cortical thickness to be 

associated with better cognitive performance. On the other hand, regions where we observed 

greater cortical thickness for Met carriers are also involved in aspects of higher-level 

cognition, and these findings were unexpected based on existing adult data and relations 

between thickness and cognitive performance; however, these findings may be specific to 

children, given both different maturational levels of brain regions and levels of BDNF 

expression across these regions. For example, Shaw et al. (2008) found that thickness shows 

initial increases throughout the brain in childhood, followed by declines in adolescence until 

stabilization in early adulthood; higher-order areas (e.g. frontal) reach peak thickness last 

(late childhood). Likewise, BDNF expression levels follow different trajectories across brain 

regions. In the DLPFC, BDNF expression increases gradually until adulthood (Webster et 
al., 2002); in the temporal cortex, BDNF expression levels are highest in infancy and decline 

over childhood (Webster et al., 2006); in the occipital cortex, BDNF expression is stable 

over development (Webster et al., 2002). In the present study, Met carriers’ greater cortical 

thickness was observed in regions in parietal and occipital cortex, which show more stable 

BDNF expression over development. However, Val homozygotes’ greater cortical thickness 

was observed in the temporal cortex, which shows declining BDNF expression over 

development (Shaw et al., 2006, Sowell et al., 2004). Thus, these region-specific differences 

in cortical thickness between Val homozygotes and Met carriers may reflect a combination 

of developmental changes in BDNF expression and brain maturation across regions. 

Differences in brain development and BDNF expression highlight the need to interpret gene-

brain relationships in a developmental context, as relations between brain structure and 

genotype are dynamic and developmentally-patterned.

Hippocampal Structure

The results of our study indicated that children who were Val homozygotes had smaller right 

hippocampi than Met carriers. The adult literature on both healthy/neurotypical and atypical 

populations typically reports on the opposite pattern: greater hippocampal volumes among 

Val homozygotes than Met carriers. Further, we observed volumetric differences only in the 

right hippocampus, which may be a feature of asymmetric hippocampal structure 

development as young infants have been previously reported to have a larger right 

hippocampus, an asymmetry not found in adults (Thompson et al., 2009). Indeed, our 

finding is consistent with (Marusak et al., 2015), who found larger right (only) hippocampal 
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volume for children, who were Met carriers. Developmental changes in hippocampal volume 

may reflect general u-shaped developmental trajectories of subcortical volumes which peak 

in adolescence (Giedd et al., 1999, Giedd & Rapoport, 2010, Wierenga et al., 2014), as well 

as, variable expression of BDNF over the lifespan (Webster et al., 2006). Differences 

between our hippocampal volume findings and those of previous studies with adults may be 

linked to differences in BDNF expression and its consequent impact on brain structure over 

development. The significant relationship between performance IQ and hippocampal size 

also observed here indicates that the cognitive functions supported by this structure may be 

related to the BDNF Val66Met polymorphism and require further investigation using 

additional specific measures of children’s cognitive abilities (for example, n-back memory 

task).

In sum, the juxtaposition of our findings and those from the adult literature, in particular 

studies by Marusak et al. (2015) and Hashimoto et al. (2016), suggests that the BDNF 
Val66Met polymorphism exerts a significant influence on the cortical and subcortical 

structures of the brain, but does so differently in children and adults. These differences are 

likely driven by developmental differences in both structural brain development and BDNF 
expression, and suggest the need for more research on gene-brain relationships that take a 

developmental approach.

Conclusion

In the current study, we found that the BDNF gene Val66Met polymorphism was associated 

with hippocampal volume and cortical surface area and cortical thickness in frontal, 

temporal, and occipital cortices in school-aged children. Our findings were partially 

consistent with previous reports in adults and children but also revealed novel associations 

between this polymorphism and cortical thickness, surface area, and hippocampal volume. 

Thus, Val homozygotes showed greater cortical thickness in the anterior temporal pole/

entorhinal cortex, consistent with better declarative memory performance observed in adult 

Val homozygotes. On the other hand, Met carriers showed greater cortical thickness in 

lateral occipital and somatosensory and motor cortex. Further, Met carriers showed 

increased surface area in a number of regions that also serve higher level cognitive processes 

including bilateral prefrontal cortex (left and right IFG and DLPFC), right superior parietal 

cortex/lateral occipital gyri, as well as greater right hippocampal volume. Although these 

findings were somewhat unexpected based on the adult literature, they implicate future 

regions to be explored in a developmental context and also suggest the need to look at both 

cortical thickness and surface area, as these neural features have different ontological 

trajectories and can be associated with different aspects of cognition. The Val/Val 

homozygotes and Met carriers in this study did show similar performance and verbal IQ 

scores, which were within a normal range. Future research will be directed at understanding 

whether the structural differences in observed between these groups have direct relationship 

to specific cognitive functions beyond IQ measures, particularly memory function. Finally, it 

is important to note that our findings are limited to associations between brain structure and 

one SNP on one gene. Complex developmental changes in brain structure, and their 

relationship to emerging cognition, is governed by multiple genes, gene-gene and gene-

environment interactions, and future studies should explore the relation between brain 
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structure and multiple SNPs and SNP interactions on BDNF as well as interactions with 

other genes. Our findings add to an increasingly complex pattern of the relationship between 

BDNF and brain development.
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Figure 1. 
Group differences in cortical thickness. Greater cortical thickness for Val homozygotes 

versus Met carriers is noted in red, greater cortical thickness for Met carriers versus Val 

homozygotes is noted in blue.
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Figure 2. 
Group differences in surface area. Greater cortical surface area for Met carriers versus Val 

homozygotes is noted in blue.
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Table 1

Summary of participants

Val homozygotes Met carriers

n 49 29

Gender Ratio (M:F) 26:23 21:8

Mean Age (SD) 8.2 (1.2) 8.0 (1.1)

Verbal IQ 107.2 (14.5) 107.1 (13.7)

Performance IQ 109.2 (16.3) 106.1 (15.9)

The study received ethical approval from the Yale University Human Research Protection Program. All child subjects provided informed assent and 
all parents provided informed consent.
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Table 3

Group mean differences hippocampal volume.

Group Mean (mm3) Std. Error p value Cohen’s d

Val homozygotes 3967 50
0.018 0.504

Met carriers 4146 67

Behav Brain Res. Author manuscript; available in PMC 2018 June 15.


	Abstract
	Introduction
	Materials and Methods
	Experimental Subjects
	Procedure
	MRI Processing and Analysis
	DNA Collection and Analysis


	Results
	Cortical Thickness
	Cortical Surface Area
	Subcortical Volume

	Discussion
	Cortical Thickness and Surface Area
	Cortical Thickness
	Cortical Surface Area

	Hippocampal Structure

	Conclusion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3

