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Abstract

Objective—Oesophageal squamous cell carcinoma (ESCC) is a heterogeneous disease with 

variable outcomes that are challenging to predict. A better understanding of the biology of ESCC 

recurrence is needed to improve patient care. Our goal was to identify small non-coding RNAs 

(sncRNAs) that could predict the likelihood of recurrence after surgical resection and to uncover 

potential molecular mechanisms that dictate clinical heterogeneity.

Design—We developed a robust prediction model for recurrence based on the analysis of the 

expression profile data of sncRNAs from 108 fresh frozen ESCC specimens as a discovery set and 

assessment of the associations between sncRNAs and recurrence-free survival (RFS). We also 

evaluated the mechanistic and therapeutic implications of sncRNA obtained through integrated 

analysis from multiple data sets.

Results—We developed a risk assessment score for recurrence (RAS) with three sncRNAs 

(miR-223, miR-1269a, and nc886) whose expression was significantly associated with RFS in the 

discovery cohort (N=108). RAS was validated in an independent cohort of 512 patients. In 

multivariable analysis, RAS was an independent predictor of recurrence (hazard ratio, 2.27; 95% 

confidence interval, 1.26 to 4.09; P=0.007). This signature implies the expression of ΔNp63 and 

multiple alterations of driver genes like PIK3CA. We suggested therapeutic potentials of immune 

checkpoint inhibitors in low-risk patients, and Polo-like kinase, mTOR, and HDAC inhibitors in 

high-risk patients.
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Conclusion—We developed an easy-to-use prognostic model with three sncRNAs as robust 

prognostic markers for postoperative recurrence of ESCC. We anticipate that such a stratified and 

systematic, tumor-specific biologic approach will potentially contribute to significant 

improvement in ESCC treatment.
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INTRODUCTION

Oesophageal cancer (ESCA) is the eighth most common cancer worldwide. Of the 456,000 

new cases estimated in 2012, 398,000 were squamous cell carcinoma (ESCC), 52,000 

adenocarcinoma (EAC), and 6,000 other carcinomas. ESCA results in about 400,000 deaths, 

making the disease the sixth leading cause of cancer-related deaths.12 ESCC is particularly 

prevalent in Asia and Africa where it accounts of more than 90% of all ESCA cases.3 

Although combination therapy with surgery, chemotherapy, and radiotherapy has improved 

survival of ESCC, the five-year overall survival (OS) rate is at best 20%.1

Reliable and reproducible prognostic markers identifying patients at high risk of ESCC 

recurrence after surgery have not been established. In recent decades, non-coding RNAs 

(ncRNAs), especially microRNAs (miRNAs), have been found to play important roles in 

carcinogenesis and tumor progression. For ESCC, several miRNAs4–7 and long ncRNAs8 

have been investigated as biomarkers or therapeutic targets. The translation of these findings 

into clinical approaches should be supported by robust validation in large independent 

patient cohorts and a better understanding of the underlying biology associated with 

ncRNAs.

In this study, we applied systems biology approaches to evaluate the expression patterns of 

small ncRNAs (sncRNAs) and develop and validate a robust prognostic prediction model for 

ESCC. We propose molecular mechanisms and potential therapeutics dictating clinical 

outcomes that were well reflected in the prediction model.

METHODS

PATIENTS AND STUDY PROCEDURES

Eligibility and exclusion criteria—We enrolled patients who: (1) had histologically 

confirmed ESCC confined to the thorax, (2) had undergone only complete esophagectomy 

with adequate lymph node dissection, (3) had available paired tumor and adjacent normal 

tissue in the tumor bank (discovery set) or formalin-fixed, paraffin-embedded (FFPE) tissue 

block (validation set), and (4) were followed-up completely.

The patient enrollment process and study scheme are illustrated in figure 1 and 

supplementary figure S1. The clinical and pathologic characteristics of the discovery and 

validation sets appear in supplementary table S1. To generate the sncRNA expression profile 

(supplementary table S2), we obtained 108 pairs of fresh frozen ESCC and adjacent normal 

tissue samples from surgically resected specimens collected between 2002 and 2009 at the 
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National Cancer Center Korea (discovery set). We included samples from patients with 

thoracic ESCC who underwent complete oesophagectomy with adequate lymph node 

dissection and did not receive any perioperative chemotherapy or radiotherapy. For external 

validation, we used 214 FFPE ESCC specimens collected at Samsung Medical Center and 

Chonnam National University between 2001 and 2011. For external validation in the 

Western cohorts, we utilized The Cancer Genome Atlas (TCGA) Database. All human 

samples were collected with informed patient consent, and the study protocol was approved 

by each institution’s ethics committee.

Determination of sample size in the discovery and validation sets—The 

discovery study was designed to detect sufficient difference in the five-year recurrence-free 

survival (RFS) rate between the low- and high-risk groups, as defined by the GeneChip 

miRNA 2.0 array (Affymetrix®, Santa Clara, CA, USA). The sample size and power 

calculations for the discovery study were determined in two ways considering the difference 

in survival and fold change. First, we determined that a total of 52 events were needed to 

predict survival using log2 sncRNA expression with a standard deviation of 1.67 according 

to our own experimental data and to detect a hazard ratio of 1.5 with 80% power. Since the 

internally validated five-year RFS rate was about 50%, a total of 104 samples were needed 

to observe 52 events. With this sample size, the study had 90% power to detect a five-year 

RFS rate difference of 30% from the 30% reference rate of the high-risk group defined by 

sncRNA expression at a two-sided type I error rate of 0.05. Second, the study was powered 

to detect significantly over- or under-expressed sncRNA in cancer cells compared with 

normal cells. To detect two-fold expression change with 90% power at a multiple testing 

corrected type I error rate of 0.05/900, a total of 79 samples were needed. Accounting for 

about 10% data loss to experimental failure and drop-outs, a total sample size of over 90 was 

needed. According to these two calculations, we sought to study a sample size of over 100 

for the discovery study.

The validation study was designed to detect sufficient difference in the five-year RFS rate 

between the low- and high-risk groups, as defined by the three candidates of sncRNAs found 

in the discovery set. We assumed that the proportion of the low-risk group would be about 

30%. Moreover, the internally validated five-year RFS rate of the high-risk group was about 

30%, whereas the RFS rate of the low-risk group was over 70%. We therefore powered the 

study to detect a 30% five-year RFS rate difference from the 30% reference rate of the high-

risk group, a conservative effect of size derived from the previous finding. To have 90% 

power at a two-sided 5% type I error rate, the study required 190 patients (57 in the low-risk 

group and 133 in the high-risk group) to observe 104 events. Accounting for data loss (about 

10%) to experimental failure and dropouts, we set the sample size of the study to exceed 

210.

Small non-coding RNA microarray hybridization and analysis—For sncRNA 

expression array analysis, we used a GeneChip miRNA 2.0 array. We labeled 1 μg of total 

RNA with the FlashTag Biotin HSR RNA Labeling Kit (Genisphere LLC, Hatfield, PA, 

USA) following the manufacturer’s recommendations. Then, labeled sncRNA was 

hybridized to the array and incubated as described in the manufacturer’s protocol 
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(Affymetrix®). Unsupervised hierarchical clustering of sncRNA expression data from ESCC 

and adjacent normal tissues in the discovery set revealed marked distinctions between tumor 

tissues and normal tissues, suggesting that the expression of sncRNA well reflects the 

molecular characteristics of ESCC tumors (supplementary figure S2).

Selection of reference gene for normalization of quantitative real time-
polymerase chain reaction—We adopted a normalization strategy with multiple 

reference genes, which was proposed in a previous study,9 to overcome the limitations of 

using a single reference gene for the normalization of miRNA expression from quantitative 

reverse transcription polymerase chain reaction (qRT-PCR) experiments.9–13 We first 

assessed the gene expression stability of putative normalizer genes with geNorm9 software 

in microarray data. Then, we selected two miRNAs (miR-132 and miR-652) with high 

expression stability (supplementary figure S3) and calculated the mean value of the two 

miRNAs as the normalizer of miRNAs.

To determine the reference gene for the normalization of nc886 expression, we searched 

previous studies of ncRNAs and selected three major reference genes: β-actin (ACTB), 

cyclophilin A (PPIA),14 and small nuclear RNA 6 (RNU6). We computed the expression 

stability with geNorm5 and selected endogenous gene, PPIA, because it showed a relatively 

stable expression in ESCC.

Integrative analysis from the TCGA dataset—To determine how the sncRNA 

signature is conserved in esophageal cancer from the Western cohort and the lung squamous 

cell carcinoma set, we obtained miRNA sequencing data of esophageal cancer (ESCA) and 

lung squamous cell carcinoma (LUSC) from The Cancer Genome Atlas (TCGA) portal 

(https://tcga-data.nci.nih.gov/tcga/). Normalized reads per kilobase per million values were 

transformed logarithmically and centralized by subtracting the mean of each channel, and 

further normalized to equalize the variance. To analyze TCGA and discovery set data 

together, we normalized the expression data from the discovery cohort, as previously 

described herein, and divided the data by the standard deviation of the channel to determine 

which cancer type was more similar to ESCC in terms of sncRNA expression.

We leveraged the ESCA (n=151) and LUSC data (n=147) including mRNA and miRNA 

sequencing, somatic mutation, DNA copy number alteration and clinical data from the 

TCGA portal and the cBioPortal for Cancer Genomics (http://www.cbioportal.org/public-

portal/index.do).15 To visualize genomic alterations in multiple genes, we used OncoPrint 

generated by cBioPortal for Cancer Genomics.15 Then, we analyzed the frequency of 

genetic alteration in major genes. The experimental and analytical methods for generating 

sncRNA and mRNA expression profile data and the integrated analyses are in the 

Supplementary Appendix.

STATISTICAL ANALYSIS

Student t tests, chi-square tests, and Fisher exact tests were used to compare clinico-

pathological data. Survival curves were generated with the Kaplan-Meier’s method and 

intergroup comparisons were performed with the log-rank test. Our primary endpoint was 

recurrence-free survival (RFS). Univariable Cox regression analysis was used to determine 
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whether sncRNAs were associated with RFS. We performed multivariable Cox proportional 

hazards regression analysis to evaluate independent prognostic factors associated with 

survival, and we used gene signature, tumor-node-metastasis (TNM) stage, smoking, age, 

and sex as variables. We used data from the discovery cohort to develop a formula for a risk 

assessment score based on a linear combination of the expression level of sncRNAs weighed 

by regression coefficients derived from multivariable Cox regression analyses. We analyzed 

correlations between microarray data and quantitative real time-polymerase chain reaction 

(qRT-PCR) data with the Spearman correlation coefficient. To select genes with statistically 

significant alterations from integrated analysis of data from TCGA, we used chi-square or 

Fisher exact test. Statistical significance was accepted as P<0.05, and all tests were two-

tailed. All statistical analyses were performed with SPSS 20.0 (SPSS, Inc., Chicago, Illinois) 

and R language and software environment (http://www.r-project.org).

RESULTS

Development of risk assessment score for ESCC recurrence with sncRNAs

Multi-step analyses were carried out to identify robust, prognostic sncRNAs from ESCC 

tumors. First, among 901 sncRNA with differential expression between tumors and adjacent 

normal tissues (supplementary figure S2), we selected sncRNAs whose expression showed 

at least a twofold difference from the median value of at least 30 samples, with a standard 

deviation > 1. This selection yielded 162 sncRNAs. Second, 8 of these 162 sncRNAs were 

significantly associated (P<0.05) with RFS in univariable Cox regression analysis 

(supplementary table S3). Finally, backward stepwise selection in multivariable Cox 

regression analysis revealed that only three sncRNAs (miR-223, miR-1269a, and 

miR-886-3p) were independent predictors of RFS (P<0.05). High expression of miR-886-3p 

and miR-223 was significantly associated with longer RFS (P=0.03 and P=0.004, 

respectively, by the log-rank test), but high expression of miR-1269a was significantly 

associated with shorter RFS (P=0.045) (supplementary figure S4).

We measured the size of miR-886 via Northern blot analysis of ESCC cell lines and 

confirmed that miR-886 is not a miRNA but rather a novel sncRNA 101 nucleotides long 

(supplementary figure S5) (ncRNA886 [hereafter, nc886]).1617 We re-measured the 

expression of three sncRNAs (2 miRNAs and 1 sncRNAs) from the same tissues with qRT-

PCR. The correlation between the two measurements was significantly high (r>0.6; 

P<0.001) (supplementary figure S6, and supplementary table S4).

We next developed a recurrence risk assessment model with Cox regression coefficients and 

the expression level of each sncRNA measured with qRT-PCR: Raw Risk Assessment Score 

for Recurrence (RASraw)=(−0.084xexpression value of nc886)+(−0.227xexpression value 

of miR-223)+(0.137xexpression value of miR-1269a). To generate a dynamic range score 

from 0 to 100, we reformulated the RASraw: RAS=80xeRASraw–24.152. For results less than 

0, the score was considered 0, and for results greater than 100, it was considered 100. Cutoff 

points were specified in advance to reflect prognostic differences observed in the training 

cohort: low (RAS≤30), intermediate (30<RAS≤65), and high risk (RAS>65) (figure 2A and 

supplementary figure S7). 18 In the discovery cohort, the five-year RFS rates were 60.8%, 
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44.8%, and 30.3% for the low-, intermediate-, and high-risk groups, respectively (P=0.031, 

log-rank test, figure 2B).

Validation of RAS in independent cohorts

We sought to validate RAS in an independent, blinded cohort of ESCC patients with RNAs 

from FFPE tissues and qRT-PCR methods. When patients in the validation cohort (N=214) 

were stratified according to their RAS with the same cutoff values used in the discovery set, 

the five-year RFS rate for the low-, intermediate-, and high-risk patient groups were 89.1%, 

75.5%, and 48.7%, respectively (P<0.001, log-rank test) (figure 2C). The difference in the 

survival between discovery and validation cohorts is attributed to accessibility of FFPE 

specimens in the validation cohort. The validation cohort had earlier cancer staging and 

lower tumor location than those in the discovery cohort. In each stage, especially stages II 

and III, the high-risk group had worse prognosis in the validation set (figure 2D). 

Interestingly, the RFS rate of patients with high risk in stage II was similar to that of patients 

with low/intermediate-risk in stage III, suggesting RAS is an independent predictor of RFS 

over stages. In addition, to determine whether this signature is conserved in Western cohorts 

and in other surgically resected squamous cell carcinomas, we analyzed genomic data of 

ESCA (N=151) and lung squamous cell carcinoma (LUSC; N=147) from TCGA, because 

LUSC shares highly similar genetic alterations with ESCC.19–21 Patients with high-RAS 

levels consistently showed the worst prognosis (figure 2E, figure 2F, and supplementary 

figure S8). This result shows the robustness of RAS based on three sncRNAs, regardless of 

the technological platform (supplementary figure S9) or the source of RNAs.

In the validation ESCC cohort, continuous RAS was significantly associated with risk of 

recurrence (hazard ratio [HR] for a 25-unit increase in score, 1.78; 95% confidence interval, 

1.35 to 2.34; P=3.7×10−5; figure 3). In univariable analysis, TNM stage, age, smoking 

status, and RAS were significant predictors of RFS and OS (supplementary table S5). 

Multivariable regression analysis revealed that RAS (HR=2.27, P=0.007) and TNM stage 

(HR=4.13, P<0.001) were independent prognostic factors of RFS and OS in ESCC patients 

(supplementary table S6).

Integrated analysis based on sncRNA signature

To gain insight into the biology of sncRNAs associated with prognosis, we performed 

mRNA microarray assays in the discovery set and analyzed mRNA sequencing data of 

ESCA and LUSC from the TCGA project. Common 613 genes were significantly correlated 

with RAS in all three cohorts (supplementary table S7 and supplementary figure S10). 

Enrichment analysis of these genes through gene ontology revealed that genes related to cell 

mitosis, chromatin remodeling, histone modification, and DNA repair were significantly 

activated in the high-RAS group, but genes related to cell-to-cell cytokine signaling were 

dominant in the low-RAS group. Among them, TP63, a marker of squamous histology and a 

member of the TP53 family, was overexpressed in the high-RAS group. In addition, the 

expression of genes related to histone modification, such as histone acetyltransferase (HAT), 

EP300, and histone deacetylase 2 (HDAC2), and the expression of chromatin remodeling 

genes, such as CTCF, were simultaneously increased. In contrast, the low-RAS group 
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showed up-regulation of immunoregulatory genes with cell-to-cell cytokine signaling 

functions, such as CSF3, IL8, and IL4R (figure 4A).

To elucidate the biological linkage between sncRNA signature and TP63, we analyzed the 

expression patterns of TP63 isoforms in ESCA and LUSC (n=134) from the TCGA project. 

We investigated six isoforms of TP63 that have different biological activities. TAp63α, β, 

and γ with a transcription activation (TA) domain have tumor suppressive activity, but 

ΔNp63 α, β, and γ without a TA domain have oncogenic activity, as they serve as 

competitive inhibitors of TAp63α, β, and γ.22 As a result, the expression of oncogenic 

isoforms, ΔNp63β and γ were significantly higher in the high-RAS group of both ESCA and 

LUSC cohorts (figure 4B–C), suggesting that the tumor suppressive activity of TP63 is 

blocked by its oncogenic isoforms in this group. Interestingly, higher expression of ΔNp63β 
and γ correlated with amplification of TP63, further suggesting that the activation of 

alternative promoters and alternative splicing of TP63 is a major mechanism in the 

regulation of TP63 in squamous cell carcinoma. Additionally, TP53 mutation and PIK3CA 

amplification are significantly higher in the high-RAS group (figure 4C). Taken together, 

these data strongly support mechanistic roles of the sncRNA signature as a prognostic 

marker, as this signature is associated with the activation of ΔNp63 and multiple alterations 

of driving genes, such as TP53, TP63, and PIK3CA.

Therapeutic implication for risk-stratified ESCC

To detect suitable targeted drugs for low- and high-risk patients, we utilized the Genomics of 

Drug Sensitivity in Cancer Database (www.cancerRxgene.org), the largest public resource 

for information on the sensitivity of almost 700 cancer cells to 140 drugs.2324 55 cell lines of 

ESCA, lung squamous cell, and head and neck squamous cell carcinoma were enrolled and 

classified into three risk groups by using a prediction model with proof of its reproducibility 

(supplementary figure S11 and supplementary figure S12).

The drug sensitivity test revealed that cell lines with a high-risk signature were sensitive to 

Polo-like kinase (PLK) inhibitor - which blocks cell mitosis and regulates chromosomal 

remodeling - and mTOR inhibitor - which inhibits down stream of PIK3CA directly. 

Likewise, all cell lines were sensitive to HDAC inhibitor - which disturbs the reset of 

chromatin by removing acetyl groups (figure 5A and supplementary figure S13). These 

results were consistent with our previous integrated genome analysis. Furthermore, the 

apoptosis assay of risk-stratified ESCC cell lines for three HDAC inhibitors (Panobisnotat, 

Dacinostat (LAQ824), and Vorinostat), two PLK inhibitors (BI2536 and BI6727 

[Volasertib]), and two mTOR inhibitors (BEZ235 [Dactolisib] and Tacrolimus [FK506]) 

demonstrated that TE-8 high-risk cell line had dominant signals of the apoptosis compared 

with Het-1a and TE-1 cell lines with lower risk (figure 5B).

Given the upregulation of immunoregulatory genes in the low-RAS group, we hypothesized 

that such gene expression profile in the ESCC cell would stimulate an immunogenic tumor 

microenvironment.25 To investigate immunogenicity26 on ESCC cells and dendritic cells, we 

used a model system in which either the low-risk ESCC cell line TE-1 or the high-risk cell 

line TE-8 was cultured in the presence of immature dendritic cells (imoDCs) or matured 

monocyte-derived dendritic cells (moDCs) and peripheral blood mononuclear cells 
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(PBMCs) obtained from healthy human donors. Flow cytometry showed that CD40 and 

CD86, markers of mature dendritic cells, were activated by pooled IgG-coated TE-1 or TE-8 

tumor cells with poly(I:C) for 24 hours. Interestingly, imoDCs were also stimulated by TE-1 

cells fixed with 2% paraformaldehyde only, not by fixed TE-8 cells, implying that TE-1 cells 

are more immunogenic to dendritic cells (figure 6A). We then performed single cell analysis 

with time-of-flight mass cytometry (supplementary table S8) and applied viSNE27 and 

SPADE2829 software algorithms to evaluate the immune landscape. Immunophenotyping 

with 17 metal-conjugated antibodies (figure 6B) revealed that the expression of programmed 

cell death 1 ligand 1 (PD-L1) (whose expression on tumor or antigen-presenting cells 

suppresses antitumor CD8+ T cells by binding its receptor, programmed cell death 1 (PD-1), 

found on activated T cells30) was up-regulated in only TE-1 cancer cells, but not altered in 

TE-8 cells after incubation with MoDCs and PBMCs. These results suggest that low-risk 

ESCC cells have immunogenicity that leads to the expression of PD-L1 and coordinates a 

tumor-favorable milieu (figure 6C). Furthermore, PD-L1 was markedly expressed in 

dendritic cells in a tumor microenvironment with TE-1 but not with TE-8 (figure 6B and 

supplementary figure S14). Also, the expression of immune inhibitory PD-1, PD-L1, and 

CTLA-4 from discovery and validation cohorts was significantly up-regulated in the low-

risk group compared with other risk groups (figure 6D).

DISCUSSION

We developed and validated a RAS model based on the expression of three sncRNAs 

(miR-223, miR-1269a, and nc886). This model can easily and reproducibly quantify the 

likelihood of recurrence in patients with ESCC who have received surgical resection as 

primary treatment. This sncRNA signature reflects multiple alterations of driving genes such 

as TP53, ΔNp63, and PIK3CA. Furthermore, we provided evidence based on cancer 

genomics for clinical trials for immune checkpoint inhibitors in low-risk ESCC patients, and 

targeted agents, such PLK inhibitors, mTOR inhibitors, and HDAC inhibitors, in high-risk 

ESCC patients. These findings show the potential of sncRNA signatures as robust prognostic 

and predictive markers for precision medicine based on risk assessment of recurrence.

Previously reported risk prediction models in ESCA have had limited clinical use because, 

first, signatures derived from heterogeneous patient populations have not been thoroughly 

validated in independent cohorts.678 Second, many models have been based solely on 

correlative associations between dysregulated markers and prognostic endpoints without 

identifying the underlying molecular mechanisms and the biological and clinical 

implications of dysregulation.4531–33 Lastly, most models were generated with data obtained 

from fresh frozen tissues, which are not readily available in general clinical practice.5–83133 

Our RAS model can overcome these limitations by developing an intuitive risk prediction 

scoring system with FFPE tissue data. This system has been validated in independent 

Eastern and Western ESCA cohorts and LUSC cohort comprising 512 patients, and uncovers 

genomic implications that may dictate clinical outcomes associated with the identified 

markers.

Among three sncRNAs, the role of miR-223 has been extensively analyzed since PARP1 

was identified as a direct target gene of miR-223 in ESCA. Increased sensitivity to 
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chemotherapy was observed in cells with increased miR-223 and reduced PARP1 

expression.34 As for mir-1269a, its high expression was associated with increased risk of 

relapse and metastasis in colorectal cancer.35 Recently, we reported that nc886 knockdown 

induced oncogenes MYC and FOS.17,36 Combined alterations in these sncRNAs can reflect 

significant modifications in the tumor microenvironment. Most interestingly, our RAS 

signature was highly associated with the transcription of TP63, which is critical in the 

development of normal oesophageal and tracheobronchial epithelia and controls the 

commitment of early stem cells into basal cell progeny and the maintenance of basal cells. 

Networking between TP63 and miRNAs is also known in multiple cancers.3738 Taken 

together, our findings suggest that combined alterations in these sncRNAs may control the 

differentiation of ΔNp63 and regulate driver genes.

Recently, among patients with previously treated advanced LUSC, survival and response rate 

were significantly better with nivolumab, a PD-1 inhibitor, than with docetaxel, but the rate 

of objective response to nivolumab was only 20%.39 In our study, the low-risk group 

presented a tumor microenvironment in which immune cells coexisted with tumor cells 

expressing PD-L1, which suppressed cytotoxic T cell functions. Thus, we can speculate that 

there will be a subgroup that responds well to immune checkpoint inhibitors, and the low 

RAS group, having overexpression of many immune regulators, can be a candidate for 

immunotherapy. In contrast, the alteration of the tumor microenvironment did not affect 

tumor cells in the high-risk group. This finding highlights that sncRNA signatures have 

predictive potential for immune checkpoint inhibitors.

Several comprehensive analyses of squamous cell carcinoma have revealed significant 

alterations in histone-modifying and chromatin-remodeling genes.40–46 Histone deacetylases 

(HDACs) are recruited to active genes to reset chromatin modification states and maintain an 

adequate level of histone acetylation, after the activation of RNA polymerase II and HATs. 

Indeed, this strategy of balancing between euchromatin and heterochromatin in active genes 

could in part account for the mechanism of drug resistance by preventing DNA damage.47 

Moreover, HDAC-inhibitor treatment resulted in rapid upregulation of histone acetylation of 

the PD-L1 gene leading to enhanced and durable gene expression in melanoma.48 In 

addition, in vivo experiments revealed that the combination therapy of HDAC inhibitor with 

PD-1 blockade resulted in slower tumor progression and increased survival, when compared 

with that of control and single agent experiments. Our results suggest that the combination 

of immune checkpoint blockade or other targeted drugs with HDAC inhibitors can boost the 

therapeutic effect on ESCC with less concentrated doses.

In conclusion, our risk prediction model with three sncRNAs from easily accessible tissues 

can be potentially useful for identifying patients at high risk of recurrence after surgical 

resection. This study represents a comprehensive characterization of genomic alterations in 

squamous cell carcinoma, and provides insights into the genetic mechanism of ESCC 

oncogenesis and supporting evidence for therapeutics. Our findings can facilitate the rational 

design of future clinical studies that may ultimately lead to the development of effective 

biomarker-based therapeutic approaches for ESCC.
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Summary box

What is already known about this subject?

• Oesophageal cancer results in about 400,000 deaths, making the disease the 

sixth leading cause of cancer-related deaths. Oesophageal squamous cell 

carcinoma (ESCC) is particularly prevalent in Asia and Africa where it 

accounts of more than 90% of all oesophageal cancer cases.

• Although combination therapy with surgery, chemotherapy, and radiotherapy 

has improved survival of ESCC, the five-year overall survival (OS) rate is at 

best 20%.

• Reliable and reproducible prognostic markers identifying patients at high risk 

of ESCC recurrence after surgery have not been established.

What are the new findings?

• For easy translation of our findings to the clinic, we developed a recurrence 

risk assessment score (RAS) using three small non-coding RNAs (sncRNAs) 

from fresh frozen tissue or formalin-fixed, paraffin-embedded ESCC 

specimens as robust prognostic markers for predicting postoperative 

recurrence of oesophageal squamous cell carcinoma (ESCC) and validated 

this score in independent Eastern, Western, and lung squamous cell carcinoma 

(LUSC) cohorts comprising over 500 patients.

• The expression of oncogenic isoforms ΔNp63 was significantly higher in the 

high-RAS group, and, interestingly, this higher expression correlated with 

amplification of TP63, further suggesting that the activation of alternative 

promoters and alternative splicing of TP63 are major mechanisms for the 

regulation of TP63 in squamous carcinoma.

• For the low-risk group, we tested the immunogenicity of the tumor with 

Time-Of-Flight Mass Cytometry (CyTOF) under the hypothesis that the low-

risk group has immunogenic tumors because a plethora of immune genes are 

up-regulated. The up-regulation of PD-L1 in low-risk ESCC and no alteration 

of PD-L1 in high-risk ESCC, in response to loaded dendritic cells, suggests 

the therapeutic potential of immune checkpoint inhibitors.

• We found that the high-risk group was more sensitive to Polo-like kinase, 

mTOR, and HDAC inhibitors by utilizing the Genomics of Drug Sensitivity in 

Cancer Database, the largest public resource of information on the sensitivity 

of almost 700 cancer cells to 140 drugs.

How might it impact on clinical practice in the foreseeable future?

• This study provides suggestive evidence, based on cancer genomics, for 

clinical trials for immune checkpoint inhibitors in low-risk ESCC patients and 

for targeted agents, such PLK inhibitors, mTOR inhibitors, and HDAC 

inhibitors, in high-risk ESCC patients. Our analyses of risk assessment score 
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for recurrence demonstrate the potential of sncRNA signatures as robust 

prognostic and predictive markers for precision medicine.
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Figure 1. Patient cohort enrollment
Summary of the clinical study design. Left panel: the discovery cohort enrollment 

comprised 108 ESCC samples obtained from fresh frozen tissues in NCCK. Right panel: 
independent validation processes for other 214 ESCCs, 151 TCGA ESCAs, and 147 TCGA 

LUSCs.

ESCA denotes oesophageal cancer, ESCC oesophageal squamous cell carcinoma, LUSC 

lung squamous cell carcinoma, NCCK National Cancer Center Korea, sncRNAs small non-

coding RNAs, RAS Risk Assessment Score for Recurrence, SMC Samsung Medical Center, 

CNU Chonnam National University, FFPE formalin-fixed, paraffin-embedded, and TCGA 

The Cancer Genome Atlas.
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Figure 2. Development and validation of the prediction model with recurrence-associated small 
non-coding RNAs
(A) Distribution of recurrence assessment score. We constructed a risk score formula with 

Cox regression coefficients of three sncRNAs. Patients were divided into three categories 

according to the modified risk prediction model on a scale from 0 to 100 (Panel A, upper). 

Each column represents an individual patient. The color in cells reflects relative expression 

levels. Kaplan-Meier curves in discovery (B) and validation sets (C,D) show discrete 

survival curves according to risk categories. (E,F) recurrence-free survival according to risk 

categories in TCGA ESCA, and TCGA LUSC, respectively.

ESCA denotes oesophageal cancer, LUSC lung squamous cell carcinoma, RAS Risk 

Assessment Score for Recurrence, RFS recurrence-free survival, and TCGA The Cancer 

Genome Atlas.
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Figure 3. Relationship between the continuous risk assessment score for recurrence (RAS) and 
five-year recurrence risk with 95% confidence intervals
Red dotted lines represent 95% confidence intervals. Rug plots represent the distribution of 

RAS in the validation cohort.
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Figure 4. Patterns of genetic alteration in oesophageal cancer and lung squamous cell carcinoma 
according to RAS
(A) The expression of common 613 genes is correlated with the risk assessment score for 

recurrence (RAS). (B) Expression of the isoforms of TP63 (TAp63 [tumor suppressive] and 

ΔNp63 [oncogenic]), TP53 mutation, and copy number alteration of TP63 and PIK3CA in 

TCGA ESCA. (C) Expression of the isoforms of TP63, TP53 mutation, and copy number 

alteration of TP63 and PIK3CA in TCGA LUSC.

EAC denotes oesophageal adenocarcinoma, ESCA oesophageal carcinoma, ESCC 

oesophageal squamous cell carcinoma, LUSC lung squamous cell carcinoma, and RAS Risk 

Assessment Score for Recurrence.
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Figure 5. Therapeutic implications for high-risk oesophageal cancer
(A) A prediction model derived from a RAS-correlated 613 mRNAs signature revealed that 

TE-8 ESCC cell lines are a high-risk group and TE-1 cell line is a lower-risk group. Drug 

rearrangement in high-risk group with the Genomics of Drug Sensitivity in Cancer 

Database. The IC50 values of each drug within the therapeutic range of concentration are 

compared between groups. (B) Apoptosis assay of risk-stratified esophageal cell lines in the 

candidate targeted drugs. The IC50 of each drug for high-risk cell line was administrated, 

and then all cells were captured 24-hours later.

HDAC denotes histone deacetylase inhibitor, IC50 half-maximal inhibitory concentration, 

mTOR mammalian target of rapamycin inhibitor, and PLK Polo-like kinase inhibitor.
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Figure 6. Therapeutic implications for low-risk oesophageal cancer
(A) CD40 and CD86 expression on immature moDCs (imoDCs) from TE-1 and TE-8 ESCC 

cells. The imoDCs incubated with pooled IgG-coated tumor cells and poly(I:C) are used as 

positive control of the stimulation in dendritic cell. (B) Immunophenotyping of TE-1 ESCC 

cell lines after administration of mature moDCs and PBMCs. (C) CyTOF single cell 

analysis of TE-1 and TE-8 cells before and after incubation with mature moDCs and 

PBMCs. The alteration of PD-L1 expression on the surface of tumor cells (CD45-) 

responsive to immune stimulation was analyzed with viSNE and SPADE software. (*) = new 

expression of PD-L1 on tumor cells. (D) Expression of PD-1, PD-L1, and CTLA-4 in 
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discovery and validation cohorts. Immune inhibitor signal represents any alteration of PD-1, 

PD-L1, and CTLA-4.

CTLA-4 denotes Cytotoxic T-Lymphocyte-Associated Protein 4, CyTOF Time-Of-Flight 

Mass Cytometry, imoDCs immature monocyte-derived dendritic cells, moDCs monocyte-

derived dendritic cells, PBMCs peripheral blood mononuclear cells, PD-1 programmed cell 

death 1, PD-L1 Programmed Cell Death 1 Ligand 1 (=CD274), SPADE cyto spanning tree 

progression of density normalized events, and viSNE visualization of t-distributed stochastic 

neighboring embedding algorithm.

Jang et al. Page 22

Gut. Author manuscript; available in PMC 2017 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	PATIENTS AND STUDY PROCEDURES
	Eligibility and exclusion criteria
	Determination of sample size in the discovery and validation sets
	Small non-coding RNA microarray hybridization and analysis
	Selection of reference gene for normalization of quantitative real time-polymerase chain reaction
	Integrative analysis from the TCGA dataset

	STATISTICAL ANALYSIS

	RESULTS
	Development of risk assessment score for ESCC recurrence with sncRNAs
	Validation of RAS in independent cohorts
	Integrated analysis based on sncRNA signature
	Therapeutic implication for risk-stratified ESCC

	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

