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Abstract

Brain Computer Interfaces (BCI) seek to infer some task symbol, a task relevant instruction, from 

brain symbols, classifiable physiological states. For example, in a motor imagery robot control 

task a user would indicate their choice from a dictionary of task symbols (rotate arm left, grasp, 

etc.) by selecting from a smaller dictionary of brain symbols (imagined left or right hand 

movements). We examine how a BCI infers a task symbol using selections of brain symbols. We 

offer a recursive Bayesian decision framework which incorporates context prior distributions (e.g. 

language model priors in spelling applications), accounts for varying brain symbol accuracy and is 

robust to single brain symbol query errors. This framework is paired with Maximum Mutual 

Information (MMI) coding which maximizes a generalization of ITR. Both are applicable to any 

discrete task and brain phenomena (e.g. P300, SSVEP, MI). To demonstrate the efficacy of our 

approach we perform SSVEP “Shuffle” Speller experiments and compare our recursive coding 

scheme with traditional decision tree methods including Huffman coding. MMI coding leverages 

the asymmetry of the classifier’s mistakes across a particular user’s SSVEP responses; in doing so 

it offers a 33% increase in letter accuracy though it is 13% slower in our experiment.

Index Terms

BCI; SSVEP Shuffle Speller; Decision Tree; Huffman Coding; Mutual Information; Discrete 
Memoryless Channel

I. Introduction

We suggest that there is much to be gained by considering a BCI in two distinct parts. In 

one, a BCI must correctly classify a brain symbol1. In another, a BCI must map an estimated 

brain symbol(s) to some task symbol (move wheelchair forward, type “A”, rotate robot arm 

clockwise, etc). In this work, we focus exclusively on the latter, the scheme which maps a 

A complete package containing code and data for this paper is available at: https://repository.library.northeastern.edu/collections/
neu:rx9149848
1We use the term brain symbol to refer to a classifiable physiological state. For example, right hand imagined movement, P300 
present, or the response to a flickering 10Hz LED are brain symbols of motor imagery, P300, and SSVEP respectively.
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sequence of brain symbols to a task symbol. We refer to this second function as the “coding 

scheme” of a BCI and begin with a brief review of existing solutions.

A. SSVEP

SSVEP, with its large dictionary of brain symbols, is well suited for a simple “one-to-one” 

coding scheme which assigns each task symbol its own unique brain symbol. For instance, 

QWERTY-style BCI keyboards exist where each character is assigned a unique SSVEP 

frequency [1]. Other keyboards vary the stimulation elements by using mixed frequency and 

phase flashing [2], arbitrary binary patterns [3], or quantized sinusoids [4]. Cao et al. offer a 

variation on the theme, a system which reserves two brain symbols to flip forward and 

backward through different one-to-one task symbol menus [5]. Many of these one-to-one 

systems show impressive performance by leveraging the large number of SSVEP brain 

symbols available. However, there is no guarantee that such a large quantity of brain 

symbols are available in all locked-in users and increasing the number of brain symbols may 

come with a penalty in classification accuracy [6].

Cursor control is an alternative coding scheme which assigns brain symbols to cursor 

directions [7], [8], [9]. In such a system, the user directs a cursor over a large, arbitrary menu 

of task symbols. Cursor systems often require fewer brain symbols than one-to-one coding 

schemes.

Decision trees, as exemplified in [10] or [11], also offer the ability to choose among a large 

dictionary of task symbols with few brain symbols. In this coding scheme, task symbols are 

partitioned among the brain symbols. With each round, the task symbols associated with the 

estimated brain symbol are re-partitioned while others are discarded. The process continues 

until a unique task symbol remains. Note that absent any backspace capability, any single 

brain symbol query error yields a task symbol decision error.

B. Motor Imagery

Hex-o-spell and its variants can be considered a combination cursor/decision tree coding 

scheme [12], [13]. Task symbols are visually partitioned into the six slices of a hexagon. The 

system then queries the user as to whether his or her selection is in the currently highlighted 

slice. The user responds using two state motor imagery and the process continues as a 

decision tree by zooming in on slices the user selects until a unique task symbol remains.

C. P300

P300 coding schemes, because of the necessarily temporal nature of P300 stimuli, must be 

more creative. Rapid serial visual presentation (RSVP) spellers show sequences of single 

task symbols and ask the user to generate the P300 signal when their target task symbol is 

present [14], [15]. Alternatively, P300 matrix spellers flash sets of characters and infer the 

user’s target character by identifying the intersection of all sets where the P300 is present 

[16]. Waal et al. apply this paradigm to tactile BCIs by mapping task symbol sets to fingers 

via tactile stimulators [17]. Carefully choosing the sets of flashing characters reduces the 

number of queries per decision [18]. Zhou et al. search for the optimal flashing pattern by 

maximizing an estimation of the system’s practical ITR [19]. Matrix spellers show promise 
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when combined with generative brain symbol models, as in [20], which could potentially be 

used to construct coding schemes which optimize system performance according to a given 

criterion.

D. Combined Brain Symbols

Combining BCI modalities opens up new coding opportunities. Xu et al. develop a matrix 

speller that uses both P300 and SSVEP to find the intended character; brain symbols 

alternate between flickering and timed events in order to leverage both phenomena [21], 

[22]. Similarly, Yin et al. offer task symbol arrangements which leverage both P300 and 

SSVEP stimulation to uniquely identify the target task symbol [23], [24]. Li et al. combine 

modalities to add an idle state to a wheelchair control BCI [25].

E. Task Symbol Context

Task symbol context prior distributions can limit the load placed on user querying via BCI, 

as language models do for spelling applications [26]. Disregarding context can dramatically 

reduce efficiency. The speller design shown in Fig. 4 of [10] assigns about 70% of the task 

symbol probability to a single brain symbol by assigning the “first” few task symbols to a 

the first brain symbol. Such an initial query, on average, offers relatively weak evidence in 

making inferences about the target task symbols (see Sec IV-C for discussion). On the other 

hand, Volosyak et al use context to great effect in reorganizing the layout of characters in a 

cursor-based SSVEP speller BCI [27]. Hohne et al introduce a T9 predictive text system to 

an auditory BCI speller [28]. Word prediction is found to reduce the estimated typing time 

by half in a motor imagery speller [29]. Word level inference via graphical models is used to 

increases communication rates in [30]. Perhaps most famously, Wills and MacKay build 

Dasher [31], a two brain symbol speller in the spirit of Shayevitz’s Posterior Matching 

paradigm [32]. Dasher selections are made by moving a cursor up or down across a line 

whose length is divided according to the probability of the task symbol. There are many 

systems which use Huffman coding, which offers the fewest queries, on average, to uniquely 

resolve a task symbol [33], [34].

F. BCI Channel Modelling

With a channel model a BCI designer can explicitly optimize characteristics of interest. 

Omar et al apply a binary symmetric model with noiseless feedback to a two-state motor 

imagery BCI [35]. By doing so they import well known feedback coding schemes and all the 

rigor and optimal performance which comes with them [32]. The binary symmetric channel 

is a step in the right direction for motor imagery though it leaves much to be desired in the 

context of P300 or SSVEP as there are no garauntees that brain symbols are confused 

symmetrically2.

2Since our paper was submitted for review, similar to our approach, another paper which describes an adaptive query strategy for a 
discrete memoryless channel has been published [36]. However, there is an important fundamental difference between the approaches 
of these two papers: unlike the above mentioned published work, our optimization searches over all possible code vectors (1) without 
requiring our task or brain symbols to be in any particular order. Furthermore, this work compares multiple different encodings of task 
symbols as brain symbols.
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G. Our Contribution

In this work, we build a decision framework that takes both task symbol context and the 

varying accuracy of inferring a user’s brain symbols into account. Given discrete task 

symbols, we model the BCI as a memoryless channel. By memoryless we mean that the 

previous query’s brain symbol inference has no impact on the current query’s brain symbol 

inference. (See Appendix A for how P300 can be considered memoryless). With this 

assumption, we offer a Bayesian update rule that integrates query evidence into a task 

decision framework (Sec III). We examine various coding schemes on the framework, 

including decision trees and Huffman codes similar to those described above, as well as our 

own recursive codes (Sec IV) that are robust to single query errors. Finally, in Sec VI, we 

present results from 10 users who used each coding scheme in an SSVEP speller paradigm 

(see Fig. 1 for overview).

II. Terminology and Notation

We use the term brain symbol to refer to a classifiable physiological state. For example, right 

hand imagined movement, P300 present, or the response to a flickering 10Hz LED are brain 

symbols of motor imagery, P300, and SSVEP respectively. We denote the brain symbol as 

random variable X which takes a value . A task symbol is an 

application specific decision. For example, a letter is a spelling task symbol while “drive 

left” is a wheelchair control task symbol. We denote the task symbol as random variable M 

which takes a value  with known context prior PM(m).

We reserve the term query to refer to a classification on X, the set of brain symbols. We 

reserve the term decision to refer to a classification on M, the set of task symbols. Finally, 

we use the term sequence to refer to the set of queries required to make a single decision.

BCI channel has a slightly unconventional meaning here, referring to a mapping from 

ground truth brain symbols to their estimates. A BCI channel can be considered to be the 

concatenation of a user’s physiological response function with a classifier and all of its 

parameters. By fixing a particular user-classifier pair, we can quantify the BCI channel’s 

performance as the distribution . Intuitively, this distribution describes how often the 

classifier confuses one brain signal with another. This conditional distribution is referred to 

as the confusion matrix.

III. Decision Framework

We seek a decision framework that:

1. Performs inference over a task symbol set which is much larger than the brain 

symbol set (NM > NX)

2. Leverages context prior distributions over a task symbol set (PM)
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3.
Leverages the varying accuracy of brain symbols (i.e. the confusion matrix ) 

for inference on task symbols

4. Offers a principled mechanism to decide on a task symbol which is robust to 

single classification errors

We propose the framework depicted in Fig. 2. It assumes knowledge of the confusion 

matrix, which can be estimated by normalizing a count of how often brain symbols are 

confused for one another in a given training set.

In usage, an encoding vector cj assigns each task symbol a brain symbol:

(1)

where j is the query index and each  is the brain symbol associated with task mi during 

query j. Note that cj will often map multiple task symbols to a single brain symbol. The user 

attempts to produce the brain symbol associated with their target task symbol. Evidence, ej, 

is collected and classified by the BCI to produce , a distribution3 over the estimated 

brain symbol. A Bayesian update which incorporates this latest query evidence yields 

 If confidence threshold α is exceeded a decision is made, otherwise another query is 

performed by incrementing j. Evidence is aggregated such that each query’s posterior is the 

next query’s prior. The recursive Bayesian update is given as:

(2)

where E1:j−1 is all previous evidence,  is the classifier’s estimate of the intended brain 

symbol in the most recent query and

(3)

which expresses the system’s belief in each task symbol before the current query’s evidence 

is incorporated. A derivation is given in Appendix B.

3We assume that the classification scheme outputs a distribution , rather than a point estimate . In the event that the classifier 
only provides a point estimate, it can be assumed that the decision is made with certainty. The Bayesian update (2), by itself, 
appropriately introduces uncertainty into the decision.
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While this framework meets all four requirements listed above, its speed and accuracy are 

highly dependent on the particular coding scheme used to generate c from the latest 

distribution over M. We describe different coding schemes in the following section.

IV. Coding Methods

The first two coding schemes, Sequential and Huffman, are decision tree style methods 

which successively “zoom-in” on a particular task symbol after many queries. Decision tree 

methods do not use the recursive nature of the decision framework given in Fig. 2 and are 

included for comparison. Instead, they make a decision when only one viable task symbol 

remains. Later on, we propose Uniform or Maximum Mutual Info (MMI) coding, which 

query until a sufficiently high confidence is reached.

A. Sequential Coding

Sequential codes perform as many queries as would be needed to uniquely resolve all task 

symbols in an error free BCI system. Task symbols are assigned to codewords (sequences of 

brain symbols) arbitrarily, often associating the task symbols to codewords by their index. 

Specifically, a sequential codebook is built by counting in base NX, the most significant digit 

of each number is used for the first query (see Fig. 3).

There is much room for improvement from sequential decision trees. Notice that in the 

example of Fig. 3 m6 requires only two queries to make a decision while the rest require 

three. To capitalize on this benefit, we should re-index task symbols to ensure that m6 is the 

most probable based on contextual information. Sequential coding offers no guarantee that 

we are assigning faster codewords, those which require fewer quieries, to more frequent task 

symbols.

B. Huffman Coding

Huffman codes minimize how many queries it takes, on average, to resolve a particular task 

symbol:

(4)

where we use L(m) to denote the number of queries it takes to resolve a particular task 

message (“L” for codeword length). For example, in Fig. 3 L(m1) = 3 while L(m6) = 2. We 

demonstrate Huffman coding by way of example, for a rigorous treatment see [37].

Let us examine the task of driving a wheelchair with NM = 9 different task symbols using 

NX = 3 brain symbols (motor imagery left, right, and foot). Fig. 4 shows a (re-indexed) 

sequential code for this task. We might expect the user to drive forward (m8) more often than 

reverse-right (m0). Huffman codes leverage such context prior information to minimize the 

average number of queries per decision. In this toy example the Huffman code given by Fig. 

5 minimizes the expected number of queries per decision to 1.53, a significant speedup from 

the 2 given by sequential coding.
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Any decision tree method, including both Sequential and Huffman coding, suffer from the 

fact that an error in a single query forces a wrong decision and removes the user’s target task 

symbol for the remainder of the sequence. For example, in the code given by Fig. 5, if the 

target task symbol is m7 but the user incorrectly chooses x0 in the first query there is no way 

to “go back up” the tree; they must continue to traverse downwards towards a set of non-

target task symbols. We call these queries where the target is not present “impossible’.

C. Uniform Coding

We remind the reader that the following two proposed coding schemes are recurisve in that 

they perform queries until a sufficiently high confidence is reached to make a decision. 

Because of this there are no “impossible” queries as no task symbol is ever precluded until a 

decision is made. Additionally, “codewords” of recursive methods are all one brain symbol 

long and need not be unique.

To motivate Uniform Coding, let us first imagine designing the worst possible code, 

assigning all task symbols to a single brain symbol. Under any classification evidence 

supplied, the Bayesian update, (2) and (3), will not shift the posterior away from the prior 

distribution. Fortunately, the opposite of this worst-case scenario code offers strong 

performance. Uniform coding seeks to spread task symbols among brain symbols such that 

the brain symbol probability distribution is as uniform as possible.

Extending the motor imagery wheelchair example used in Sec IV-B to Uniform Codes yields 

Fig. 6. Note that m8 is so privileged by its probability mass that it earns its own unique brain 

symbol. on the other hand, m0,…,m5 are so rare that Uniform Coding is willing to accept 

that if the set is selected, , we still cannot distinguish from among them.

More formally, we choose cuni as

(5)

where

(6)

On first sight, one might suspect that uniform codes struggle to decide in favor of 

uncommon task symbols. However, as a sequence progresses a target task symbol increases 

its probability through query evidence updating, eventually earning its own unique brain 

symbol. Further, because every task symbol is shown in every query, Uniform codes, like 

MMI codes below, never frustrate the user with “impossible” queries. Despite these 

advantages, Uniform codes still leave room for improvement.

Consider the confusion matrix for a hypothetical motor imagery BCI in Table I. Uniform 

codes entrust each brain symbol with as equal probability mass as possible even though a 

Higger et al. Page 7

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“foot” classification is weaker evidence. In line with this example, real user-classifier pairs 

offer no guarantee of identical accuracies and uniform errors across brain symbols. The final 

coding scheme, MMI, explicitly leverages the relative accuracies of brain symbols in 

encoding task symbols.

D. Maximum Mutual Information (MMI) Coding

The ideal query would shift our current knowledge of the task symbol, , from its 

previous form  as much as possible. In this sense, the ideal query ought to 

maximize our expectation of this shift, as quantified by the Kullback Leibler divergance. 

Again, to simplify notation, we drop the query indexing variable j:

(7)

where I is the mutual information function, H is the entropy function and the last equality 

comes from the fact that H(M) does not depend on c. From the final equality we see our 

objective has another intuitive motivation; MMI codes minimize the uncertainty in task 

symbol M after being given brain symbol estimate . Further:

(8)

where we have applied (3) in the last equality.

Alternatively, this objective can be motivated as a particular extension of the Information 

Transfer Rate (ITR). ITR measures the rate of information common to both the target brain 

symbol X and estimated brain symbol  (see Sec V). This common information represents 

how confidently the BCI estimates the user’s target brain symbol X. Of course, in and of 

itself, determining a user’s intended brain symbol is only of academic interest; we ultimately 

seek to determine which task symbol M the user wishes to select. With this in mind, it is 

natural to think that the mutual information between task symbol M and estimated brain 

symbol  is a closely related objective.
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Using the most accurate brain symbols offers strong evidence in making a task symbol 

decision. Of course, it is not wise to assign all task symbols to the most accurate brain 

symbol; a system would struggle to distinguish among task symbols. MMI codes balance 

these effects. Empirically, we observe that the final query of most MMI sequences uniquely 

assigns the most probable task symbol with the strongest brain symbol; such a configuration 

offers the strongest evidence for (or against) the selection of this task symbol.

If a particular confusion matrix is symmetric, it can be seen (See Theorem 7.2.1 [37]) that 

the distribution PX which maximizes the mutual information is uniform. In particular, 

symmetric confusion matrices imply equivalence between Uniform and MMI codes. As we 

will see in Sec VI, MMI codes gain a performance advantage over Uniform codes only for 

confusion matrices which are far from symmetric.

V. Performance Metrics

We evaluate the performance of our classifiers using ITR:

(9)

where  is the mutual information between the target and estimate of the brain 

symbol and T is the stimulation time. This version of ITR is consistent with the common 

definition:

(10)

where p is the accuracy of all brain symbols though it doesn’t assume that all brain symbols 

are equally accurate or that PX is uniform. Throughout this work we use “ITR” and “ITR* ” 

to mean the quantities given by (9) and (10) respectively.

The difference can be significant, as it is in Table III. ITR* is often lower than ITR because 

mistakes under a symmetric channel are uniformly distributed among all brain symbols, 

offering the weakest evidence (see noisy typewriter example in [37]). For further details on 

both definitions of ITR see [38], [39], [40], [41], [42].

VI. Experiment

We aim to validate the efficacy of our recursive Bayesian decision framework (Fig. 2) using 

MMI coding against other methods. To do so, we perform online experiments using different 

coding schemes in an SSVEP speller paradigm.
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A. SSVEP Shuffle Speller

SSVEP Shuffle Speller associates task and brain symbols by placing them near each other 

(see Fig. 1). Users are instructed to gaze at the LED nearest their target letter. We have 

named it the “Shuffle” speller because after each query the letters are shuffled around the 

monitor, moving to the box associated with their next brain symbol4. This animation was 

created in an attempt to make it as easy as possible for a user to track their letter. We are 

wary of the potential difficulties the shuffling may have in locked in users. As a preliminary 

exploration, users were given a user experience survey (Appendix ??) upon completion of 

the experiment. Despite these positive results, we still have many reservations about the eye 

gaze requirements of the shuffle speller. We use it here only as a test bed for our different 

coding schemes.

We have chosen SSVEP as it offers a large dictionary of classifiable brain symbols to 

demonstrate coding schemes, but we remind the reader that the particular choice of BCI 

modality (SSVEP, MI, or P300), classifier, and even user performance are encapsulated in 

the confusion matrix . One could imagine building a Motor Imagery “Shuffle” Speller 

that associates each set of characters in Fig. 1 with an imagined body movement. See 

Appendix A for a P300 example.

B. Setup

Ten neurotypical people volunteered for experiments. The volunteers included 6 men and 4 

women ages 24–34, all with normal or corrected to normal vision. Each user gave written 

informed consent according to Northeastern’s IRB protocol and was paid for their 

participation.

LEDs stimulated at 6 equally spaced frequencies in the alpha range:

(11)

and were classified using the CCA-KDE method described in Appendix C. All queries were 

5 seconds long and the training session consisted of 20 ground truth queries for each target 

frequency in (11).

We compute the Uniform code by noting that its objective is identical to the “Partition 

Problem”, whose solution we approximate using a well known greedy algorithm [43]. 

Specifically, we assign the task symbols in order of decreasing probability, mapping each to 

the brain symbol which currently has the lowest probability (6).

As we do not have a closed form solution of (7) for MMI codes, computation was done via a 

gradient ascent hill climbing algorithm (see [44]). In particular, we start with a random c and 

iterate over the task symbols. For each m, we choose for it the brain symbol x which 

optimizes (7) and stop our iteration when a local maximum is reached. We do this for 20 

4An altenative to animated shuffling could be to assign color codes to brain symbols and in a static matrix of letters, change the 
coloring of letters without moving them. The tuning of visual aspects to suit human factors is outside the scope of this work
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random c initializations and choose the maximum of these local optima as our MMI code 

approximation.

The experiment consists of 5 copy phrase tasks. In each task, the user was asked to spell a 

sequence of characters from a particular word. The copy phrase tasks were selected for a 

varying range of difficulty (see Table II). Character probabilities were determined using an 

n-gram language model trained on a one million sentence New York Times corpus (see [45] 

Section 3 for full details). Character probabilities were computed under the assumption that 

all previously typed characters were correct, and were normalized to allow for a backspace 

probability fixed at 5%.

A probability threshold of α = .85 was used to make decisions in the recursive codes; no 

threshold was used in decision tree codes. Decision tree codes made decisions at the end of 

each tree branch as the maximum a posteriori task symbol.

C. Simulation

Remember that MMI coding is only advantageous over Uniform when the confusion matrix 

is far from symmetric (see last paragraph of Sec IV-D). To explicitly examine this case we 

define confusion matrix:

(12)

Which is equivalent to a user who has an accuracy of {.9, .8, .7, .6, .5, .4} across different 

stimuli (11); mistakes are uniformly distributed among remaining stimuli. Note that no real 

SSVEP data was used in this simulation. Instead, we generate a Monte Carlo “SSVEP 

classification”  by assigning a 90% belief to X = xi where xi is drawn according to 

 and xj is fixed by a particular code vector (1). Remaining probability mass is 

distributed uniformly in  We perform 100 Monte Carlo decision sequences for each 

coding scheme and target character pair where target character prior probabilities are given 

in Table II. Results are shown in the last row of Table III.

VII. Results

As can be seen in Fig. 7, decision tree style codes (Sequential and Huffman) were much less 

accurate and slightly faster than recursive codes (Uniform and MMI). This makes intuitive 

sense as no threshold need be met in a decision tree style decision. As expected, Huffman 

codes were slightly faster than sequential codes (see Sec IV-B) as they leveraged the context 

prior to minimize the number of queries per decision. Remember that we call a query 

“impossible” if the user’s target character is not present for selection. Across all users, 14% 

of Sequential Code queries were impossible while only 4% of Huffman queries were 

impossible. Uniform and MMI coding do not produce impossible queries.
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Among the recursive codes, MMI codes offer an increase in speed at a small cost in 

accuracy over Uniform codes. Remember that MMI codes consider the accuracy of brain 

symbol classication in assigning task symbols to brain symbols. The difference between 

these codes is slight due to the fact that the confusion matrices of many users were close to 

symmetric (see Table III for accuracies of each brain symbol). Remember that for symmetric 

confusion matrices a uniform distribution over PX, (6), optimizes both the Uniform and 

MMI objectives. This explanation is further supported by the fact that the simulation (See 

Sec VI-C), built to have a non symmetric confusion matrix, had a significant boost in speed 

using MMI codes against Uniform codes (see Table III). Because MMI coding avoids less 

accurate brain symbols, it earns more confident classifier outputs (Fig. 8). Because MMI 

coding is a generalization of Uniform coding, we suggest using MMI coding and tuning the 

decision threshold α to achieve a given accuracy.

Empirically, recursive codes spent fewer queries on decisions which initially had a higher 

probability from the language model (see Fig. 9). Intuitively, characters which had a higher 

initial probability required fewer queries to raise their probability beyond the threshold.

In summary, decision tree methods were quick but relatively inaccurate. Both uniform and 

MMI codes have high accuracy as they perform queries until a sufficiently high confidence 

is reached; though MMI also leverages the varying accuracy of the different brain symbols 

to decide more quickly. This is most notable in the case of the simulated user whose 

accuracy was constructed to vary the most across brain symbols.

VIII. Conclusion

We have presented a Bayesian decision framework which:

1. Performs inference over a task symbol set which is much larger than the brain 

symbol set (NM > NX)

2. Leverages a context prior distribution over a task symbol set (PM)

3.
Leverages the varying accuracy of brain symbols (i.e. the confusion matrix ) 

for inference on task symbols

4. Offers a principled mechanism to decide on a task symbol which is robust to 

single query errors

This framework employs a coding scheme which maps task symbols to brain symbols by 

leveraging the latest distribution over task symbols. We offer recursive codes which perform 

queries until a decision confidence is reached; this property makes them robust to single 

query error. MMI codes, in particular, offer a strong trade-off point between decision 

accuracy and queries per decision (Fig. 7). MMI codes achieve their competitive advantage 

by leveraging both the context prior of task symbols as well as the confusion between brain 

symbols inherent to a particular user-classifier pair.

We would like to highlight that (2) and (3) are applicable to all circumstances which have 

some training set for a user-classifier pair. Incorporating these Bayesian updates will 
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appropriately consider brain symbol confusion in the user or classifier. This can offer some 

measure confidence in decisions even if the classifier itself offers only point estimates.
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APPENDIX A Appendix: P300 as a Memoryless Channel

Readers who are familiar with the P300 ought to object strongly to modeling P300 

generation as a memoryless channel; by its very nature the P300 is dependent on the task 

symbols shown beforehand! We suggest a slight abstraction to remedy this. Let us redefine a 

P300 query as the selection of one time bin from a set of time bins where a user may have 

generated a unique P300 signal. In this sense, our redefined “brain symbol” corresponds to 

the time bin where the P300 is present. In this way, the confusion matrix expresses 

confusion of P300 targets in time. In particular, it may be the case that errors are more 

prevalent in time bins immediately before or after the target time bin. Additionally, it may 

also be the case that the P300 is easier or more difficult at the start or end of a query. MMI 

codes would explicitly mitigate these effects.

Appendix B Appendix: recursive Bayesian Update

We remind the reader that we use PM to express the naive prior distribution over task 

symbols (ie language model). The remaining expressions in this section are valid when 

conditioned on E1:j−1 though we drop this conditioning to simplify notation. Dropping the 

conditioning in this manner is equivalent to computing before the evidence of the first query 

has been received.

(13)

where the second equality comes from the fact that given X,  is independent of M and the 

third equality uses a Kronecker delta to express the fact that PX|M(x|m) = 1 if cm = x and is 0 

otherwise. Further, we compute:

(14)

where the last equality is a result of (13). Finally:
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(15)

which applies Bayes rule in the first equality and (13) and (14) in the second.

Appendix C Appendix: SSVEP Classifier (CCA-KDE)

We use CCA-KDE ([41]) because it produces a principled estimate of the posterior 

distribution of our target brain symbol which is helpful, though not necessary, in the 

framework of Fig. 2.

A. Canonical Correlation Analysis (CCA)

Lin et al. [46] introduce CCA, a dimensionality reduction method which captures the 

correlation between multiple electrodes of EEG signal and multiple harmonics of each target 

frequency. In particular, for each fi ∈ F a template is built:

(16)

for t = where H is the number of harmonics considered, fs is the sampling 

frequency and T is the query length in seconds. CCA maximizes Pearson’s correlation 

coefficient between a linear combination of electrodes of EEG data as well as an additional 

linear combination over the template signals in Yi (see [47]).

We collect a feature vector of maximal Pearson’s coefficients to each template as:

(17)

where ρi is the maximum correlation coefficient to the ith template. In most CCA methods, 

the estimate is chosen as the maximal correlation coefficient. CCA is still an exciting and 

active area of development within the BCI community [48], [49], [50], [51], [52].

B. Kernel Density Estimation (KDE)

CCA-KDE explicitly estimates the distribution of the CCA coefficients eCCA on its true 

stimulation frequency x. In particular, it uses training data of N stimulation queries 

and approximates Pe|X as a mixture:
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(18)

where Nj is the number of samples from class x and K(·|,Σ) is a Gaussian kernel. The 

covariance matrix is chosen according to Silverman’s rule [53]. Please see [54] for a 

thorough treatment of KDE.
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Fig. 1. 
The SSVEP Shuffle Speller associates a letter (task symbol) with a particular SSVEP 

response (brain symbol) by placing it near the LED array which stimulates that response. 

The square and less-than characters represent space and backspace respectively. See Section 

VI-A or https://www.youtube.com/watch?v=JNFYSeIIOrw for further detail.
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Fig. 2. 
BCI Decision Framework.
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Fig. 3. 
Sequential coding tree (NX = 2,NM = 7) and corresponding codebook. ci,j denotes the brain 

symbols assigned to task symbol mi in query j of a decision sequence.
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Fig. 4. 
Sequential coding of a hypothetical motor imagery wheelchair BCI example. Each decision 

requires two queries.
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Fig. 5. 
Huffman coding tree (NX = 3, NM = 9) and corresponding codebook for the example of Fig. 

4. This code offers an average of 1.53 queries per decision.
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Fig. 6. 
Uniform Coding “tree” (NX = 3, NM = 9). Both MMI and Uniform Coding build a “tree” 

before each query according to the latest .
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Fig. 7. 
Letter decision accuracy and speed (queries per letter decision). Each circle is a user-coding 

scheme pair averaged across all queries of all decisions of all copy phrase tasks.
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Fig. 8. 
A histogram of Target Brain Symbol Confidence (i.e. classifier output) across coding 

schemes. Max Mutual Info coding keeps the user-classifier pair in its comfort zone by 

avoiding less accurate brain symbols. As a result, it produces more confident brain symbol 

classifications.
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Fig. 9. 
Speed (queries per letter decision) vs initial probability of target character. Each circle 

represents a decision sequence of User 6. Note that recursive codes efficiently spend more 

queries on more challenging target characters (those with lower probability).
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TABLE I

An example confusion matrix which contains accurate (Left and Right) and inaccurate (Foot) brain symbols. 

The classifier is often inaccurate when the user is trying to generate the Foot response. Uniform codes do not 

leverage the relative accuracy of inferring brain symbols while MMI Codes do.

Target X

Left Right Foot

Estimat 
Left .95 .025 .33

Right .025 .95 .33

Foot .025 .025 .33
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