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Abstract

There is growing interest in understanding the dynamical properties of functional interactions 

between distributed brain regions. However, robust estimation of temporal dynamics from 

functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in 

extant multivariate methods for modeling time-varying functional interactions between multiple 

brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the 

framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor 

analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor 

analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian 

framework. In BSFA, brain dynamic functional networks are represented by latent states which are 

learnt from the data. Crucially, BSFA is a generative model which estimates the temporal 

evolution of brain states and transition probabilities between states as a function of time. An 

attractive feature of BSFA is the automatic determination of the number of latent states via 

Bayesian model selection arising from penalization of excessively complex models. Key features 

of BSFA are validated using extensive simulations on carefully designed synthetic data. We further 

validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human 

Connectome Project (HCP). Our results show that modeling temporal dependencies in the 

generative model of BSFA results in improved fingerprinting of individual participants. Finally, we 

apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, 

and default mode networks—three core neurocognitive systems with central role in cognitive and 

affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high 

level of dynamic interactions between these networks and determine that the salience network has 
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the highest temporal flexibility among the three networks. Our proposed methods provide a novel 

and powerful generative model for investigating dynamic brain connectivity.

Keywords

Dynamic functional networks; resting-state fMRI; factor analysis; hidden Markov Model; 
Bayesian inference

1. Introduction

Precise characterization of dynamic connectivity is critical for understanding the intrinsic 

functional organization of the human brain (Biswal et al., 1995; Buckner et al., 2013; 

Menon, 2015a; Power et al., 2013; Cole et al., 2014; Rosenberg et al., 2016; Greicius et al., 

2003; Zalesky et al., 2014). Recent studies suggest that intrinsic functional connectivity is 

non-stationary (Allen et al., 2014; Chang and Glover, 2010; Deco et al., 2008; Rabinovich et 

al., 2012; Breakspear, 2004). However, most studies characterizing time-varying intrinsic 

functional connectivity still rely primarily on a sliding window approach (Allen et al., 2014), 

in which a fixed length window is advanced across time providing a measure of temporal 

change in covariance between brain regions computed within each sliding window. The 

resulting matrices across time are then clustered together to infer the underlying brain states. 

However, a limitation of this approach is that the size of the sliding window and the number 

of clusters, which greatly influence the estimation of underlying dynamic brain networks 

(Leonardi and Van De Ville, 2015; Lindquist et al., 2014), are often set arbitrarily. It is now 

increasingly clear that new computational techniques are needed to overcome limitations of 

extant methods for quantifying time-varying changes in connectivity (Baker et al., 2014; 

Calhoun et al., 2014; Karahanoǧlu and Van De Ville, 2015; Menon, 2015a; Vidaurre et al., 

2016).

Recent attempts at addressing limitations of the sliding-window based approaches include 

temporal independent component analysis (Smith et al., 2012) and graph theory based 

methods including dynamic condition correlation (Lindquist et al., 2014), and dynamic 

connectivity regression (Cribben et al., 2012). Evolutionary models are another family of 

techniques for modeling time-series in which observed data at a given time depend on the 

previous data via a linear or nonlinear transformation function, (Harrison et al., 2003; 

Rogers et al., 2010; Smith et al., 2010; Samdin et al., 2016; Fiecas and Ombao, 2016; Ting 

et al., 2015).

An alternate approach we develop here is based on the general framework of probabilistic 

generative models which are appealing as they can provide a more mechanistic 

understanding of the latent processes that generate observed brain dynamics. Crucially, 

probabilistic generative models provide more precise quantitative information about key 

properties of dynamic functional brain organization, including temporal evolution of brain 

states, occupancy rate and lifetime of individual states, and transition probabilities between 

states.
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Most generative models for assessing dynamic brain connectivity are based on hidden 

Markov models (HMMs). HMMs are statistical Morkov models which have been 

extensively used in various applications for modeling time-series (Rabiner, 1989; Murphy, 

2012; Bishop, 2006). HMMs have been previously largely applied to EEG and MEG data, 

e.g., (Baker et al., 2014). However, their applications to dynamic functional connectivity 

analysis of the fMRI data have been relatively limited (Højen-Sørensen and Hansen, 2000; 

Eavani et al., 2013; Suk et al., 2015; Robinson et al., 2015) given their potentials. Crucially, 

HMMs assume that observations are coupled through a set of temporally-dependent latent-

state (hidden-state) variables, where the dependence is expressed as a first-order Markov 

chain. Hence, unlike the sliding window approach which requires explicit specification of 

the window length, they provide a systematic and principled way of capturing long-term 

correlations using Markovian assumptions (Bishop, 2006; Murphy, 2012).

Here we develop a novel generative model for characterizing time-varying functional 

connectivity between distributed brain regions, using a Bayesian switching factor analysis 

(BSFA) framework that combines hidden Markov models (HMM) (Mackay, 1997) with 

static factor analysis (Ghahramani and Beal, 2000) in a unified Bayesian framework. BSFA 

belongs to the class of matrix factorization models. More specifically, as discussed by Singh 

and Gordon (2008), if we assume no constraints on the factors, matrix factorization can be 

seen as factor analysis where an increase in the influence of one latent variable (factor) does 

not require a decrease in the influence of other latent variables. In BSFA, each instance of 

the regional time-series is generated from latent states that are linked through a first-order 

Markov chain. The number of latent states is learnt from the data using Bayesian model 

selection which automatically penalizes excessively complex models (Mackay, 1997). 

Crucially, observations in each state are generated from a linear mapping of sources in a 

latent subspace which may have significantly lower dimensionality than the observed data. 

The dimensionality of the latent subspace is allowed to vary across states and its optimal 

value is determined within the Bayesian framework using automatic relevance determination 

(Neal, 1996; MacKay, 1996). Furthermore, the noise variance is allowed to vary across 

states and brain regions which, in principle, shall give the model potential to control for 

measurement noise. On synthetic data, we demonstrate that this feature of the model is 

useful for reducing the effect of additive noise on dynamic brain connectivity.

Another important feature of our BSFA is that it is formulated in a fully Bayesian 

framework. This approach overcomes limitations of extant HMM methods that are based on 

a maximum likelihood (ML) estimation. Specifically, ML-based HMM methods require a 

priori specification of the number of hidden states, which are not known a priori in fMRI 

data. Furthermore, specifying a larger or smaller number of states may overfit or underfit the 

data respectively. In contrast to the commonly used ML-based approaches for inferring 

model parameters, we use a variational Bayes inference framework (Jordan et al., 1999; 

Jaakkola, 2000) which provides several advantages, including (1) a regularization framework 

that reduces overfitting by penalizing complex models; (2) an explicit way of computing a 

predictive likelihood which can be used in prediction analysis, e.g., fingerprint and signature 

identifications, (Finn et al., 2015); (3) a theoretical framework for incorporating prior beliefs 

in the learning through assignment of prior distributions over model parameters, if such prior 

information is available; (4) a lower bound on the marginal-likelihood that can be used as 
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model evidence. We show that our BSFA accurately estimates the key parameters of time-

varying functional connectivity—the number of states, covariance associated with each state, 

occurrence and lifetime of individual states, and transition probability between states.

In the following, we first describe our BSFA and discuss a variational approach for 

estimating time-varying functional connectivity in resting-state fMRI (rs-fMRI) data. We 

then evaluate the performance of BSFA using synthetic data by varying model complexity 

(number of latent states), data dimensionality (number of brain regions) and measurement 

noise. We further evaluate BSFA using real rs-fMRI data by performing a predictive 

“fingerprint” analysis using multisession rs-fMRI data from individual participants. The 

fingerprint analysis examines whether the latent dynamics uncovered by BSFA is 

“informative” such that dynamics learnt in one session can uniquely predict data in the other 

session from the same subject.

Finally, we apply our framework to uncover intrinsic dynamic functional interactions within 

a triple-network model encompassing the salience network (SN), the central-executive 

network (CEN), and the default mode network (DMN)—three core neurocognitive systems 

that play a central role in cognitive and affective information processing (Menon, 2011). We 

used two independent cohorts of HCP data because our goal was to demonstrate the 

robustness and replicability of our key neuroscientific findings across the cohorts. 

Specifically, using two independent cohorts of HCP data, we showed that the salience 

network has the highest level of temporal flexibility among the three.

2. Methods

2.1. Bayesian switching factor analysis

2.1.1. Generative model—Let  denote a D-dimensional vector of voxel time-series 

measured from subject s at time t, that is , where D is the number of 

ROIs, and ⊤ denotes the transpose operator. We collect a sequence of T measurements of 

for S subjects in Y̲ = {Ys | s = 1, …, S}, where . We then assume each 

observation,  is generated from a linear transformation of a number of latent source 

factors, , of lower dimensionality in a latent subspace followed by noise 

in the measurement, et, and decoded by a fixed amount of bias in the data space, μ, (Bishop, 

2006, Chapter 12) (Everitt, 1984; Ghahramani and Hinton, 1997) as:

(1)

where U is the linear transformation matrix known as the factor loading matrix, and P is the 

dimensionality of the latent space where in general P < D. With the normality assumption, it 

is assumed that the latent source factors follow independent zero-mean unit-variance 

Gaussian distributions, and that the noise has a zero-mean Gaussian distribution with 

diagonal covariance matrix, i.e., et ~  (0, Ψ). Thus the marginal distribution of  follows 
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a Gaussian distribution as: , (Ghahramani and Hinton, 

1997). Generally the underlying distribution of the voxel time-series measurements is multi-

modal as observations are lied on a globally non-linear manifold. However, a single factor 

analyzer is a linear model which can only model a portion of this nonlinear manifold where 

it is locally linear. One simple solution to tackle nonlinearity is to use a parametric mixture 

model of factor analyzers which models the data point  as a weighted average of factor 

analyzer densities, (Ghahramani and Hinton, 1997; Ghahramani and Beal, 2000). However, 

mixture models come with a strong assumption on the observed data that measurements are 

independent and identically distributed (i.i.d.), (Bishop, 2006, Chapter 9). Recent findings 

however suggest that the brain networks are not static and functional interactions between 

distributed brain regions are temporally dependent (Allen et al., 2014; Chang and Glover, 

2010). Thus the i.i.d. assumption may not hold in practice.

In the following, we derive a dynamic variant of the static factor analysis model 

(Ghahramani and Beal, 2000) suitable for dynamic functional connectivity analysis of fMRI 

time-series. To weaken the i.i.d. assumption and allow a mechanism for capturing time-

dependent functional-connectivity variations in fMRI data, we assume that observations are 

independent but they are generated from a set of latent state variables (commonly known as 

hidden state variables) which are connected to each other through a first-order Markov 

chain, as shown in Figure 1. This family of models is known as the hidden Markov models 

(HMM). The latent state variable at time t is shown by  which is a 1-of-K discrete vector 

with elements of , i.e., . Given the latent state variables , the 

marginal density of  is expressed as:

(2)

For all 1 ≤ i, j ≤ K, the elements of an HMM can be formally defined as:

•
initial state probability distribution 

•
state transition probability distribution 

• emission probability distribution , where  is an 

important quantity for which we shall derive an explicit expression given by 

Equation (11).

Let  denote a set of latent states for all subjects. Given 

A and π, the probability mass for the state variables can be expressed as
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(3)

from which the joint distribution over observations and latent state variables is given by

(4)

where , θ = {π, A} and ϕ = {μ, U, Ψ} to keep the notation 

uncluttered. Note that θ and ϕ are learnt in a group level using sufficient statistics 

accumulated from all subjects. Latent state variables  and latent source factors are inferred 

for each subject using group-learnt model parameters θ and ϕ. We refer to the model in 

Equation (4) as the switching factor analysis.

2.1.2. Bayesian inference—In a fully Bayesian view to uncertainty, all uncertain 

quantities are treated as random variables. The Bayesian framework allows to incorporate 

prior knowledge in a coherent way, and provides a principled basis to determine the model 

complexity—the number of states, K, and the dimensionality of the latent space, P. Contrary 

to the maximum likelihood approach, a Bayesian approach attempts to integrate over 

possible settings of all random variables rather than optimizing them. The resulting quantity 

is known as the marginal likelihood. The marginal likelihood for the BSFA is given by

(5)

where  is the joint probability distribution over all variables given by

(6)

where p(θk) and p(ϕk) are the prior distributions. The choice of prior distributions are 

discussed in Appendix A. A graphical representation of the BSFA is shown in Figure 1. This 

illustrative graph shows allowed dependencies across various variables in the model. Given 

the observed data and the assigned priors over all variables, the posterior distribution may be 

inferred using Bayes’s rule as , where p(Y̲) is the 

marginal likelihood given by Equation (5) and p(Y̲, Ẕ, X̲, ϕ, θ) is the joint distribution given 

by Equation (6). Working directly with the posterior distribution is precluded by the the need 

to compute the marginal likelihood of the observations. Thus, directly computing the 

posterior may not be analytically possible. In the following, we approximate the posterior 

using a family of optimization methods known as variational inference (Jordan et al., 1999; 
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Wainwright and Jordan, 2007). Variational inference is based on reformulating the problem 

of computing the posterior distribution as an optimization problem. In this paper, we work 

with a particular class of variational methods known as mean-field methods, which are based 

on optimizing Kullback-Leibler divergence (Jordan et al., 1999). We aim to minimize the 

Kullback-Leibler divergence between the variational posterior distribution, shown as q(Ẕ, X̲, 
ϕ, θ), and the true posterior distribution, p(Ẕ, X̲, ϕ, θ|Y̲), which can be expressed as:

(7)

where the operator 〈·〉 takes the expectation of variables in its argument with respect to the 

variational distribution q(·), e.g., 〈f (x)〉g(x) = ∫ f (x)g(x)dx. The minimization of Equation 

(7) is equivalent to the maximization of a lower bound, ℒ, on the log marginal likelihood 

defined as:

(8)

For the mean-field framework to yield a computationally efficient inference method, it is 

necessary to choose a family of distributions q(Ẕ, X̲, ϕ, θ) such that we can tractably 

optimize the lower bound. We now approximate the true posterior distribution using a partly 

factorized approximation in the form of

(9)

Given our choice of factorization in Equation (9), we can express the lower bound, Equation 

(8), explicitly as

(10)

Note that in Equation (10) the lower bound has been separated into two parts. The first part, 

ℒ(Y̲ | Ẕ), is the Ẕ-conditional expected value calculated using q(X̲, ϕ|Ẕ) across X̲ and ϕ 
related only to the generation of Y̲. This part is calculated as a function of any given Ẕ. The 

second term depends only on the Markov-chain model for the latent variables Ẕ. Thus, the 

total lower bound can be maximized by alternating optimization of each of these two parts, 

while the other part of the model is kept unaltered.

2.1.3. Posterior distribution of the model parameters—q(X̲, ϕ|Ẕ) and q(θ) are 

obtained by maximizing ℒ(Y̲ |Ẕ). As the result of working with the conjugate priors, the 
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resulting posteriors will follow the same functional forms as their priors. Explicit 

expressions for computing q(X̲, ϕ|Ẕ) and q(θ) are summarized in Appendix B.

2.1.4. Posterior distribution of the latent state variables—q(Ẕ) is obtained by 

maximizing the second term in the lower bound expression by Equation (10), and using the 

Markov properties for Ẕ. In practice, a variant of the forward algorithm and backward 
algorithm can be used to efficiently compute the necessary marginal probabilities, namely, 

 and  (Appendix D). Computation of these statistics using the forward 

and backward algorithms requires the emission probability distribution, , 

which is given by:

(11)

where

(12)

Details of the forward-backward computations are discussed in Appendix D and an explicit 

expression for computation of Equation (12) is given by Equation (D.2).

2.1.5. Algorithm—The algorithm starts with initialization of the variational parameters. 

The optimization of the variational posterior distribution q(Ẕ, X̲, ϕ, θ) involves cycling 

between optimization of q(Ẕ), q(X, ϕ, θ). First, we use the current distributions over the 

model parameters to evaluate  and . Next, these quantities are used 

to re-estimate the variational distribution over the parameters, q(ϕk, θk), from which 

 is updated for all k = 1, …, K. These steps are repeated until convergence is 

achieved, that is when ℒiter − ℒiter−1 < thr, where ℒ is the model evidence (lower bound) 

given by Equation (10) and thr is a small value. In our simulations, the threshold was set to 

10−3. In general, less than 200 iterations are often enough to achieve convergence. The 

variational procedure is guaranteed to converge (Bishop, 2006, Chapter 10) as the lower 

bound is convex in each of the factors in Equation (9). A summary of the algorithm is 

presented in Algorithm 1. An implementation of BSFA in Matlab is available upon request.

2.2. Functional MRI data

2.2.1. HCP Dataset—Two sessions (hereafter Sessions 1 and 2) of minimally processed 

rs-fMRI data were obtained from the Human Connectome Project (HCP1). Seventy-four 

subjects (age: 22–35 years old, 28 males) were selected from 500 subjects based on the 

following criteria: (1) individuals were unrelated; (2) range of head motion in any 

translational direction was less than 1 mm; (3) average scan-to-scan head motion was less 

than 0.2 mm and (4) maximum scan-to-scan head motion was less than 1 mm.

1http://www.humanconnectome.org/
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2.2.2. Resting-state fMRI acquisition—For each subject, 1200 volumes were acquired 

using multi-band, gradient-echo planar imaging with the following parameters: TR, 720 ms; 

TE, 33.1 ms; flip angle, 52°; field of view, 280 × 180 mm; and matrix, 140 × 90. During 

scanning, each subject has eyes open with relaxed fixation on a projected bright crosshair on 

a dark black screen.

2.2.3. Preprocessing—The same processing steps were applied to volumetric data from 

each session. Spatial smoothing with a Gaussian kernel of 6 mm FWHM was first applied to 

the minimally pre-processed data to

Algorithm 1

Bayesian Switching Factor Analysis

step 1: initialization

    • set the number of states, K (the initial value of K is usually set to a large value, and during learning those states with 
small contributions will get weights close to zero);

    • set the intrinsic dimensionality of the latent subspace, P, (in general P is set to be smaller than data dimension, P < 
D, however, in a fully noninformative initialization, one can simply set P = D − 1);,

    • set the prior distribution parameters (Appendix A);

    • initialize  (e.g., using K-means algorithm, with Euclidean distance as the similarity measure);

repeat

  step 2: optimization of the model parameters (variational-maximization step)

    • update q(ϕ) and  using update Equations (B.4), (B.5) and (B.11);

    • update q(θ) using update Equations (B.2), (B.3);

  step 3: optimization of the latent state variables (variational-expectation step)

    • update  using update Equation (D.7);

    • update  using update Equation (D.8);

  step 4: optimization of the posterior hyperparameters

    • update posterior hyperparameters using Equations (E.2)–(E.6);

  step 5: check for convergence

    • evaluate lower bound, ℒ, from Equation (10) using Equation (F.1).

until convergence (ℒiter − ℒiter − 1 < thr)

improve signal-to-noise ratio as well as anatomy correspondence between individuals. A 

multiple linear regression approach with 12 realignment parameters (three translations, three 

rotations and their first temporal derivatives) was applied to the smoothed data to reduce 

head-motion-related artifacts. To further remove physiological noise, independent 

component analysis (ICA) was applied to the preprocessed data using Melodic ICA version 

3.14 (Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components2). ICA components for white matter and cerebrospinal fluid were first 

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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identified and their corresponding ICA time-series were then extracted and regressed out of 

the preprocessed data.

2.2.4. Regions of interest—ROIs were independently defined using 20 clusters from the 

SN, CEN and DMN based on a previously published study (Shirer et al., 2012) as shown in 

Figure 3A and Table G.2. The first eigenvalue time-series from each ROI was extracted from 

each subject. The first eight volumes were discarded to minimize non-equilibrium effects in 

fMRI signals. High-pass filtering (f > 0.008 Hz) was applied on ROI time-series to remove 

low frequency signals related to drift. The resulting time-series were linearly detrended and 

normalized.

2.3. Predictive fingerprint analysis of HCP multiple-session rs-fMRI data

Unlike the simulation analysis, since the real underlying dynamics in the real rs-fMRI data 

are unknown, it is impossible to directly evaluate BSFA based on the key metrics of 

temporal dynamics of brain states. Hence, a predictive fingerprint analysis is used to assess 

the validity of the underlying dynamics uncovered using BSFA. The underlying hypothesis 

is that if BSFA is able to uncover the underlying brain dynamics, the model learnt from 

Session 1 (training session) is able to best predict data of Session 2 (test session) from the 

same participant, compared to its prediction on data from other participants. To further 

demonstrate that BSFA is able to capture informative temporal structures across time-series 

in rs-fMRI data, we compare BSFA with the static mixture model of factor analyzers (MFA), 

(Ghahramani and Beal, 2000), which discards the temporal dependencies by imposing the 

i.i.d. assumptions on the data observations. In the following, we first derive the predictive 

likelihood and then use it to conduct fingerprint analysis.

2.3.1. Predictive likelihood for the BSFA—Let y′ denote a data sample from the test 

set for a given subject. Associated with this observation, there is a corresponding latent state 

variable z′ and a representation of y′ on the latent subspace x′, for which the predictive 

density is then given by

(13)

Algorithm 2

Predictive likelihood for the BSFA

step 1: Compute  for the new data vector  using Equation (B.11). Note that only  requires to be 
updated and posterior distribution of all other model parameters remain unaltered.

step 2: Compute the emission probability distribution, Equation (11), for the new data, , using updated  and 
the posterior distribution of the other model parameters, q(Ψ), q(U).

step 3: Compute sufficient statistics of the latent state variables,  and , using Equations (D.
7) and (D.8).
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step 4: Compute the lower bound on the logarithm of the predictive density by computing Equation (10).

where p(y′ |z′,x′, ϕ, θ) is the true posterior distribution. Directly computing p(y′ |Y̲) is not 

possible as the true posterior is not available in closed form. It is possible, to obtain an 

approximate to the predictive density by replacing the true posterior distribution with its 

variational approximation,

(14)

This approach has been previously studied by Beal (2003). The approximate solution by 

Equation (14) is still intractable. However, it is now possible to compute a lower bound on 

the logarithm of the approximate predictive density. The resulting quantity is called log-
predictive likelihood. A summary of the approach is given in Algorithm 2. Note that log-

predictive likelihood is a marginalized quantity meaning that uncertainty in the estimation of 

the model parameters has been integrated out. Marginalization is the key in making the 

Bayesian predictive density robust to the overfitting.

2.3.2. Predictive likelihood using static model (MFA)—To show the effect of 

capturing temporal dependencies in better modeling of fMRI time-series, we compare our 

BSFA with static variant of this model, MFA. Note that MFA is a special case of BSFA that 

assumes all observations are strictly independent and identically distributed. In other words, 

MFA assumes that there are no temporal dependencies in the rs-fMRI time-series.

2.3.3. Fingerprint analysis—Fingerprint analysis was carried out through a training 

phase and a test phase. Data from one scan session are treated as the training set and data 

from the other session are treated as test set. At the training phase, the underlying generative 

model for each subject is learnt using BSFA model (Algorithm 1). The model for the i-th 

subject in the training set is shown as  which is computed for all subjects separately, i 
= 1, …, 74. At the test phase, data from the test set are compared against trained models. To 

test whether the generative model built using training data for a given subject would predict 

brain region time-series of the same subject in the test set, we computed the predictive 

likelihood of test data from Equation (14) and using Algorithm 2. Let  denote 

the predictive likelihood for the i-th subject from the test set using the j-th model from the 

train set. We then computed  for a given subject i of the test set and for all 

models j = 1, …, 74 from the train set. The predicted identity is the one with the highest 

predictive likelihood. Formally it can be expressed as:

(15)

The hypothesis is that the predictive likelihood is maximized when i* = i = j. Schematic 

illustration of the fingerprint analysis using BSFA is shown in Figure 2.
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We tested identification rate across all subjects i = 1, …, 74. The success rate was measured 

as the percentage of subjects whose identities were correctly predicted out of the total 

number of subjects (the chance probability is ). We repeated the same analysis using 

Session 2 as the train set and Session 1 as the test set.

2.4. Dynamic functional connectivity analysis of HCP rs-fMRI data

2.4.1. Modeling—Resting-state fMRI data from Session 1 and 2 were separately modeled 

using BSFA (Algorithm 1). BSFA was initialized in a noninformative fashion (Appendix A). 

The model used no prior information about the optimal number of states and the optimal 

dimensionality of the latent subspace in each state. The model was initialized with 30 states. 

Note that the initially assigned model complexity is not critical since during optimization 

those states with little role in explaining data are automatically pruned out from the model 

based on the Bayesian model selection. The intrinsic dimensionality of the latent subspace at 

each state was set to one less than the number of ROIs. However, the optimal dimensionality 

of the latent subspace is automatically determined from the data and can vary across subjects 

and states. The estimated generative model consists of posterior distributions of all model 

parameters and latent state variables.

2.4.2. Transition probability between states—Transition probabilities between latent 

states are given by:

(16)

where 〈log aij〉q(A) is given by Equation (C.1). Diagonal values on Â give the self-transition 

probabilities and off-diagonal values give the cross-transition probabilities.

2.4.3. Temporal evolution of states—Temporal evolution of the latent states indicates 

the latent state to which a given time point belongs and it is given by the Viterbi path which 

is defined as the most likely sequence of latent states in the sequence of observed data and is 

computed using Viterbi algorithm (Bishop, 2006, Chapter 12). Explicitly, the temporal 

evolution of states for a given subject s is expressed by the Viterbi path and is computed 

using estimated output probability distribution , given by Equation (11), and the 

estimated transition probabilities given by Equation (16). Note that, as the model parameters 

(HMM model parameters θ = {π, A}, and factor analysis model parameters, ϕ = {μ, U, Ψ}) 

are learnt in a group-level fashion using sufficient statistics from all subjects (Appendix B), 

there is a one-to-one matching between states across subjects such that a given state i would 

correspond to the same state for all subjects, s = 1, …, S. Thus, we can compute variations in 

estimated number of states across subjects using temporal evolution of states.

2.4.4. Occupancy rate and mean life—The occupancy rate for state i and subject s is 

computed as:
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(17)

where  is the Dirac delta function which is one if the current state at time t is the i-th 

state. To know at which state we are at a given time, we will use the temporal evolution of 

states. Occupancy rate is computed for all states and across all subjects. The mean life time 

of a state is the average time that a given state i continuously persists before switching to 

another state (Ryali et al., 2016). This quantity can be simply computed from the temporal 

evolution of states. As there is a one-to-one matching between states across subjects, we can 

compute how occupancy rate and mean life vary across subjects.

2.4.5. Mean and covariance—Using estimated posterior distribution of the model 

parameters, estimated group-level mean and covariance for each state are given by:

(18)

(19)

where μ̄kd,  and Ψ−1 are given by Equations (B.10), (B.9), and (E.1), respectively. Note 

that, using temporal evolution of states and estimated covariance of states, we can now 

compute changes in covariance over time.

2.4.6. Community detection—We first computed the Pearson correlation matrices from 

the estimated covariance matrices for each state using Equation (19), and then determined 

the dynamic functional community structure under each state by applying the Louvain 

community detection algorithm (Blondel et al., 2008) on the estimated correlation matrices. 

The resolution parameter of the modularity maximization of the quality function in Louvain 

algorithm was set to 1 (default value). Community detection analysis is illustrated in Figure 

3D.

2.4.7. Temporal flexibility—To investigate dynamic interactions between brain nodes, we 

first computed the temporal co-occurrence matrix. The following steps are performed for a 

given subject as shown in Figure 3C:

step 1: group level modeling of the brain regions time-series using BSFA;

step 2: computing the temporal evolution of brain states from the trained model;

step 3: computing the Pearson correlation matrix from the estimated covariance 

matrices;
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step 4: extracting the community structure computed using the Louvain community 

detection algorithm from the Pearson correlation matrices for each detected brain 

state at each time point given by the temporal evolution of states;

step 5: constructing an adjacency matrix Wijts for each subject using the extracted 

community structure matrix such that Wijts = 1 if node i and node j are in the same 

community at time point t for individual s, otherwise Wijts = 0;

step 6: computing the temporal co-occurrence matrix as the temporal mean of the 

adjacency matrix: 

Each element of the temporal co-occurrence matrix measures the proportion of times that 

two brain regions are part of the same community. A high value indicates that the two 

corresponding brain regions co-participate in the same community more frequently. Based 

on the temporal co-occurrence matrix Cijs and the static modular organization of nodes, we 

characterized the dynamic property of each node using temporal flexibility. Specifically, the 

temporal flexibility of node i and participant s was computed as:

(20)

where Cijs is the temporal co-occurrence matrix for individual s and ui is the community to 

which node i belongs. Σj∉ui Cijs measures the frequency with which node i engages in 

interactions with nodes outside its native community. Σj≠i Cijs measures the total interactions 

with all nodes. Therefore, temporal flexibility captures the tendency of each node to deviate 

from its own native static community and interact with outside nodes (Chen et al., 2016).

3. Results and Discussion

3.1. Performance of BSFA on synthetic data

3.1.1. Experiment I: Applying BSFA—an example—We first illustrate key features of 

BSFA by estimating the number of latent states and the temporal evolution of the identified 

states in synthetic data. Specifically, synthetic data were generated using the generative 

model in Equations (1) and (4) with the following parameters: 800 data samples drawn from 

each of 5 Gaussian clusters (latent states) with intrinsic dimensionality of 2 embedded at 

random orientations in a 3-dimensional space. The Gaussian clusters were randomly 

generated (ellipsoids in Figure 4A), and we used a random temporal evolution of states in 

data generation (Figure 4E). We added a zero-mean Gaussian distribution with variance of 

0.01 across all dimensions as sensor noise (Table 1–I).

BSFA was initialized in a noninformative fashion (Appendix A). The initial number of states 

was set to 8. The intrinsic dimensionality within each state was set to 2 (one less than the 

actual data dimension).

As shown in Figure 4B,C, BSFA converged to the correct solution of 5 latent states, each 

with its unique mean and covariance (ellipsoids in Figure 4B). Figure 4D shows the 
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occupancy rate of each state. As shown in this figure, from initially assigned 8 states, BSFA 

correctly determined that only 5 states have significant contributions in explaining data. 

Figure 4C shows the estimated model evidence computed using equation (10) at each 

iteration of the optimization process; the model evidence serves as a measure of 

convergence. Figure 4F shows the recovered temporal evolution of states estimated using the 

Viterbi Algorithm. This example demonstrates that BSFA could recover latent states and 

state dynamics.

3.1.2. Experiment II: Model selection—robust estimation of the number of 
latent states with respect to the initially assigned model complexity—We next 

demonstrate robust estimation of the number of latent states, which is particularly important 

in the context of unsupervised learning of structure in fMRI data. In this experiment, we 

show that BSFA can reliably estimate the latent states regardless of the initially assigned 

model complexity. For this purpose, synthetic data were generated using the generative 

model in Equations (1), (4) with the following parameters: 1200 data samples drawn from 

each of 10 latent states (Gaussian clusters) with intrinsic dimensionality of 10 embedded at 

random orientations in a 20-dimensional space and a random temporal evolution of states. 

We added a zero-mean Gaussian distribution with variance of 0.01 across all dimensions as 

sensor noise (Table 1–II).

We then trained models using various initial model complexities. The initial model 

complexity was varied through varying the number of states from 6 to 20 with a step size of 

2. The intrinsic dimensionality within each state was set to one less than the actual data 

dimension. The experiment was repeated for 10 runs with random initializations of BSFA at 

each run (Appendix A).

Figure 5A shows the estimated number of states at each experimental condition by Viterbi 

algorithm, and Figure 5B shows the Pearson correlation between the estimated covariance 

and true covariance matrices averaged across all states at each run. Ideally, when the 

estimated covariance from the model is identical to the true covariance, the correlation 

becomes 1. Each experimental condition is shown with a unique color. The results can be 

summarized as follows: (a) when the initial model complexity is not sufficient, the model 

uses all available model complexity and none of the states are pruned out from the model, 

implying that one would need to increase the initial model complexity by assigning larger 

number of states; (b) when the initial model complexity is sufficient, that is when the initial 

number of states is equal or greater than the true number of states, in most cases BSFA could 

reliably estimate the true number of states as well as the true covariance estimated with each 

state by pruning out those states which had close to zero contribution in explaining the data 

generation. The results here show that the Bayesian model selection in BSFA works as 

expected, that is arbitrarily increasing model complexity has little effect on the overall 

performance so that BSFA can successfully regulate its complexity and reduce overfitting.

3.1.3. Experiment III: Scalability with dimensionality—performance of BSFA as 
a function of data dimension (number of ROIs)—Next we evaluated model 

performance in handling relatively large number of ROIs in relation to more limited number 

of data samples. In this experiment, we varied the dimensionality of data while keeping the 
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number of data samples fixed. For this purpose, the synthetic data were generated using the 

generative model in Equations (1), (4). We generated 400 data samples drawn from 4 latent 

states (Gaussian clusters with random mean vectors and covariance matrices) and using 

random temporal evolution of states. The data dimensionality was varied from 14 to 60 (with 

a step size of 2) and the intrinsic dimensionality in the data generation within each state was 

set to the half of the data dimensionality. We added a zero-mean Gaussian distribution with 

variance of 0.01 across all dimensions as sensor noise (Table 1–III).

BSFA was initialized in a noninformative fashion (Appendix A). The initial number of states 

was set to 10. The intrinsic dimensionality within each state was set to one less than the 

actual data dimension. The experiment was repeated for 10 runs.

Figure 6A illustrates the remaining (estimated) number of states after convergence at each 

condition shown with a unique color and, Figure 6B shows the Pearson correlation between 

the estimated covariance and true covariance matrices averaged across all states and all runs. 

Figure 6C shows the average amount of computational time averaged across all runs. The 

following observations are notable: a) BSFA scales well with the data dimensionality, and 

with increasing data dimensions, the computational complexity increases approximately 

linearly; b) with increasing data dimension, the chance of falling into local optima increases. 

This is expected because limited data samples cannot provide statistically sufficient evidence 

for as many states and intrinsic dimensions. As a result, with various random initializations, 

it is more likely BSFA falls into bad local optima and hence unable to uncover true 

underlying number of states. In such cases naturally the error in estimation of covariance is 

larger. In our experiments, an approximate 10:1 ratio of number of samples to number of 

ROIs was generally sufficient for robust estimation of the number of latent states.

3.1.4. Experiment IV: Robustness to noise—effect of measurement noise on 
the performance of BSFA—Finally, we examined the effect of noise on the performance 

of BSFA in handling model complexity and estimation of covariance. For this purpose, 

synthetic data were generated using the generative model in Equations (1), (4) with the 

following parameters: 1200 data samples with data dimensionality of 20, five latent states 

embedded in an intrinsic 10-dimensional space, each latent state associated with a unique 

mean and covariance specified by a Gaussian distribution, and a random temporal evolution 

of states. The noise variance in the data generation was varied from 0.01 to 1000 (Table 1–

IV).

BSFA was initialized in a noninformative fashion (Appendix A). The initial number of states 

was set to 10. The intrinsic dimensionality within each state was set to one less than the 

actual data dimension. To smooth out the effect of random initialization, the experiment was 

repeated for 10 runs.

Figure 7A,B shows the estimated number of states by Viterbi and error in estimation of the 

covariance matrix averaged across all runs. Each run is shown by a unique color. We also 

compared the performance of BSFA with a model variant that does not incorporate noise in 

the model in order to demonstrate the advantages of our BSFA in handing noise. For 

comparison, we used the Bayesian Gaussian hidden Markov model (Ryali et al., 2016) as a 
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closely related model to BSFA which assumes that data samples at each latent state are 

generated from a Gaussian distribution (we refer to this model as Gaussian-HMM). In 

contrast to BSFA, the generative model in Gaussian-HMM does not account for noise in the 

data. As the result, as shown in Figure 7C,D, the model fails to uncover the true number of 

latent states used in data generation and thus performs poorly in estimation of the covariance 

matrices.

3.2. Performance of BSFA on experimental data—fingerprint analysis on HCP rs-fMRI 
datasets

3.2.1. Regulating model complexity—As noted above, BSFA can effectively determine 

model complexity on simulation data. The goal here is to further validate this feature of the 

method using the fingerprint identification analysis on actual fMRI data. For this purpose, 

we applied BSFA to HCP rs-fMRI data and computed the identification success rate 

averaged across all runs and across two scan sessions. BSFA was initialized in a 

noninformative fashion (Appendix A). The initial number of latent states was varied from 4 

to 10. The intrinsic dimensionality of the latent space during experiments was set to account 

for 70% of variation in data. The optimal values for the number of latent states and the 

intrinsic dimensionality of each state are subject specific and are learnt automatically from 

the data.

Figure 8A shows the identification success rate with respect to the initially assigned number 

of states. The results show that identification rate only slightly varies with respect to the 

number of states. Figure 8B shows the identified subject ids with respect to the number of 

states. The copper colors indicate the correctly identified participants and black colors 

indicate the misidentified participants. It is notable that, regardless of the initial model 

complexity, similar participants were successfully identified. This consistency in 

identification of the subjects’ IDs further illustrates BSFA’s strength in handling its model 

complexity.

3.2.2. Effect of including temporal dependence on modeling of HCP rs-fMRI 
data—Our aim here is to use fingerprint analysis to validate the hypothesis that there are 

informative temporal dependencies across time points in the rs-fMRI data and including 

those temporal structures in modeling of data from a given session may contribute to better 

prediction on data from the other session. For this purpose, we compared the performance of 

BSFA with MFA. As discussed above, MFA is a special case of BSFA that assumes all 

observations are independent, and that there are no temporal dependencies in the rs-fMRI 

time-series. We used exactly the same initializations for both methods. Figure 8A shows the 

identification success rate with respect to the initially assigned model complexity (number of 

components). Similar to BSFA, MFA can effectively regulate the model complexity. Next, 

we compared performance of BSFA and MFA for various durations of scan session in the 

test phase. In this experiment, the initial number of states for both models (BSFA and MFA) 

is set to 8, as we have previously shown in Figures 8A that both models can handle the 

assigned model complexity and avoid overfitting. Figure 8C shows the result of this 

comparison. We note that BSFA consistently has a higher accuracy compared to MFA. The 

results suggest that BSFA is able to capture additional informative participant-specific 
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temporal dynamics in the rs-fMRI data, compared to the static model which ignores the 

richness of the underlying temporal dynamics.

3.3. Performance of BSFA on experimental data—dynamic functional organization of the 
salience network, default mode network, and central-executive network examined using 
BSFA

The salience network (SN), the central-executive network (CEN) and the default mode 

network (DMN) are three core neurocognitive systems that play a central role in cognitive 

and affective information processing (Menon, 2011, 2015b; Menon and Uddin, 2010; Cai et 

al., 2015). Crucially, brain regions encompassing these networks are commonly involved in 

a wide range of cognitive tasks (Dosenbach et al., 2008; Seeley et al., 2007). These networks 

have previously been investigated using static connectivity measures (Shirer et al., 2012), as 

a result their dynamic temporal interaction is not known. In a recent study we showed that 

the SN demonstrated the highest levels of flexibility in time-varying connectivity with other 

brain networks, including the fronto-parietal network, the cingulate-opercular network and 

the ventral and dorsal attention networks (Chen et al., 2016). However, that study used a 

sliding temporal window of 30 seconds duration, leaving unclear the generality of our 

findings. Here we take advantage of BSFA latent dynamics model, with no assumptions of 

window length or number of underlying states, to investigate dynamic interactions between 

the three networks and, crucially, to determine whether SN nodes have higher temporal 

flexibility than those of the DMN and CEN. Accordingly, we applied BSFA to rs-fMRI data 

from the HCP to uncover dynamic functional interactions between SN, CEN and DMN. The 

nodes of the three networks were identified as described in Section 2.2.4. We performed 

separate analyses on two HCP datasets from Sessions 1 and 2, importantly, to demonstrate 

the test-retest reliability and robustness of all our findings across two Sessions.

3.3.1. Identification of dynamic brain states

HCP Session 1: We used BSFA to uncover the temporal evolution of latent states in each 

participant (Figure 9A.1), the occupancy rate of each state averaged across all subjects 

(Figure 9B.1), the mean life of each state averaged across all subjects (Figure 9C.1), and 

estimated number of states for each subject (Figure 9D.1). As discussed earlier in Section 

2.4.3, there is only a one-to-one matching between states across subjects of a given session, 

however, across sessions, states are not matched. As a convention, states are ranked and 

color-coded based on their occupancy rate such that the first state has the highest occupancy 

rate. Nonetheless, the same color-code across two sessions does not necessarily correspond 

to the same state. Out of initially assigned 30 states, there are 24 states with occupancy 

greater than about zero. On average, subjects have 19.75 states (with standard deviation of 

2.4, Figure 9D.1). The first 6 states have occupancy greater than 6% and together they 

account for approximately 61% of the total occupancy. Among the remaining 24 states, 19 

states have mean life greater than 3 seconds. The first 6 states have mean life of about 8 

seconds indicating temporal persistence over durations much shorter than the length of the 

scan (864 seconds).

HCP Session 2: A similar analysis was conducted on Session 2 data. BSFA uncovered the 

temporal evolution of latent states in each participant, the occupancy rate of each state 

Taghia et al. Page 18

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



averaged across all subjects, the mean life of each state averaged across all subjects, and 

estimated number of states for each subject (Figure 9A.2, B2, C2, D.2). States are ranked 

and color-coded based on their occupancy rate. Two states with the same color-code across 

two sessions do not necessarily correspond to the same state. Out of initially assigned 30 

states, 24 states have occupancy greater than about zero. On average, subjects have 19.2 

states (with standard deviation of 2.7, Figure 9D.2). The first 6 states, similar to Session 1, 

have occupancy greater than 6% and together they account for 66% of the total occupancy. 

Among the remaining 24 states, 18 states have mean life greater than 3 seconds. The first 6 

states have mean life of about 8 seconds. Thus, the overall pattern of latent states, occupancy 

rates and mean life of states is consistent across two sessions.

3.4. Transition between dynamic functional states

HCP Session 1—Next we assessed transition probabilities between states (Figure 10A.1). 

Self-transition probabilities are shown with continuous blue colors and cross transition 

probabilities are shown with continuous orange colors. As before, states are sorted based on 

their occupancy rate with the first state having the highest occupancy. Figure 10B.1 shows 

the histogram of self-transition probabilities. Self-transition probabilities vary between range 

of 0.76 and 0.94 with average of 0.83. Figure 10C.1 shows histogram of the cross-transition 

probabilities. Cross-transition probabilities vary between about 0 and 0.055 with average of 

0.0097.

HCP Session 2—Figure 10A.2 shows transition probabilities between states. Figure 10B.

2 shows the histogram of self-transition probabilities. Self-transition probabilities vary 

between 0.62 and 0.96 with average of 0.82, suggesting stability of individual states when 

they occur. Figure 10C.2 shows histogram of the cross-transition probabilities. Cross-

transition probabilities vary between 0 and 0.136 with average of 0.010. Thus, the pattern of 

transition probabilities is consistent across sessions.

3.5. Dynamic functional networks

To characterize connectivity patterns associated with each brain state, we used a community 

detection algorithm on the estimated Pearson correlations in each state and examined 

functional connectivity between ROIs. The salient features of the dynamic functional 

network structure in each HCP session are described below.

HCP Session 1—Pearson correlation matrices of the first 6 states which have percent 

occupancy greater than 6% each and their corresponding community structure are shown in 

Figure 11, with each ROI depicted in a unique color corresponding to the static network it 

belongs to. Blue color shows 6 nodes corresponding to DMN, green color shows 5 nodes 

corresponding to SN, and red color shows 9 nodes corresponding to left and right CEN 

(Table G.2).

HCP Session 2—Pearson covariance matrices of the first 6 states which have occupancy 

greater than 6% and their corresponding community structure are shown in Figure 12.
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Note that states in Figure 11 and Figure 12 are sorted based on their occupancy rate. 

However, we emphasize that sorting based on the fractional occupancy does not guarantee a 

one-to-one correspondence between states across the two sessions, and it reflects a general 

difficulty in matching states without imposing a common model. For direct comparison, one 

would need to match states ad-hoc for example based on their covariance structure but this 

can be non-trivial in practice. A more appropriate way would be to combine data from both 

sessions within a common BSFA model. However, our choice of performing separate 

analyses on data from the two sessions was based on our goal of demonstrating the 

robustness of our key neuroscientific findings across sessions, as described in the next 

section. Note that our subsequent analysis in § 3.6 does not require explicit matching of the 

states between sessions. Results in Figure 11 and Figure 12 may be seen as intermediate 

steps toward our higher-level temporal flexibility analysis.

Taken together, these results demonstrate that although the DMN, SN, CEN have separately 

previously been identified using static network analysis, BSFA demonstrates frequent and 

dynamically changing cross-network interactions.

3.6. Temporal flexibility of individual brain regions

In addition to characterization of brain states and the associated dynamics as described 

above, BSFA provides a quantitative framework to examine graph-theoretic properties that 

capture and measure topological structure of a brain region or network of interest. To 

demonstrate this, we computed temporal flexibility of the 20 ROIs. Temporal flexibility is a 

measure of how frequently a brain region interacts with regions belonging to other dynamic 

functional networks across time (Chen et al., 2016).

HCP Session 1—The temporal flexibility of each ROI is shown in Figure 13A. Brain 

regions in the SN showed the highest temporal flexibility.

HCP Session 2—As in HCP Session 1, SN showed the highest temporal flexibility 

(Figure 13B).

Thus, BSFA consistently identifies SN nodes as having a significantly higher temporal 

flexibility, compared to nodes of the CEN and DMN (p<10−4). These results converge on 

recent findings using a brain wide analysis using 264 nodes spanning multiple brain systems 

which found SN nodes had the highest level of temporal flexibility (Chen et al., 2016). The 

present results obtained using a generative model with no assumptions of window length 

further bolster the previous findings.

It is notable that the right Caudate showed the highest level of temporal flexibility among all 

brain regions examined here, including SN, in both Session 1 and 2 (p<10−4). The high level 

of temporal flexibility of the right Caudate suggests that, despite being identified as part of 

the same network by static connectivity analysis, this region has a highly differentiated 

network dynamics distinct from other prefrontal, parietal and temporal nodes of the CEN. 

Our findings point to a unique temporal property of the Caudate and other subcortical nodes 

consistent with results from a prior study (Chen et al., 2016). Further research is required to 

investigate the behavioral significance and dynamic functional role of our novel findings.
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These findings are important because they further demonstrate that BSFA can identify key 

features of brain dynamics in a robust and consistent manner with minimal assumptions. In 

this context, an important challenge for future work is extending BSFA to the whole brain, a 

key limitation here is the approximate 10:1 ratio of time points to number of ROIs required 

to to obtain reliable estimates of latent states in HMM models, as demonstrated in our 

simulations above (see Appendix H for practical considerations in analysis of large number 

of ROIs). Nevertheless, it is highly encouraging that despite the complexity of human brain 

dynamics, our findings provide convergent evidence for distinct dynamic functional features 

associated with the SN and further demonstrate the usefulness of BSFA models.

4. Conclusion

We developed a novel generative method for modeling time-varying functional connectivity 

in fMRI data: Bayesian switching factor analysis (BSFA). Key strengths of BSFA include: 

(1) a generative model which provides useful information about underlying structure of the 

brain dynamic functional networks including: time evolution of brain states and transition 

probabilities between states as a function of time; (2) regulating the model complexity by 

automatic determination of the number of latent states (brain states) via Bayesian model 

selection and the automatic determination of intrinsic dimensionality of the latent subspace 

at each latent state via Bayesian automatic relevance determination.

Key features of the method were validated using extensive simulations. We then applied 

BSFA to model dynamic temporal structures in fMRI data. Fingerprint analysis of 

multisession resting-state fMRI data from the Human Connectome Project (HCP) 

demonstrated that BSFA is able to successfully capture the subject-specific temporal 

dynamics. We further demonstrated that modeling temporal dependencies in the BSFA 

generative model results in improved fingerprinting of individual participants. BSFA models 

revealed a high level of dynamic temporal interactions between brain networks previously 

identified as being temporally segregated and independent. Crucially, BSFA revealed a high 

level of dynamic functional interactions between nodes of the salience, default mode and 

central-executive networks, and furthermore, identified salience network nodes as having 

higher temporal flexibility than nodes of the other two networks. Finally, BSFA findings 

demonstrated strong test-retest reliability.

Overcoming the curse of dimensionality when the number of brain regions is large (~200) 

remains an important challenge for future work on HMM-based generative models of 

experimental fMRI data. Finally, it is important to note that although in this study 

experiments were carried out on resting-state fMRI data, BSFA can be used for dynamic 

brain connectivity analysis of task-based fMRI time-series. Future studies will examine this 

further.
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Appendix A

Parameter priors for BSFA

Following Bayesian HMM by Mackay (1997), the prior distributions on the HMM model 

parameters are chosen as follows:

(A.1)

(A.2)

where, for instance,  is a symmetric Dirichlet distribution with strength . ai 

indicates the i-th row of the transition matrix A. For a noninformative initialization, we set 

, ∀i = 1,…, K.

For the other model parameters, we use the same choice of priors as proposed by 

Ghahramani and Beal (2000) for the static factor analysis model. The priors are chosen to be 

conjugate to the likelihood terms.
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(A.3)

where u̇kd shows the d-th row of the factor loading matrix U at the k-th state and 0 is a P-

dimensional vector of zero values.

(A.4)

where a* and b* are shape and inverse-scale hyperparameters for a Gamma distribution. For 

a noninformative initialization we set these parameters as: a* = b* = 1. The same prior 

values can be used for all k, p.

(A.5)

For a noninformative initialization we set μ* = 0D, ∀ k = 1,…, K, where 0D is a D-

dimensional zero vector and ν* = 10−3 × 1D, where 1D is a D-dimensional vector of unit 

values.

Appendix B

Posterior distribution of the model parameters

Let us start with rewriting the posterior distribution of the model parameters, q(Ẕ, X̱, ϕ, θ), 

given by equation (9):

(B.1)

where we have used θ = {π, A}, and ϕ = {μ, U, Ψ}. In this section, we summarize the exact 

form of these distributions and the necessary summary of statistics.

(B.2)
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(B.3)

(B.

4)

(B.5)

and

(B.6)

(B.7)

(B.8)

(B.9)
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(B.10)

(B.11)

where

(B.12)

(B.13)

Note that (µk)q(µk), 〈νkp〉q(νkp), , and  are 

given by the known statistics of their associated distributions. For example, 〈νkp〉q(νkp) is 

given by the mean value of the Gamma distribution expressed by Equation (B.4) which will 

be updated at each iteration of the optimization.

Appendix C

Updating HMM model parameters

(C.1)

(C.2)

where ψ(·) indicates the mathematical digamma function, αaij is the j-th element of αai 
given by Equation (B.3), and similarly, απk is the k-th element of απ given by Equation (B.

2).
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Appendix D

Posterior distribution of the latent state variables

We compute the sufficient statistics for the posterior distribution of the latent state variables, 

 and , using a variant of forward and backward algorithm. For this 

purpose, we start with computation of the emission probability distribution given by 

Equations (11). Using the results in Appendix B, we obtain an explicit expression for the 

computation of the emission probability distribution as

(D.1)

where

(D.2)

Forward Algorithm

The forward procedure is initialized for t = 1 as

(D.3)

Then, the forward iteration can formally run for t = 2,…, T as

(D.4)

For later use in the computation of the lower bound, we compute the the normalization 

constant C as

(D.5)

Taghia et al. Page 28

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Backward Algorithm

To supplement the forward calculation, we need a backward variable to represent the 

observed conditions after time t. The backward variable is initialized as  for all j = 1,

…, K. The backward variable is recursively defined for t = T − 1,…, 1 as

(D.6)

Finally,  and  are given by:

(D.7)

(D.8)

Appendix E

Optimization of the posterior hyperparameters

We take a similar approach as in the static variant of the factor analysis (Ghahramani and 

Beal, 2000; Beal, 2003) for the optimization of the hyperparameters α*m*, a*, b*, μ*, ν*, 

Ψ (Ghahramani and Beal, 2000).

(E.1)

Hyperparameters a*, b* are computed from the following fixed-point Equations

(E.2)
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(E.3)

The scale prior  is fixed and  are given for all i = 1,…, K as:

(E.4)

(E.5)

(E.6)

where the update for ν* uses the already updated μ*, and 〈logνkp〉q(νkp) is given by the 

known sufficient statistics of its distribution, Equation (B.4).

Appendix F

Lower bound evaluation

The lower bound is computed from Equation (10) and it is explicitly expressed as:

(F.1)

where C is given by Equation (D.5), and other terms can be easily computed from the 

functional forms of the priors and posterior parameters computed in the previous sections.
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Appendix G

List of regions of interest

Table G.2

List of regions of interest (ROIs) and their abbreviations defined using 20 clusters from the 

SN, CEN and DMN. ROIs are defined according to Supplementary Table S1 from (Shirer et 

al., 2012).

List of 20 ROIs

DMN

1 MPFC/ACC/OFC Medial Prefrontal Cortex/Anterior Cingulate Cortex/Orbitofrontal Cortex

2 rSFG Right Superior Frontal Gyrus

3 PCC/Precuneus Posterior Cingulate Cortex/Precuneus

4 rAG Right Angular Gyrus

5 lHipp Left Hippocampus

6 rHipp Right Hippocampus

CEN

7 lmFG/SFG Left Middle Frontal Gyrus/Superior Frontal Gyrus

8 lIFG/OFG Left Inferior Frontal Gyrus/Orbitofrontal Gyrus

9 lSPG/IPG/Precuneus/AG Left Superior Partial Gyrus/Inferior Parietal Gyrus/Precuneus/Angular Gyrus

10 lITG/mTG Left Inferior Temporal Gyrus/Middle Temporal Gyrus

11 rmFG/rSFG Right Middle Frontal Gyrus/Right Superior Frontal Gyrus

12 rmFG Right Middle Frontal Gyrus

13 rIPG/SMG/AG Right Inferior Parietal Gyrus/Supramarginal Gyrus, Angular Gyrus

14 rSFG Right Superior Frontal Gyrus

15 rCau Right Caudate

SN

16 lmFG Left Middle Frontal Gyrus

17 lIns Left Insula

18 ACC/MPC/SMA Anterior Cingulate Cortex/Medial Prefrontal Cortex/Supplementary Motor 
Area

19 rmFG Right Middle Frontal Gyrus

20 rIns Right Insula

Appendix H

Scalability: practical considerations

As in principal component analysis (PCA), in practice, BSFA model requires P ≪ D in 

Equation (1), i.e., the number of latent source factors (equivalent of principal components in 

PCA) needs to be less than the size of the observed data (here number of ROIs). In the 

simulations, we initialized BSFA fully non-informatively by setting the dimensionality of 

the latent source factors to one less than data dimension (using P = D − 1). The optimal 

number of latent source factors for each state was then determined within the Bayesian 

framework. However, in analysis of large number of ROIs, e.g., whole brain analysis, a fully 

noninformative initialization, P = D − 1, could be problematic: firstly due to the 

computational complexity and secondly due to limited amount of data, automatic model 

Taghia et al. Page 31

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selection in BSFA may fail to discard all the excess variations in data which may result in 

underfitting. In such cases, one would need to initialize BSFA semi-informative by bounding 

the dimensionality of the latent source factors to use a certain percentile of variations in the 

observations, for example, 90% of variations in data. In this way, optimal number of latent 

source factors for each latent state can still be determined automatically from data but they 

are now bounded.
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Figure 1. 
Directed acyclic graph representing the Bayesian switching factor analysis (BSFA) model. 

 is the observed variable,  is the k-th latent state variable, and  is the latent source 

factor (latent subspace variable) associated with the k-th latent state variable at time t for a 

given subject s. (left) Allowed dependencies among observations, latent state variables and 

latent subspace variables. Given the latent states, observations and latent subspace variables 

are conditionally independent. However, latent states are connected to each other using a 

first-order Markov chain. (right) Generative model at a given time t (indicated with a red 

box). πk and aij, ∀i, j ∈ K, are HMM parameters indicating the initial state probability 

distribution and the state transition probability distribution. μk is the fixed bias in the data, 

Ψk is the noise covariance matrix at state k, ukp is the p-th column of the factor loading 

matrix and at the k-th state, and νkp is the prior on the variance of the ukp, known as ARD 

prior which controls the dimensionality of the latent subspace. Black boxes indicate 

replications over latent variables and model parameters.
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Figure 2. 
Schematic illustration of fingerprint analysis using BSFA. (A) Training phase: data from 

each subject in the train set is modeled using BSFA (Algorithm 1).  shows data from 

the i-th subject in the train set and  shows the corresponding model. (B) Test phase: 

data from a given subject s from the test set, , are compared against all the trained 

models (Algorithm 2). The predicted identity is the one with the highest predictive 

likelihood.
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Figure 3. 
Schematic illustration of the functional connectivity analysis. (A) Regions of interest (ROIs) 

defined using 20 clusters from the SN, CEN and DMN based on Shirer et al. (2012) study. 

List of ROIs and their abbreviations are given in Table G.2. (B) Brain ROI time-series of the 

HCP rs-fMRI data. (C) Group modeling of the ROI time-series using BSFA. (D) Steps 

involved in computing the community structure of the latent states after modeling. (E) Steps 

involved in temporal flexibility analysis.
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Figure 4. 
Visualization of BSFA performance on toy data described in § 3.1.1. (A) Data samples and 5 

Gaussian cluster centers. Each Gaussian cluster (latent state) is shown in a unique color. (B) 

Gaussian ellipses after learning given by the mean and covariance computed from the model. 

(C) The lower bound values (model evidence) during learning at each iteration. (D) The 

occupancy rate of each state. (E) True temporal evolution of states in data generation. (F) 

Estimated temporal evolution of the latent states computed using the Viterbi algorithm.
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Figure 5. 
Evaluation of BSFA performance with respect to model complexity. Model complexity was 

varied by changing the initial number of states. Data were generated as detailed in § 3.1.2. 

Experiment was repeated for 10 runs and at each run, the trained models were initialized 

randomly. Each run is shown in a unique color. (A) The estimated number of states in each 

run and for each condition. The results are plotted as “·” symbols with small horizontal 

perturbations for better visualization. Note that some solutions found suboptimal local 

maxima, but this happened very infrequently. (B) Pearson correlation between true 

covariance matrix used in the data generation and the estimated covariance matrix computed 

from the model averaged across all states. If the true and estimated covariance matrices are 

identical, the Pearson correlation becomes one.
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Figure 6. 
Evaluation of BSFA performance with respect to number of ROIs. Data were generated as 

described in § 3.1.3. Experiment repeated for 10 runs and for each run, trained models were 

initialized randomly. (A) The estimated number of states in each run and for each condition 

is given by Viterbi algorithm. The results are plotted as “·” symbols with small horizontal 

perturbations for better visualization. Each run is shown in a unique color. Note that some 

solutions found suboptimal local maxima, but this happened very infrequently. However, 

with increase in the number of ROIs for a fixed amount of data, chance of falling into bad 

optimal solutions increases. (B) The Pearson correlation between true covariance and 

estimated covariance matrices averaged across states and runs. (C) Computational time 

averaged across runs.
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Figure 7. 
Performance of BSFA versus Gaussian-HMM models with respect to observation noise. 

Data were generated as described in § 3.1.4. The noise variance in data generation was 

varied from 0.01 to 1000. Experiment was repeated for 10 runs with random initializations. 

Each run is shown in a unique color. The results are plotted as “·” symbols with small 

horizontal perturbations for better visualization. (A) Estimated number of states in each run 

and for each condition given by Viterbi algorithm and computed using BSFA. (B) Pearson 

correlation between true covariance and estimated covariance matrices averaged across all 

states and all runs computed from BSFA. (C) Estimated number of states in each run and for 

each condition given by Viterbi algorithm and computed using Gaussian-HMM model. (D) 

Pearson correlation between true and estimated covariance matrices computed from 

Gaussian-HMM model.
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Figure 8. 
Fingerprint identification of HCP rs-fMRI datasets. (A) Identification success rate for 

various initially assigned model complexities on (A.1) Session 1 as training session and 

Session 2 as test session, and (A.2) Session 2 as training session and Session 1 as test 

session. The model complexity was varied through varying the initial number of states. (B) 

Identified subject ids with respect to various model complexities for the BSFA model. The 

copper colors indicate the correctly Identified subjects and black colors indicate the 

misIdentified subjects on (B.1) Session 1 as training session and Session 2 as test session, 

and (B.2) Session 2 as training session and Session 1 as test session. (C) Comparison 

between BSFA and MFA with respect to various scan durations of the test session for (C.1) 

Session 1 as training session and Session 2 as test session, and (C.2) Session 2 as training 

session and Session 1 as test session.
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Figure 9. 
Occupancy rate and mean life in rs-fMRI data from Sessions 1 and 2. States are sorted and 

color-coded based on their occupancy rate such that state 1 has the highest occupancy rate. 

Each state is shown in a unique color. Within each session, there is a one-to-one matching 

between states across subjects. However, two states with the same color-code across two 

sessions, do not necessarily point to the same state. The choice of color is primarily based on 

the state occupancy rates in each session. (A) Temporal evolution of latent states for each 

subject in (A.1) Session 1 and (A.2) Session 2 (B) Mean and standard deviation of the 

occupancy rate of each state averaged across subjects for (B.1) Session 1 and (B.2) Session 

2. (C) Mean and standard deviation of the mean life of each state averaged across subjects 
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for (C.1) Session 1 and (C.2) Session 2. (D) Estimated number of states for each subject for 

(D.1) Session 1 and (D.2) Session 2.
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Figure 10. 
Transition probabilities between dynamic states in HCP rs-fMRI data. Because states are not 

matched across sessions, for the purpose of visualization, states are ranked based on their 

occupancy rate such that the first state has the highest occupancy rate. (A) Self-transition 

and cross-transition probabilities in (A.1) Session 1 and (A.2) Session 2. Self-transition 

probabilities are shown with continuous blue colors and cross transition probabilities are 

shown with continuous orange colors. States are sorted based on their occupancy rate with 

the first state having the highest occupancy. (B) Histogram of self-transition probabilities in 

(B.1) Session 1 and (B.2) Session 2. (C) Histogram of the cross-transition probabilities in 

(C.1) Session 1 and (C.2) Session 2.
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Figure 11. 
Pearson correlation matrices of the first 6 states with occupancy rate greater than 6% (left) 

and their corresponding community structures (right) on rs-fMRI from Session 1. 

Community structures are computed using modularity maximization approach (§ 2.4.6). 

Results show a high level of dynamic functional interactions between nodes of the salience, 

default mode and central-executive networks.
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Figure 12. 
Pearson correlation matrices of the first 6 states with occupancy rate greater than 6% (left) 

and their corresponding community structures (right) on rs-fMRI from Session 2. 

Community structures are computed using modularity maximization approach (§ 2.4.6). 

Similar to Session 1 (Figure 11), results reveal a high level of dynamic functional 

interactions between nodes of the salience, default mode and central-executive networks. 

Note that there is no one-to-one correspondence between state covariance matrices shown in 

this figure and the ones shown in Figure 11. States are sorted based on their occupancy rate.
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Figure 13. 
Average and standard deviation of the temporal flexibility across all subjects on HCP rs-

fMRI data with 20 ROIs from (A) Session 1 and (B) Session 2 (****: p<10−4).
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