
RESEARCH ARTICLE

cAMP-dependent activation of protein kinase

A attenuates respiratory syncytial virus-

induced human airway epithelial barrier

disruption

Fariba Rezaee1,2*, Terri J. Harford1,2, Debra T. Linfield1,2, Ghaith Altawallbeh1,2,

Ronald J. Midura3, Andrei I. Ivanov4, Giovanni Piedimonte1,2

1 Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United

States of America, 2 Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of

America, 3 Biomedical Engineering Department, Lerner Research Institute, Cleveland, Ohio, United States of

America, 4 Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia

Commonwealth University, Richmond, Virginia, United States of America

* rezaeef@ccf.org

Abstract

Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility

to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second mes-

senger acting via two intracellular signaling molecules: protein kinase A (PKA) and the gua-

nidine nucleotide exchange factor, Epac. We sought to investigate effects of increased

cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and

the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were

infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP ana-

logs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by

measuring transepithelial electrical resistance and permeability to FITC-dextran, and deter-

mining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP

level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective

effects of cAMP were due to the activation of PKA signaling and did not involve Epac activ-

ity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton,

including apical accumulation of an essential actin-binding protein, cortactin, and inhibited

expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP sig-

naling were evident even when cAMP level was increased after the onset of RSV infection.

Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced

disruption of structure and functions of the model airway epithelial barrier by mechanisms

involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving

our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and

viral pathogenesis will help to develop novel anti-viral therapeutic approaches.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181876 July 31, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Rezaee F, Harford TJ, Linfield DT,

Altawallbeh G, Midura RJ, Ivanov AI, et al. (2017)

cAMP-dependent activation of protein kinase A

attenuates respiratory syncytial virus-induced

human airway epithelial barrier disruption. PLoS

ONE 12(7): e0181876. https://doi.org/10.1371/

journal.pone.0181876

Editor: Michael Koval, Emory University School of

Medicine, UNITED STATES

Received: March 22, 2017

Accepted: July 7, 2017

Published: July 31, 2017

Copyright: © 2017 Rezaee et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by NIH

K12HD068373 (F.R.), NIH K08 AI112781 (F.R.),

NIH-NIDDK R01DK108278 (A.I.I.), and NIH-NHLBI

RO1HL061007 (G.P.). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0181876
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181876&domain=pdf&date_stamp=2017-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181876&domain=pdf&date_stamp=2017-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181876&domain=pdf&date_stamp=2017-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181876&domain=pdf&date_stamp=2017-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181876&domain=pdf&date_stamp=2017-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181876&domain=pdf&date_stamp=2017-07-31
https://doi.org/10.1371/journal.pone.0181876
https://doi.org/10.1371/journal.pone.0181876
http://creativecommons.org/licenses/by/4.0/


Introduction

The airway epithelial barrier functions as the front line of host defense against airborne threats.

The integrity of this barrier is essential for the regulation of innate immunity of the lungs, but

such barrier integrity is known to be disrupted by a number of environmental stimuli. Barrier

properties of the airway epithelium are primarily determined by the Apical Junctional Com-

plex (AJC) composed of tight junctions (TJ) and adherens junctions (AJ) [1]. It has been

shown that the AJC not only regulates the structural integrity of tissues, but also the selective

paracellular permeability, cellular differentiation, migration, and signal transduction [2].

Recent genome-wide association studies have uncovered a link between gene polymorphisms

in several junctional proteins such as PCDH1 (Protocadherin 1 gene) and CDHR3 (encoding

cadherin-related family member 3) with asthma [3, 4], as well as increased risk for severe viral

infections [5]. While viruses are responsible for the majority of respiratory illnesses in children

[6], mounting evidence indicates that increased permeability of the airway epithelial barrier is

a common manifestation of lower respiratory tract viral infections that may significantly con-

tribute to the development of mucosal inflammation [7]. These findings highlight the impor-

tance of studying the effects of viral infections on structure and functions of the airway

epithelial barrier.

Respiratory syncytial virus (RSV) is the most common respiratory virus that causes lower

respiratory tract infection and inflammation. Historically considered a pediatric disease, RSV

infection is now recognized as an important source of morbidity and mortality in elderly and

high-risk adults [8]. Investigations in cell culture and animal models have shown long-term

inflammation post-RSV infection [9–13]. In addition, human studies have shown strong asso-

ciations between RSV, persistent wheezing, and childhood asthma [14–16]. Despite extensive

research, current treatment strategies for RSV are largely supportive. Palivizumab, a monoclo-

nal antibody approved for RSV prophylaxis in high-risk infants, has only moderately decreased

hospital admissions due to RSV infection [17, 18].

The pathogenic mechanisms of RSV infection remain poorly understood. Specifically, little

is known about the effects of RSV on the structure and functions of the airway epithelial bar-

rier. Some previous studies [19, 20] demonstrated that RSV infection increases permeability of

cultured bronchial epithelial cell monolayers by triggering protein kinase D-dependent TJ dis-

assembly, but others showed differently [21, 22]. Because such epithelial barrier dysfunction

could significantly accelerate RSV-induced airway inflammation, it is important to understand

cellular mechanisms that either attenuate disassembly or promote recovery of the airway epi-

thelial AJC during viral infections.

Cyclic adenosine monophosphate (cAMP) is an important second messenger required for

many critical homeostatic cellular functions [23]. cAMP is known to activate two major signal-

ing mechanisms, one involving protein kinase A (PKA) and the other involving Epac, a

guanine-nucleotide exchange factor for Rap1 small GTPase [24]. The effects of cAMP signal-

ing on intercellular junctions have been extensively studied in vascular endothelium [25–27].

These studies demonstrate that elevated cAMP level in endothelial cells could have either bar-

rier-protective or barrier-disruptive effects depending on external stimuli and intracellular

sites of cAMP accumulation [28]. Forskolin is produced by the Indian Coleus forskoliii plant

and it is known to activate adenyl cyclase, increasing the level of intracellular cAMP. The effi-

cacy of oral forskolin for asthma prophylaxis was trialed during two small, single-center stud-

ies, and found to reduce asthma attacks, which was thought to act through cAMP smooth

muscle relaxation [29, 30]. However, neither of these studies reported the adverse effects,

which include tachycardia, lowering blood pressure, increasing risk of bleeding and interac-

tion with gluconeogenesis [31–33].

cAMP-PKA activation inhibits RSV-induced barrier disruption
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There are very few studies on the effect of cAMP signaling in airway epithelial cells, and

more importantly, the effect of cAMP signaling on RSV-infected epithelium has not been

investigated. The goal of this study was to test the hypothesis that an elevated cAMP level

could prevent AJC disruption and increased permeability caused by RSV infection in model

airway epithelial cell monolayers. We report a barrier-protective role for cAMP in the infected

epithelial cells that involves multiple mechanisms, such as stabilization of AJ and TJ structure,

attenuation of RSV-induced rearrangement of the cortical cytoskeleton, and inhibition of viral

propagation.

Materials and methods

Antibodies

The following primary monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were

used to detect junctional and signaling proteins by immunofluorescence labeling and immu-

noblotting: anti-occludin, anti–ZO-1, and anti–E-cadherin mAb (Thermo-Fisher Scientific,

Waltham, MA); anti–β-catenin mAb (BD Bioscience, San Jose, CA), Anti-claudin 1 and 4

pAbs (Abcam, Cambridge, UK), anti-cortactin mAb (p80/85 clone 4F11, EMD Millipore, Bil-

lerica, MA), anti-cortactin pAb (H222), anti-phospho-CREB (Ser133; 87G3) rabbit mAb, and

anti-CREB (48H2) rabbit mAb (Cell Signaling Technologies, Danvers, MA), anti-GAPDH

mAb (6C5, Abcam, Cambridge, MA). Fluorescently labeled phalloidin 488 (Thermo-Fisher

Scientific) was used to visualize actin filaments. Anti-rabbit and anti-mouse secondary anti-

bodies conjugated to Alexa-488 or Alexa-568 dyes were obtained from Thermo-Fisher Scien-

tific. Mouse and rabbit secondary HRP-conjugated antibodies were purchased from GE

Healthcare (Pittsburgh, PA).

Chemical and reagents

Forskolin and H-89 were obtained from Sigma-Aldrich (St. Louis, MO); 8-Bromo-cAMP and

8CPT-2Me-cAMP were purchased from Tocris Bioscience (Bristol, UK). High-molecular-

weight polyI:C (was purchased from InvivoGen (San Diego, CA). Fluorescein-conjugated

3-kDa dextran was obtained from Thermo-Fisher Scientific.

Airway epithelial cell culture

16HBE14o- human bronchial epithelial cells (a gift from Dr. Dieter C. Gruenert, University of

California San Francisco) were cultured in collagen-coated transwells or 24-well plastic plates

as previously described [19, 34]. Primary normal human bronchial epithelial (NHBE; Lonza,

Basal, Switzerland) cells from normal and diseased donors were expanded for 1–2 passages.

Cells were trypsinized and seeded on a collagen coated 0.32 cm2 insert and grown in defined

media (Gentamicin, Amphotericin B, and Pen/Strep added to Dulbecco’s Minimal Essential

Medium (DMEM) with Ham’s F12) and differentiated at the air-liquid interface as evidence

by completely dry apical surfaces, and by transepithelial electrical resistance greater than

1500 O/cm2 surface area, observed ciliary movement, and mucus production [34].

Viral infection of epithelial cell cultures

Wild-type RSV strain A2 (RSV A2) stocks were grown as previously described [19]. Polarized

human airway epithelial cells were infected apically with RSV A2 diluted in DMEM at a multi-

plicity of infection (MOI) of 0.5. Control cell monolayers received DMEM alone. In some

experiments, we used rgRSV244 (RSV derived from RSV A2 expressing the green fluorescent

protein gene), a kind gift from Drs. Mark Peeples (Nationwide Children’s Hospital Research
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PLOS ONE | https://doi.org/10.1371/journal.pone.0181876 July 31, 2017 3 / 22

https://doi.org/10.1371/journal.pone.0181876


Institute, Columbus, OH) and Peter Collins (National Institutes of Health, Bethesda, MD), as

described previously [20, 35].

Transepithelial electrical resistance and dextran permeability assay

Epithelial permeability to small ions was evaluated by transepithelial electrical resistance

(TEER) measurements of normal and RSV-infected cell monolayers using an EVOMX vol-

tohmmeter (World Precision Instruments, Sarasota, FL). Only well-differentiated cell mono-

layers with TEER >500 O x cm2 were used in these experiments. The presented data are

calculated as percent changes compared to either vehicle-treated controls or time zero of viral

infection.

Epithelial permeability for larger molecules was evaluated by measuring transmonolayer

fluxes of fluorescein isothiocyanate (FITC)-conjugated dextran 3 kDa (Invitrogen), as previ-

ously described [34, 36, 37]. Briefly, epithelial cell monolayers growing on transwell filters

were apically exposed to 0.5 mg/mL of FITC-labeled dextran in phosphate-buffered saline

(PBS). After 30 minutes of incubation, PBS samples were collected from the lower chamber,

and FITC fluorescence intensity was measured using a FlexStation 3 plate reader (Molecular

Devices, Sunnyvale CA) with excitation and emission wavelengths of 485 and 544 nm, respec-

tively. After the value of dextran-free PBS was subtracted from each measurement, the concen-

tration of FITC-dextran was calculated using Prism 5.03 software (GraphPad, La Jolla, CA)

based on a plotted standard curve prepared via serial dilutions of the stock solution of FITC-

labeled dextran in PBS.

Immunofluorescence staining of junctional proteins, and confocal

microscopy

Epithelial cell monolayers grown on transwell inserts were subjected to different fixation pro-

tocol. To label the AJC proteins and cortactin, cells were fixed with either 100% cold methanol

or ethanol, respectively. To visualize actin filaments and CREB proteins, the cells were fixed in

4% neutral-buffered paraformaldehyde (PFA), with subsequent permeabilization with 0.05%

Triton-X100. The fixed cells were incubated with specific primary antibodies, followed by

incubation with Alexa Fluor-labeled secondary antibodies. Nuclei were stained with DAPI

(Sigma-Aldrich).

Immunofluorescently-labeled cell monolayers were examined using an Olympus FluoView

1000 confocal microscope (Olympus America, Center Valley, PA) with a 100X U Plan S Apo

1.4 NA oil objective. The Alexa Fluor 488 and 568 signals were imaged sequentially in frame-

interlace mode to eliminate cross talk between channels. The images were processed using

Olympus FV10-ASW 2.0 Viewer software and Adobe Photoshop. Images shown are represen-

tative of at least 3 independent experiments, with multiple images taken per slide.

Protein electrophoresis and immunoblotting

After indicated treatments of cell monolayers in cell culture plates, cells were washed with cold

PBS and lysed in RIPA buffer (Santa Cruz Biotechnologies, Dallas, TX). Protein concentration

was quantified with a bicinchoninic acid (BCA) protein assay (Pierce Thermo Scientific, Wal-

tham, MA). Equal concentrations of protein from each sample were resolved on a SDS-PAGE

and transferred to a PVDF membrane (Bio-Rad, Hercules, CA). Membranes were blocked

with non-fat dry milk, or in cases of phosphor antibodies with bovine serum albumin (BSA),

and probed with primary antibodies overnight followed by secondary antibodies. Membranes

were exposed to ECL (GE Healthcare) and protein bands were detected using X-ray film.

GAPDH was used as a lane protein loading control.

cAMP-PKA activation inhibits RSV-induced barrier disruption
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Extraction of RNA and quantitative real-time polymerase chain reaction

analysis

Total RNA was extracted from pretreated monolayers in cell-culture plates using E.Z.N.A total

RNA kit (OMEGA bio-tek, Norcross, GA) with additional DNase digestion (Omega). cDNA

was synthesized using qScript cDNA Synthesis Kit (Quanta Bioscience, Gaithersburg, MD)

and was amplified by real-time PCR with an iQ5 multicolor Real-Time PCR Detection System

(Bio-Rad) using SYBR Green fastmix (Quanta Bioscience) and primers targeting the 87 bp

sequence of the RSV strain A2 genome, which encodes for the viral fusion (F) protein (5’
CACCCTGTTGGAAAC3’ and 5’ CTCTGTCAGTTCTTG3’-from Sigma-Aldrich). Transcript

expression was normalized using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the

housekeeping gene. The relative change in gene expression was calculated using the formula:

% change = 2^-(ΔΔCt) = 2-ΔCt(treated samples)- ΔCt(control samples) where ΔCt = -Ct

(detected gene)-Ct(GAPDH) and Ct is the threshold number.

cAMP measurement

Intracellular cAMP concentration in the clarified lysates was determined using CatchPoint

cAMP kit (Molecular Devices; Sunnyvale, CA) as per manufacturer’s instructions.

Statistical analysis

Data were analyzed using Prism software (GraphPad, San Diego, CA) and Microsoft Excel.

Data are representative of three or more experiments and are presented as means ± SEMs.

Data were evaluated statistically with ANOVA or the Student’s t-test, with Bonferroni correc-

tion for multiple comparisons. Significance was considered at a P value of less than 0.05.

Results

Forskolin markedly attenuates RSV-induced AJC disassembly

To test the hypothesis that increased intracellular cAMP level could protect the epithelial bar-

rier from disruption caused by RSV infection, polarized airway epithelial cells were infected

with RSV strain A2 at a 0.5 MOI in the presence or absence of forskolin, a known activator of

adenylyl cyclase, which is responsible for cAMP production. In agreement with our previously

published data [19], RSV caused a marked decrease in TEER at 24 and 48 h of viral infection

(Fig 1A), thereby indicating disruption of the epithelial barrier. Two different concentrations

of forskolin (20 and 50 μM) consistently attenuated the RSV-induced barrier breakdown.

Based on these results, the forskolin concentration of 20 μM was chosen for subsequent experi-

ments. In order to examine if such forskolin-dependent preservation of the epithelial barrier is

mediated by its effects on the AJC, we next visualized TJ organization in control and RSV-

infected epithelial cell monolayers. Immunofluorescence labeling of an essential TJ protein,

zonula occludens (ZO)-1, demonstrated a normal ‘chicken wire’ TJ pattern in control cell

monolayers (Fig 1B, arrows). This pattern was significantly disrupted after 48 h of RSV infec-

tion reflecting TJ fusion during formation of multicellular syncytia (Fig 1B, thick arrowheads),

along with intracellular accumulation of ZO-1 (Fig 1B, thin arrowheads). Incubation with for-

skolin (48 h) did not affect ZO-1 labeling in control epithelial cell monolayers, but prevented

RSV-induced alterations in ZO-1 labeling (Fig 1B). Together, these data indicate that forskolin

attenuates disruption of TJ structure and increased paracellular permeability in bronchial epi-

thelial cells caused by RSV infection.

16HBE14o- cells have been shown to exhibit well-defined AJCs and appear morphologically

similar to airway epithelial cells in vitro [19, 34, 38, 39]. To ensure physiological relevance of

cAMP-PKA activation inhibits RSV-induced barrier disruption
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the results obtained with immortalized 16HBE14o- bronchial epithelial cells, we also used pri-

mary normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface and

differentiated into a mucociliary phenotype. NHBE cell monolayers were infected apically

with RSV for 48 h in the presence and absence of forskolin. Under the air-liquid conditions,

NHBE cells formed tight junctions (Fig 1C arrows). Similar to 16HBE14o- cells, RSV induced

a substantial TJ disassembly in NHBE cells, which was manifested by the disruption of ZO-1

labeling (Fig 1C, thin arrowheads), and syncytia formation (thick arrowheads). This junctional

disruption was completely prevented by forskolin treatment (Fig 1C). Because 16HBE14o-

cells exhibited a similar response to RSV infection as differentiated human primary cells, we

utilized those for our subsequent experiments.

Given the fact that forskolin is a potent inductor of cAMP production, we next examined

whether the protective effects of forskolin on airway epithelium is associated with an increase

in intracellular cAMP. Polarized bronchial epithelial cells were infected with RSV (MOI, 0.5)

for varying lengths of time (1–24 h), followed by stimulation with forskolin (20 μM) for 15

minutes. At all tested times, intracellular cAMP was increased by 30–40 fold from baseline

after 15 minutes added forskolin to the RSV-infected cell cultures (Fig 1D). Note that mock-

infected cultures had similar cAMP levels as RSV infected cells, and RSV infection alone did

not alter the baseline intracellular cAMP levels (Fig 1D).

Fig 1. Forskolin attenuates RSV-induced epithelial tight junction disassembly by increasing the

intracellular cAMP level. (A) Confluent epithelial cell monolayers were infected with RSV (MOI, 0.5) for 48 h

in the presence or absence of forskolin (10–50 μM,). TEER was measured at indicated time points. (B)

Confluent epithelial cell monolayers were infected with RSV (MOI, 0.5) for 48 h in the presence or absence of

forskolin (20 μM). Tight junction protein, ZO-1 (green), was visualized by immunofluorescence labeling and

confocal microscopy. The nuclei were counterstained with DAPI (blue). Note the characteristic “chicken wire”

appearance of ZO-1 in control non-infected cells (arrows), and ZO-1 translocation into cytoplasmic dot-like

structures in RSV-infected cells (thin arrowheads). Also, note the syncytia formation in RSV-infected cells

(thick arrowheads). Scale bar, 40 μm. (C) Primary human bronchial epithelial cells were infected with RSV

(MOI, 2) for 48 h in the presence or absence of forskolin followed by visualizing ZO-1 by immunofluorescence

labeling and confocal microscopy. Arrows demonstrate normal junction formation, and thin arrowheads

indicate the disappearance of TJ ZO-1 staining in the RSV-infected cell monolayer and thick arrowheads

shows syncytia formation. Scale bar, 40 μm (D) Cells were infected with RSV (MOI, 0.5) for 24 h, followed by

forskolin treatment (20 μM) for 15 min and subsequent measurement of the cAMP concentration in the total

cell lysates. Each image and graph is representative of at least 3 independent experiments. Data is presented

as mean ± SEM **, P< 0.01 and ***, P< 0.001 as compared to RSV-infected vehicle-treated cells.

https://doi.org/10.1371/journal.pone.0181876.g001
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Treatment with a stable cAMP analog prevents RSV-induced barrier

disruption and AJC disassembly

Since the observed barrier-stabilizing effects of forskolin correlated with the increased produc-

tion of cAMP, we sought to determine if cAMP analogs could also play protective roles in

RSV-infected cell monolayers. Furthermore, we asked if forskolin and cAMP-dependent stabi-

lization of the airways epithelial barrier involve activation of its major effector molecule,

Epac. In order to answer these questions, we used 8-Bromo-cAMP (a cell-permeable cAMP

analog resistant to degradation by phosphodiesterases) and 8CPT-2Me-cAMP, which is a cell-

permeable selective activator of Epac [40]. A dose-response study demonstrated that 8-Bromo-

cAMP (50 and 100 μM) consistently attenuated the RSV-induced drop in TEER of bronchial

epithelial cell monolayers (Fig 2A). In contrast, the same concentrations of 8CPT-2Me-cAMP,

which are known to efficiently activate Epac [40], failed to prevent the RSV-induced reduction

in TEER (Fig 2B). Of note, neither of these compounds was toxic to the cells based on the

LDH release assay (data not shown). Similar to forskolin, 8-Bromo-cAMP and 8CPT-2Me-

cAMP did not affect the integrity of TJ in control bronchial epithelial cell monolayers (Fig 2C).

During 48 h of RSV infection, addition of 8-Bromo-cAMP (100 μM) markedly attenuated dis-

ruption of TJ (ZO-1 and occludin) and AJ (E-cadherin and β-catenin), thereby mimicking the

AJC-protective effects of forskolin (Fig 2D). In contrast, cell exposure to 8CPT-2Me-cAMP

failed to attenuate RSV-induced AJC disassembly (Fig 2D). These microscopy data were con-

firmed by functional studies, where both forskolin and 8-Bromo-cAMP attenuated the RSV-

induced drop in TEER and the increased transepithelial dextran flux, whereas 8CPT-2Me-

cAMP was ineffective (Fig 2E and 2F). Claudins are integral membrane proteins, known to be

components of TJ strands, interacting with other transmembrane TJ proteins, and essential for

TJ stability [41, 42]. Consistent with the reported effects on other AJ and TJ proteins, junc-

tional localization of claudin 1 and 4 were disrupted by RSV infection. Both forskolin and

8-Bromo-cAMP, but not 8CPT-2Me-cAMP, attenuated such RSV-induced mislocalization of

claudin 1 and claudin 4 in bronchial epithelial cells.

Collectively, these results suggest that forskolin-induced elevation of intracellular cAMP

attenuates RSV-induced disruption of the model airway epithelial barrier in an Epac-

independent fashion.

Forskolin induces PKA activation in bronchial epithelial cell monolayers

The lack of barrier-protective effect of the pharmacologic Epac activator suggests that forskolin

and cAMP attenuate the effects of RSV on epithelial junctions by activating PKA. To test this

suggestion, we measured the effects of forskolin on phosphorylation and activation (nuclear

translocation) of CREB (cAMP response element-binding) protein, which is a known direct

substrate of PKA [43]. Polarized bronchial epithelial cell monolayers were infected with RSV

A2 at an MOI of 0.5 for 24 h followed by stimulation with forskolin (20 μM) for 5–60 minutes.

Expression and localization of phosphorylated (p), and total, CREB were examined by immu-

noblotting and immunofluorescence labeling and confocal microscopy. A lower proportion of

nuclei exhibited positive labeling for p-CREB in vehicle-treated controls as compared to for-

skolin-exposed cells, indicating an activation of PKA by this treatment (Fig 3A). Furthermore,

forskolin treatment increased the amount of p-CREB but not total CREB in total cell lysates

obtained from either control or RSV-infected epithelial cells (Fig 3B). Interestingly, a selective

PKA inhibitor, H89, significantly blocked forskolin-induced phosphorylation and nuclear

translocation of CREB (Fig 3C and 3D), thereby providing additional evidence of PKA activa-

tion in forskolin-treated bronchial epithelial cells. Because H89 attenuated the phosphoryla-

tion of CREB, we sought to investigate whether H89 is able to attenuate the protective effect of

cAMP-PKA activation inhibits RSV-induced barrier disruption
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forskolin on airway barrier. Polarized bronchial epithelial cell monolayers were infected with

RSV A2 at an MOI of 0.5 for 48 h in the presence or absence of forskolin (20 μM) and H89

(10 μM). In cells treated with H89, forskolin failed to attenuate RSV-induced AJC disassembly

(Fig 3E).

Elevated cAMP reduces RSV F mRNA in epithelial cells

The infectious cycle of RSV consists of attachment and entry into the host cell, transcription,

replication, assembly, and release of new viral particles. During viral entry into epithelial cells,

Fig 2. cAMP attenuates RSV-induced epithelial junctional disassembly via Epac-independent mechanisms. (A,B) Confluent

epithelial cell monolayers were infected with RSV at an MOI of 0.5 for 48 h in the presence or absence of a stable cAMP analog, 8-Bromo-

cAMP (10–100 μM), or an Epac activator, 8CPT-2Me-cAMP (50–100 μM). TEER was measured at indicated time points. (C) Confluent

airway epithelial cell monolayers were treated for 48 h with either vehicle, 8-Bromo-cAMP or 8CPT-2Me-cAMP. Cells were fixed and labeled

for ZO-1 (green) and nuclei (blue). Scale bar, 40 μm. (D) Airway epithelial cell monolayers were infected with RSV (MOI, 0.5) for 48 h in the

presence of the vehicle, forskolin (20 μM), 8-Bromo-cAMP (100 μM), or 8CPT-2Me-cAMP (100 μM). Cells were fixed and immunolabeled for

different AJ (E-cadherin, β-catenin) and TJ (ZO-1, occludin) proteins. Note a marked TJ and AJ disassembly in RSV-infected, vehicle

treated cells (short arrows) and preservation of normal AJC appearance in virus-infected cells treated with either forskolin or 8-Bromo-cAMP

(long arrows). Scale bar, 40 μm. (E, F) Cells were infected with RSV in the presence of either vehicle, forskolin or cAMP analogs, followed by

measuring TEER at the indicated times and transepithelial paracellular flux of FITC-dextran at 48 h of viral infection. (G)

Immunofluorescence staining for claudin 1 and 4 in epithelial cells infected with RSV. There is marked TJ and AJ disassembly in RSV-

infected cells and virus-infected cells treated with 8CPT-2Me-cAMP (short arrows). There is a preservation of normal AJC appearance in

virus-infected cells treated with either forskolin or 8-Bromo-cAMP (long arrows). Scale bar, 40 μm. Each image and graph is representative

of at least 3 independent experiments. Data is presented as mean ± SEM **, P< 0.01 and ***, P< 0.001 as compared to RSV-infected

vehicle-treated cells.

https://doi.org/10.1371/journal.pone.0181876.g002
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RSV F protein mediates fusion of the virus to the cell membrane, and subsequent cell-to-cell

spread by fusion of neighboring cell membranes resulting in the formation of syncytia. Since

both forskolin and 8-Bromo-cAMP decreased RSV-induced syncytia formation, we hypothe-

sized that elevated intracellular cAMP, and its downstream signaling effectors, might decrease

RSV F mRNA titer. To test this possibility, bronchial epithelial monolayers were infected with

RSV (MOI, 0.5) in the presence or absence of forskolin or cAMP analogs, and expression of a

viral 87 bp sequence encoding the F protein was quantified by real-time PCR. We found that

expression of RSV A2 F mRNA significantly decreased in epithelial cells pretreated with either

forskolin or 8-Bromo-cAMP, while 8CPT-2Me-cAMP did not affect RSV A2 F expression

(Fig 4A). In a parallel experiment, cells were infected with rgRSV (RSV derived from RSV A2

expressing the green fluorescent protein gene) followed by numeration of GFP-positive cells in

the entire monolayer at 22 h post infection. Cells infected with rgRSV and co-treated with for-

skolin or 8-Bromo-cAMP, but not 8CPT-2Me-cAMP, yielded fewer GFP-positive cells (Fig 4B

and 4C). Thus, along with PKA’s preservation of AJC structure and functions, these results

suggest that increase in cAMP level inhibits mRNA expression of the F protein and attenuated

viral spreading in airway epithelial cell monolayers.

Fig 3. Forskolin-activates PKA signaling in control and RSV-infected airway epithelial cells. Epithelial cell monolayers

were infected with RSV (MOI, 0.5), and at 24 h post infection, cells were exposed to forskolin for 5–60 min. (A) Cellular

localization of p-CREB (red) was determined by immunolabeling and confocal microscopy. Nuclei were visualized by DAPI

labeling (blue). Arrows indicate nuclear localization of p-CREB in forskolin-treated cells. Scale bar, 40 μm. (B) Immunoblot

images of p-CREB and total CREB expression, and densitometric quantitative in epithelial cells after 30 min exposure to either

vehicle or forskolin, with and without RSV infection for 24 h. (C) Epithelial cells were exposed to H89, a specific PKA inhibitor,

for 2 h followed by forskolin treatment for 5–60 min. Cellular localization of p-CREB (red) was determined by immunolabeling

and confocal microscopy. Nuclei were visualized by DAPI labeling (blue). Scale bar, 40 μm. (D) Immunoblot images and

densitometric quantitative of p-CREB and total CREB expression in epithelial cells after exposure to either vehicle, forskolin, or

a combination of forskolin and H89 with and without RSV infection for 24 h. (E) Confluent airway epithelial cell monolayers were

infected with RSV (MOI, 0.5) for 48 h, in the presence or absence of forskolin (20 μM), and H89 (10 μM) followed by

immunofluorescent staining. The nuclei were counterstained with DAPI (blue). Scale bar, 40 μm. Data is presented as

mean ± SEM. Each image and graph is representative of at least 3 independent experiments. Densitometric quantification was

performed of 3 independent experiments.

https://doi.org/10.1371/journal.pone.0181876.g003
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Forskolin prevents RSV-induced AJC disassembly even when added

after viral inoculation

To gain additional insights into the effects of elevated cAMP on the viral infection, we infected

cells with RSV (MOI, 0.5), with subsequent addition of forskolin at different times following

viral inoculation (0–24 h). Immunofluorescence labeling and confocal microscopy indicate

that forskolin inhibited RSV-induced disruption of the AJC structure when it was added after

RSV inoculation (Fig 5A). Interestingly, protective effects of forskolin on the organization of

epithelial TJ and AJ was evident even when this cAMP-elevating agent was added as late as

24 h after the beginning of viral infection (Fig 5A, arrows). Likewise, this ‘therapeutic’ mode

of forskolin addition attenuated the RSV-dependent increase in transepithelial dextran flux

(Fig 5B) and inhibited mRNA expression of RSV F protein (Fig 5C).

cAMP attenuates disruption of the airway epithelial barrier triggered by

dsRNA

The results obtained in this study emphasize two different effects of increased cAMP level in

RSV-infected airway epithelial cells. One effect is the attenuation of virus-induced barrier

breakdown and AJC disassembly, and the other effect is the inhibition of RSV F mRNA

expression and viral propagation within the epithelial monolayers. This creates an important

question whether the described barrier-protecting effects of cAMP represent an independent

Fig 4. Increase in intracellular cAMP inhibits decreased RSV A2 F mRNA in epithelial monolayers. (A) Polarized epithelial cells

were infected with RSV or rgRSV (MOI, 0.5), for 48 h in the presence of the vehicle, forskolin, or cAMP analogs. RSV A2 F mRNA in

epithelial cell monolayers was determined by RT-PCR analysis. (B, C) GFP-positive rgRSV-infected cells were visualized and counted by

immunofluorescence microscopy. Each image is representative of at least 3 independent experiments. Data is presented as mean ± SEM

(n = 3) **, P< 0.01 and ***, P< 0.001 as compared to RSV-infected vehicle-treated cells.

https://doi.org/10.1371/journal.pone.0181876.g004
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Fig 5. Forskolin exerts protective effects in epithelial monolayers being added after the beginning of RSV infection. Confluent

airway epithelial cell monolayers were infected with RSV (MOI, 0.5) for 48 h. Forskolin (20 μM) was added to the cells either at the onset of

viral infection (0 h) or at different times after RSV administration. (A) Cells were fixed and immunolabeled for different TJ and AJ proteins.

Note that forskolin attenuated RSV-induced TJ and AJ disruption, even when added after the beginning of the infection (arrows). Scale bar,

40 μm. (B) The effect of forskolin on the permeability of control and RSV-infected cell monolayers was determined by measuring
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mechanism or is strictly a secondary effect of the inhibited viral propagation. To answer this

question, we utilized a synthetic, non-replicating, double-stranded RNA viral mimic (dsRNA

Polyinosinic:polycytidylic acid or polyI:C) [44–47]. In agreement with our previous study [34],

polyI:C treatment of airway epithelial cell monolayers dramatically increased epithelial perme-

ability (Fig 6A) and caused TJ and AJ disassembly (Fig 6B, short arrows). These effects mim-

icked barrier-disrupting consequences of RSV infection. The described structural and

functional defects of the AJC in polyI:C-treated airway epithelial cells were significantly atten-

uated by forskolin and 8-Bromo-cAMP treatment, but not 8CPT-2Me-cAMP (Fig 6A and 6B).

These results indicate that cAMP can attenuate epithelial barrier dysfunctions caused by viral

products by mechanisms independent of inhibition of viral replication.

Forskolin inhibits RSV-induced remodeling of the cortical F-actin

cytoskeleton

The integrity and permeability of different epithelial barriers are regulated by the perijunc-

tional actin cytoskeleton [48]. Our previous study demonstrated that RSV infection disrupted

the actin cytoskeleton in airway epithelial cell monolayers [19]. Therefore, we next asked

whether the observed barrier-protective effects of cAMP are associated with altered remodel-

ing of the junction-associated filamentous (F) actin. Fluorescence labeling was used to visualize

F-actin and an essential actin binding protein, cortactin, in control and RSV-infected cell

monolayers. Control epithelial cells demonstrated assembly of the prominent circumferential

F-actin belt at the level of the AJC (Fig 7, arrows). Cortactin weakly labeled this belt and dem-

onstrated additional apical labeling. RSV infection caused dramatic cytoskeletal rearrange-

ments manifested by the increased accumulation of diffuse actin filaments at the apical region

of the cell, especially in the areas of formed syncytia (Fig 7, arrowheads). Cortactin appears to

have accumulated at these prominent apical F-actin structures. Interestingly, forskolin, while

having little effect on the normal cytoskeleton, completely prevented F-actin remodeling and

cortactin translocation in RSV-infected epithelial cells (Fig 7, arrows). These results demon-

strate that the observed barrier-protective actions of cAMP could be mediated by the inhibi-

tion of cytoskeletal rearrangement in RSV-infected epithelial cell monolayers.

Discussion

Emerging evidence indicates a critical role for the airway epithelial barrier in regulating

responses to environmental stimuli such as allergens and viral infections [49, 50]. While RSV

infection causes airway inflammation [9–13] and disrupts the epithelial barrier [19], causal

connections between such barrier dysfunctions and propagation of mucosal inflammation

have yet to be established.

In the present study, we describe a previously unanticipated pharmacologic approach to

stabilize the airway epithelial barrier and limit RSV infection in vitro. This approach involves

increasing intracellular cAMP level by either applying a pharmacological adenylyl cyclase acti-

vator, forskolin, or by using a stable cell-permeable analog of cAMP. The increased cAMP

attenuated all detrimental effects of RSV infection on the epithelial barrier, which include

increased permeability to ions and large non-charged tracers, as well as TJ and AJ disassembly

(Figs 1 & 2). Interestingly, such barrier-protective effects were observed when cAMP was

transepithelial dextran flux at 48 h of RSV infection. (C) mRNA expression of RSV F protein in epithelial cell lysates was quantified by

RT-PCR at 48 h after RSV administration. For all assays, data is presented as mean ± SEM (n = 3). ***, P<0.001. Each image is

representative of at least 3 independent experiments.

https://doi.org/10.1371/journal.pone.0181876.g005
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Fig 6. Increase in cAMP level attenuates polyI:C induced disruption of the airway epithelial barrier.

Confluent airway epithelial cell monolayers were treated for 24 h with polyI:C (5 μg/ml) in the presence or

either vehicle, forskolin (20 μM), or cAMP analogs (100 μM). (A) Barrier permeability was determined by

measuring transepithelial dextran flux. Data is presented as mean ± SEM (n = 3); ***, P< 0.001. (B) The

structure of the epithelial AJC was determined by immunofluorescence labeling and confocal microscopy of
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elevated in either ‘prevention’ mode, on the onset of RSV infection, or in the ‘therapeutic’

mode, several hours after initiation of the viral infection (Fig 5). The latter observation is espe-

cially important because it raises an attractive possibility of using cAMP-elevating drugs to sta-

bilize the respiratory barrier and limit airway inflammation in RSV-infected patients.

cAMP/PKA signaling was previously implicated in the regulation of epithelial and endothe-

lial barriers, and both barrier-stabilizing and destabilizing roles of this signaling were described

[51–54]. Our study also provides insights into the mechanisms by which cAMP protects the

epithelial barrier in infected cell monolayers. Specifically, we identified PKA as a key down-

stream effector of cAMP actions. This conclusion is based on biochemical evidence of PKA

different TJ and AJ proteins. Note the disruption in normal TJ and AJ labeling pattern after polyI:C exposure

(short arrows), and preservation of normal junction labeling in polyI:C-treated cells in the presence of either

forskolin or 8-Bromo-cAMP. Scale bar, 40 μm. Image is representative of at least 3 independent experiments.

https://doi.org/10.1371/journal.pone.0181876.g006

Fig 7. Forskolin prevents RSV-induced remodeling of the perijunctional actin cytoskeleton. Confluent airway epithelial cell monolayers

were either left untreated or infected with RSV for 48 h in the presence of either vehicle or forskolin (20 μM). Cells were fixed and labeled for F-actin

or cortactin. Note that RSV infection caused the appearance of disorganized apical actin filaments and increased apical cortactin labeling

(arrowheads). All these cytoskeletal alterations were attenuated by forskolin treatment (arrows). Scale bar, 40 μm. Image is representative of at

least 3 independent experiments.

https://doi.org/10.1371/journal.pone.0181876.g007
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activation (phosphorylation and nuclear translocation of Ser133-phosphorylated CREB, Fig 3)

in forskolin-treated epithelial cells, as well as on ruling out the involvement of the alternative

cAMP effector, Epac (Figs 2 & 6). Additionally, PKA inhibition by H89 blocked forskolin-

induced Ser133 phosphorylation of CREB and reversed stabilizing effects of forskolin on apical

junctions in RSV-treated bronchial cell monolayers (Fig 3E). PKA phosphorylates a large

number of targets including adhesion, cytoskeletal, and signaling proteins, and that different

subsets of these proteins are subjected to PKA regulation under different experimental condi-

tions. PKA activation is one of several signaling events triggered by RSV infection. Addition-

ally, RSV is known to induce the activity of the NF-κB signaling pathway [55]. NF-κB is a

family of transcription factors that regulate a wide array of genes, particularly those involved

with immune responses. The relationship between cAMP and NF-κB is complex, depending

on the cell type and treatment. Most papers using epithelial cells report that cAMP inhibits

NF-κB activity [56]. However, a few studies have shown either enhanced or constant NF-κB

activity with a cAMP inducer [57].

Our data suggest that the actin cytoskeleton is involved in the observed barrier-protective

effects of cAMP/PKA signaling in airway epithelial cells. Indeed, both TJ and AJ are known to

associate with cortical F-actin bundles [58, 59]. This association is important for the stabiliza-

tion of TJ and AJ structure in steady-state epithelial cell monolayers. Furthermore, remodeling

of the perijunctional actin cytoskeleton drives AJC disassembly and barrier disruption during

tissue inflammation [48, 59]. Our present study (Fig 7), along with a previous publication [19],

demonstrates that RSV infection triggers reorganization of the perijunctional F-actin that par-

allels remodeling of apical junctions in airway epithelial cell monolayers. Since RSV does not

affect the expression of AJC proteins, we believe it impairs assembly and stability of the AJC by

triggering rearrangements of the perijunctional actin cytoskeleton.

The reorganization of actin likely involves altered dynamics (polymerization and depo-

lymerization) of actin filaments, since RSV infection also altered localization (Fig 7), and phos-

phorylation status [9] of an important regulator of F-actin dynamics, cortactin. Cortactin is a

ubiquitously expressed actin-binding protein that mediates F-actin dynamics by promoting fil-

ament polymerization [60–62]. Although the roles of cortactin in the regulation of airway epi-

thelial junctions have not been studied, this protein is known to be localized at endothelial

junctions in a cAMP-dependent fashion [63]. Immunofluorescence labeling performed in the

present study demonstrated diffuse cortical localization of cortactin in control epithelial cells

and translocation of cortactin to the lateral plasma membrane in RSV-treated cells. We also

noted increased colocalization of cortactin with peripheral F-actin bundles following RSV

infection, which may indicate cortactin-dependent remodeling of the actin cytoskeleton that

destabilizes the apical junction complex. Of note, the described cytoskeletal remodeling and

cortactin relocalization in RSV-infected epithelial cells are likely to be associated with syncy-

tium formation, since these changes were most prominent in the large multinucleated cells

(Fig 7).

The exact mechanisms underlying the PKA-dependent regulation of the actin cytoskeleton

remain poorly understood, yet several scenarios can be envisioned. One scenario involves

direct PKA-dependent phosphorylation of different actin-binding proteins. Examples of such

PKA targets are vasodilator-stimulated phosphoprotein that elongates actin filaments [64] and

alpha-adducin that caps and bundles actin filaments [65]. Another scenario involves indirect

effects of PKA on actin filament dynamics by modulating the activity of small GTPases.

Indeed, PKA is known to control the activity of Rac1 and RhoA, both of which are critical reg-

ulators of the perijunctional actin cytoskeleton [66, 67]. Further studies are required to deter-

mine the exact mechanisms that underlie the protective effects of cAMP/PKA signaling on the

actin cytoskeleton and apical junctions in RSV-infected airway epithelial cells.
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The pathophysiologic implications of RSV-induced airway epithelial barrier dysfunction

are not well understood. Epidemiological studies have repeatedly shown an association

between RSV infection, subsequent recurrent wheeze, and chronic airway inflammation. Stud-

ies have indicated that E-cadherin levels in asthmatic patients’ sputum correlate with asthma

severity [68]. Loss of p120 catenin, an AJ protein, in intestinal epithelial cells was associated

with increased mucosal inflammation and intestinal bleeding [69]. Therefore, an important

consequence of disrupted integrity of the airway epithelial barrier could be increased tissue

inflammation [70]. A dysfunctional epithelial barrier would likely enhance permeability to

allergens and particles where they could then encounter dendritic cells and other immune

cells, resulting in initiation of immune responses [71]. Inflammation could further exacerbate

AJC dysfunction, therefore resulting in a vicious cycle in the airway [71, 72]. Additionally,

viral infections have long been known to increase the susceptibility to infection by other patho-

gens [73, 74]. There is evidence that treatment of influenza infection by an oral neuraminidase

prevents mortality from secondary bacterial infections [75]. Therefore, another implication of

disrupted epithelial barrier function could be the facilitation of bacterial translocations across

epithelial monolayers resulting in secondary infections [38, 76].

Another important finding of this study is that an increase in cAMP level inhibits expres-

sion of RSV F protein and viral propagation in the airway epithelial cell monolayers (Figs 4 &

5). RSV is an RNA virus that contains 10 genes encoding for 11 proteins, including the F pro-

tein, which promotes syncytia formation and is important in the viral replication cycle. Our

study suggests that an elevated intracellular cAMP level decreased both RSV F mRNA and syn-

cytia formation. This is particularly important, as some studies have shown that the degree of

viral load plays a critical role in disease severity [77–79], while others report viral load did not

correlate with RSV disease severity [80, 81]. In a mouse model of RSV infection, viral load in

the respiratory tract was directly correlated with the systemic chemocytokine response, airway

inflammation, and respiratory function [77, 82]. Furthermore, DeVincenzo et al. showed in

both naturally infected infants and healthy adult volunteers that RSV RNA loads were associ-

ated with disease severity [78, 79]. It is reasonable to suggest that inhibition of viral biogenesis

contributes to the observed barrier-stabilizing effects of cAMP. However, this is not the only

mechanism of cAMP actions, given the fact that this signaling messenger also protects the epi-

thelial AJC against disruption by polyI:C in viral replication-independent fashion (Fig 6).

There are few studies on the potential effect of cAMP activators on viral replication. For exam-

ple, activation of either cAMP/PKA- or Epac/Rap1-dependent signaling has been shown to

inhibit HIV-1 replication and cell-to-cell HIV-1 transfer [83, 84]. Pretreatment with cAMP

analogs in rat oligodendrocytes inhibited the replication of JHM virus [85]. On the other

hand, selective inhibition of Epac significantly reduced susceptibility to Middle East respira-

tory syndrome coronavirus (MERS-CoV) infections [86]. Furthermore, replication of mam-

mary tumor virus-like particles is stimulated by cAMP, whereas replication of adenovirus can

be either inhibited or stimulated by cAMP [62, 87]. Overall, our present study and the

described publications highlight cAMP as a potent modulator of viral infections in different

tissues and organs.

In summary, this study provides compelling evidence of cAMP/PKA-mediated protection

against RSV-induced disruption of the model airway epithelial barrier. Our most striking find-

ings are the multiple targets of cAMP actions in the infected epithelium that include the stabili-

zation of the AJC and the inhibition of RSV propagation. Furthermore, these antiviral and

barrier-protective functions of cAMP can be efficiently executed at different stages of the RSV

infection, including late stages of RSV propagation within the epithelium. Scientific insights

gained from these data will likely guide the design of future therapeutic approaches to treat

acute and chronic sequelae of RSV infection. In addition, future studies are planned to further
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dissect the long-term effects of RSV-induced AJC disruption, persistent lung inflammation,

and the role of cAMP signaling pathways. Ultimately, with regards to cAMP/PKA signaling

effects, in vivo models of RSV infection will be essential to investigate the roles and mecha-

nisms of viral-induced disruption of the pulmonary barrier in the complex physiology of the

lungs.

Conclusions

RSV is a major cause of lower respiratory tract infection and one of the primary reasons for

hospitalization worldwide. There is no efficient antiviral therapy or vaccine to manage the dis-

ease. The cAMP signaling pathway is involved in the regulation of many essential cellular pro-

cesses in differentiated epithelial layers. Here we sought to identify the effects of RSV on the

integrity of the airway epithelial barrier and the modulation of these effects by cAMP signaling.

We found that activation of cAMP prevents RSV-induced airway epithelial barrier dysfunc-

tion. Furthermore, cAMP activation decreased RSV viral titer even when treatment was deliv-

ered after RSV infection. These findings provide novel insights into understanding epithelial

cell responses to a clinically significant virus with poorly defined pathogenesis and limited

treatment options.
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