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Abstract

Putative mechanisms leading to the development of alcoholic cardiomyopathy (ACM) include the 

interrelated cellular processes of mitochondria metabolism, oxidative stress and apoptosis. As 

mitochondria fuel the constant energy demands of this continually contracting tissue, it is not 

surprising that alcohol-induced molecular changes in this organelle contribute to cardiac 

dysfunction and ACM. As the causal relationship of these processes with ACM has already been 

established, the primary objective of this review is to provide an update of the experimental 

findings to more completely understand the aforementioned mechanisms. Accordingly, recent data 

indicate that alcohol impairs mitochondria function assessed by membrane potential and 

respiratory chain activity. Indictors of oxidative stress including superoxide dismutase, glutathione 

metabolites and malondialdehyde are also adversely affected by alcohol oftentimes in a sex-

dependent manner. Additionally, myocardial apoptosis is increased based on assessment of 

TUNEL staining and caspase activity. Recent work has also emerged linking alcohol-induced 

oxidative stress with apoptosis providing new insight on the codependence of these interrelated 

mechanisms in ACM. Attention is also given to methodological differences including the dose of 

alcohol, experimental model system and the use of males versus females to highlight 

inconsistencies and areas that would benefit from establishment of a consistent model.
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Introduction

Alcoholic cardiomyopathy (ACM) is a consequence of excessive alcohol intake for a 

prolonged period of time and is oftentimes accompanied by impaired cardiac contractility 

and function (e.g., blood pressure, cardiac output, etc.) (1). As no definitive diagnostic 

criteria have been established, ACM is typically diagnosed based on exclusion of other 
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contributing factors in patients with dilated cardiomyopathy and a history of excessive 

alcohol use. In developed countries where per capita alcohol consumption is high, ACM 

represents a leading cause of non-ischemic dilated cardiomyopathy (2). The prevalence of 

ACM has been reported to represent between 4 – 47% of all cases of dilated cardiomyopathy 

and this high variability appears largely dependent on the specific inclusion criteria (i.e., 

cumulative alcohol intake, sex, geographic location) used for its classification (3–7). While 

not all those classified with alcohol use disorder (AUD) develop the disease, its contribution 

to mortality associated with alcohol intake is unequivocal. Therefore, determining the 

cellular and molecular factors leading to the onset and progression of ACM is central to 

developing effective treatment strategies.

ACM is a multifactorial disease and defects in mitochondrial function, oxidative stress and 

apoptosis appear fundamental to its etiology. The aim of this article is to provide an unbiased 

review of the new and important discoveries related to the role and association between 

mitochondria, oxidative stress and apoptosis in the development of ACM. To achieve this 

objective and provide a concise presentation, only research published between 2010 and the 

first half of 2017 (when this review was written) will be discussed aside from the limited 

inclusion of seminal articles that provide the context necessary for the understanding of the 

current findings. As such, the reader is directed to other high quality reviews for further 

historical perspective (8–11). The scope of this review is therefore limited to work published 

since 2010 that included the measurement of mitochondria function, oxidative stress and/or 

apoptosis subsequent to either acute or chronic alcohol treatment in vitro, in animal models 

or in samples from human. Additionally, effort was made to identify methodological 

differences, including those related to alcohol dose and duration as well as the sex of the 

subject as these represent an important source of variability that likely contributed to 

observed differences in experimental outcomes. Finally, to ensure an unbiased review of the 

literature, we have included all well-designed studies whether or not their findings support 

the prevailing hypothesis in an area. Figures 1 and 2 which summarize the response of heart 

and cardiomyocytes to acute and chronic exposure to alcohol, respectively, are presented to 

provide a visual framework for which the subsequent literature review.

1. Mitochondria

1.1 Structure and function

The impact of alcohol on heart mitochondria structure was established by early work that 

demonstrated alcohol produced mitochondria enlargement and degeneration of inner 

mitochondria membrane folds (12, 13). These findings were recently extended to show that 

chronic alcohol consumption decreased mitochondrial number, but not size (14), and 

increased mitochondria fragmentation (15).

1.1.1 Membrane potential—Consistent with the reported structural alterations, alcohol 

also impaired mitochondrial function. Mitochondrial membrane potential or more 

specifically early membrane depolarization has been used as an indicator of mitochondrial 

dysfunction (16). When cardiomyocytes were cultured with alcohol (100 mM, 6 days or 50–

200 mM, 24 hr) the membrane potential was decreased and the percentage of depolarized 
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mitochondria was increased (17–19). Acute alcohol intoxication (1 or 3 day, 3g/kg) in male 

mice led to a similar decrement in membrane potential (20, 21). The generation of alcohol 

metabolites may have contributed to the alcohol mediated mitochondrial changes as the 

decrease in membrane potential was greater in mice lacking aldehyde dehydrogenase 

(ALDH) or alcohol dehydrogenase (ADH) than in wild-type littermates (20, 21). 

Dysregulation of the SHC (SRC homology 2 containing) (p66Shc)/Pin1 pathway was also 

implicated in the alcohol-induced change in mitochondrial membrane potential. Specifically, 

Pin1 overexpression exacerbated the alcohol-induced decrease in mitochondrial membrane 

potential, whereas mitochondrial dysfunction was prevented by the knockdown of Pin1 or 

blockade of either p66Shc or protein kinase C (PKC)-β (18, 19).

1.1.2 Citric acid cycle and respiratory chain complexes—Reduced enzyme activity 

and the content of proteins in the tricarboxylic acid (TCA) cycle and electron transport chain 

(ETC) are also indicative of the detrimental effects of alcohol on mitochondria function. For 

example, past (pre-2010) work reported that alcohol decreased the mitochondrial respiratory 

control index/ratio (RCI) (the ratio of state III/IV respiration) (22, 23), state III respiration, 

and mitochondrial oxygen consumption suggesting uncoupling of oxidation phosphorylation 

(8, 22–27). Further, alcohol decreased the activity of several enzymes within the TCA cycle 

providing additional evidence of its negative impact on mitochondrial function (8, 28).

This work has recently been extended and alcohol-induced changes in respiratory chain 

components have now been quantified. First, complex I which is responsible for NADH 

oxidation may be dose-dependently decreased by alcohol. No change in complex I activity 

was detected in male rats provided beer (5.4% alcohol) for 21 days or male mice fed alcohol 

(5% v/v liquid diet) for 10 days (29, 30). However, when more severe alcohol feeding 

paradigms were used, including 10 days of alcohol in combination with a single binge 

episode, and 20 or 40 days of alcohol intake supplemented with and without binges every 10 

days (male mice) complex I activity was decreased (30).

While complex I transfers protons across the inner mitochondrial membrane to create an 

energy gradient, complex II transfers electrons via flavin adenine dinucleotide (FAD+) and is 

the only complex that is part of both the TCA cycle and ETC. As electrons are gained in the 

conversion of succinate to fumarate, succinate dehydrogenase activity is often assessed as a 

marker of complex II activity. Succinate dehydrogenase activity was decreased in 

cardiomyocytes after both long-term (6 days; 10, 50, 100 mM) and short-term (24 h; 100, 

200 mM) alcohol exposure (17, 31). This decrease in complex II activity was also evident in 

vivo in male mice after 20 days of alcohol (including 2 binge episodes) or 40 days of alcohol 

(with or without 4 binge episodes) (30). Conversely, when the alcohol dose or duration was 

lowered the effect on complex II activity was also lost (30, 31).

Alcohol treatment of cardiomyocytes (50, 100 and 200 mM for 24 h) also dose-dependently 

decreased complex IV. Additionally, chronic alcohol intake in male mice (20 or 40 days plus 

binge episodes every 10 days) or male rats (4 months of alcohol feeding) reduced 

cytochrome oxidase activity (17, 30). Acute alcohol intoxication (3 days, 3 g/kg/day) also 

decreased myocardial cytochrome c oxidase (COX IV) protein content in male mice (32). 

This decrease may be mediated by AMP-activated protein kinase (AMPK) as it was partially 
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ameliorated by whole-body AMPK knockout (32). Coenzyme Q (CoQ) is an essential 

component of the respiratory chain as it carries electrons from complex I and II to complex 

III. Limited data in this regard indicated that CoQ activity in heart did not differ between 

control and alcohol-fed (21 days of beer 5.4% alcohol) rats (29). Overall, dose- and/or time- 

dependent effects of alcohol on respiratory complex activity were observed with higher 

alcohol doses and treatment durations leading to decreased enzyme activity.

1.1.3 ATP synthesis—Finally, protein expression of the α- and β-subunits of 

mitochondrial ATP synthase has been measured in cardiomyocytes following acute alcohol. 

While no change was detected 30 min post alcohol, higher concentrations alcohol (50 mM 

and 100 mM but not 10 mM) for 24 hr increased both α- and β-subunit (33). There were 

several noteworthy aspects of these findings. First, decreased, not increased subunit 

abundance would be expected based on prior reports of the negative effects of alcohol on 

respiratory chain activity (17, 30, 31). Further, no concurrent change in cellular ATP content 

was observed under these experimental conditions. These data are in contrast to the findings 

from several other studies that showed alcohol decreased ATP levels. For instance, decreased 

ATP content was observed in cardiomyocytes after 6 d of alcohol exposure (50 mM) (17) 

and in whole heart from alcohol-fed (18% in drinking water, 3 months) male mice (34). 

Similarly, ATPase activity, ATP content as well as adenine nucleotide translocator 1 (ANT1) 

mRNA, protein and activity were all reduced after 2, 4 or 6 months of alcohol feeding in 

male rats (14). Second, alcohol only altered protein expression (not mRNA levels) 

suggesting the time point of the measurement was not optimal for detecting changes in 

mRNA, the alcohol effect was primarily at the translational level, or ANT1 protein 

degradation was reduced as a compensatory mechanism (33). Lastly, the increased 

expression of ATP synthase subunits may represent a compensatory response to the 

increased mitochondrial size discussed above. These findings are in contrast to the reported 

decrease in respiratory chain activity and indicate that further verification of the effects of 

alcohol on ATP production and its associated machinery is required especially using in vivo 

systems.

1.2 Regulators of mitochondrial biogenesis

1.2.1 PGC1α, UCP2 and ERRα—Alcohol may also impact mitochondrial function via 

regulation of proteins implicated in mitochondria biogenesis including peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) (15, 30, 35). 

Specifically, chronic alcohol intake (4% v/v liquid diet, 16 wk) in male mice decreased 

PGC-1α protein in heart (15) and 10 to 40 days of chronic alcohol feeding paired with a 

binge episode every 10 days decreased PGC-1α mRNA (30). In contrast, myocardial 

PGC-1α protein or mRNA content were not altered by acute alcohol (1 g/kg, 3 days) (35) 

possibly suggesting a time- or dose-dependent effect on this endpoint. PGC-1α enhances 

mitochondrial biogenesis via up-regulation of uncoupling protein-2 (UCP2) and estrogen 

related receptor alpha (ERRα) (36). Consistent with the effect observed for PGC-1α, 

chronic alcohol feeding (4% v/v liquid diet, 16 wk) decreased UCP2 protein in male mice 

(15), whereas in contrast, acute intoxication (3 days, 1 g/kg) did not alter UCP2 protein 

content (35). Lastly, 10–40 days (± binge episodes at 20 and 40 days) of alcohol intake in 

male mice decreased ERRα mRNA which was in agreement with its regulation by PGC-1α 
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(30). Therefore, it was concluded that chronic alcohol intake suppressed PGC-1α, UCP2 and 

ERRα, whereas acute doses of alcohol lasting less than 3 days were not sufficient to impair 

the expression of these regulatory factors.

1.2.2 mtDNA—As mitochondria contain their own DNA, the abundance of mitochondrial 

DNA (mtDNA) provides a measure of biogenesis or damage to the organelle. Results from 

early studies were equivocal as mtDNA content was reported to be either increased (37) or 

unchanged (38) after chronic alcohol consumption. Acute consumption led to time-

dependent changes characterized by an initial transient decrease in mtDNA followed by an 

increase at 24 and 48 hr (39). The most recent work by Laurent et al. (2014) showed that 

mtDNA copy number was decreased and mtDNA damage was increased in cardiomyocytes 

exposed to alcohol [6 days, 100 mM (but not 50 mM)] (17). Further, chronic alcohol feeding 

in male rats (10% v/v in water, 4 mo) selectively increased mtDNA damage assessed by 

increased mitochondrial topoisomerase-dependent DNA strand breakage without altering 

copy number (17). Therefore, alcohol may damage the replicative potential of mitochondria 

in addition to the functional aspects for which mtDNA primarily encodes. The mtDNA 

damage may have resulted from an alcohol-mediated induction of oxidative stress as 

mitochondria are a primary site of reactive oxygen species (ROS) production. With this in 

mind, the following section discusses the literature related to oxidative stress produced by 

alcohol in heart in relation to ACM.

2 Oxidative stress

Mitochondria produce reactive oxygen species which, depending on the context and 

concentration, have either adaptive or damaging effects. For example, high levels of ROS 

production may eventually lead to apoptosis by promoting oxidation of lipids, proteins and 

DNA, as is seen in the development of ACM (40, 41). For the purpose of this review when 

ROS was experimentally reported (and not specified), it was assumed to include the 

generation of oxygen free radicals, such as superoxide anion radical (O2
·−) and hydroxyl 

radical (˙OH), and non-radical oxidants, such as hydrogen peroxide (H2O2) and singlet 

oxygen (1O2) among other free radical molecules. In general, past work indicates that 

alcohol (acute and chronic) increased or did not change myocardial oxidative stress, 

although the specific markers used to reach this conclusion varied by study and model 

making definitive conclusions elusive. For example, the activities of catalase that accelerates 

H2O2 breakdown and superoxide dismutase (SOD) which has anti-oxidant properties were 

increased (42–45) or unchanged (46, 47) by chronic alcohol (8, 45–47). Further, the 

myocardial content of the anti-oxidant glutathione (GSH) (48) and glutathione peroxidase 

(47) was decreased in response to chronic alcohol feeding. The potential importance of 

increased oxidative stress in ACM was also evidenced by data indicating that various anti-

oxidant agents including vitamin E, cyanidanol-3 (48) and N-acetylcysteine (47) ameliorated 

oxidative stress markers relative to ACM. Despite the general consensus that oxidative stress 

contributes to ACM development current results have been somewhat contradictory meriting 

further study to better define the reasons for the apparent discrepancy. As the role of 

oxidative stress in ACM has been well-defined in several prior reviews (8, 11, 49, 50) it is 

our intent to focus solely on recent data and provide a more detailed look at the influence of 
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alcohol on each oxidative product while accounting for differences in alcohol dose and 

treatment schedule.

2.1 Alcohol and ROS production

Levels of ROS assessed in vitro, ex vivo and in vivo are generally increased following 

alcohol exposure; however, time- and dose-dependent differences exist. For example, in 

isolated cardiomyocytes, alcohol (50, 100 and 200 mM; 24 h) increased ROS production 

(18, 19). Likewise, a high (100 mM) concentration of alcohol (for 30 min) increased ROS in 

cardiomyocytes harvested following ex vivo perfusion of male rat hearts, although a lower 

alcohol concentration (5 mM) decreased hydrogen peroxide (51). Further, a low alcohol 

concentration (20 mM) for a short period of time (5 min-1 hr) also did not change ROS 

production in human aortic cells (52).

In vivo studies examining ROS production after acute alcohol intoxication have also 

provided inconsistent results as ROS was increased at 10, 15, 20, 25 and 30 min after an 

acute bolus of alcohol (1 g/kg) in male rats (53), but not in a separate investigation that used 

similar doses and exposure times (0.5, 1, and 1.5 g/kg; 0–60 min) (54). The later study, 

however, established a role for sex hormones as estrogen (E2) administration to male rats 

prior to the alcohol bolus (1 g/kg and 1.5 g/kg) increased ROS (54) to match the increase 

normally observed in female rats (0.5 or 1.5 g/kg; 1 g/kg, intragastric) (55, 56). Moreover, 

ovariectomy prevented the alcohol-induced increase, while exogenous administration of E2 

restored the normal response and strongly supported a sexual dimorphic effect.

Similar to acute alcohol, chronic alcohol feeding (either 6 wks or 16 wks) increased 

superoxide production, a marker of ROS, in male mice (15, 57). The selective 

overexpression of insulin-like growth factor – I (IGF-I) in heart antagonized this increase 

(15), as did the administration of a cytochrome P450 2E1 (CYP2E1) inhibitor that blocked 

the metabolism of alcohol (57). Overall, the consensus supports an alcohol-induced increase 

in ROS. Over the long-term the tendency for alcohol to increase ROS may contribute to the 

development of ACM, although acutely the impact of alcohol on ROS is less clear. Further 

work is needed to clarify the sex-specific effects as well as other mechanisms and targets for 

ameliorating ROS production following alcohol intake.

2.2 Superoxide dismutase and byproducts

The enzyme superoxide dismutase (SOD) degrades the superoxide anion (O2
·−) radical into 

oxygen and hydrogen peroxide (less harmful than O2
·−) and thereby plays an antioxidant 

role in the control of alcohol-related oxidative damage. There are three primary SOD 

enzymes specifically, copper/zinc-containing SOD (Cu/ZnSOD, SOD1), manganese SOD 

(MnSOD, SOD2) and extracellular superoxide dismutase (ECSOD, SOD3). As much of the 

work presented below reported SOD levels without specifying which enzyme was measured, 

those findings will be discussed first before the specific enzymes are highlighted in relation 

to acute and chronic alcohol intake.

2.2.1 Superoxide dismutase—The preponderance of data indicate that chronic alcohol 

consumption decreased SOD activity in cardiac tissue of mice and rats (58–62). Daily 
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feeding regimes as short as 10 days (1.7 g/kg/day, mice) (61) or 15 days (3 g/kg/day, rats) 

(62) decreased cardiac SOD activity. Baring one exception (63), longer durations of alcohol 

consumption (4–16 wks) of varying doses in mice or rats reduced SOD activity (58–60). In 

contrast, acute alcohol intoxication yielded more variable results as SOD activity has been 

reported to be either increased (64) or decreased (65, 66). However, methodological 

differences between those studies precluded direct comparison and identification of a single 

contributing factor (64–66). For instance, a single dose of alcohol (12 mL/kg; 50% alcohol 

solution) administered to female (Sprague Dawley) rats 12 h prior to tissue collection 

decreased SOD activity (65) as did 5 doses (2 g/kg) in male rats (66). In contrast, 3 doses of 

alcohol (5 g/kg/dose) given every 12 h to female Sprague Dawley rats increased SOD 

activity in heart isolated 6 h after the last dose of alcohol (64). The increase in SOD activity 

in this later study was hypothesized to be an adaptive response to protect the myocardium 

from alcohol damage similar to the cardio-protective effects commonly reported at low 

doses; however, the doses used were relatively high and this hypothesis was not 

experimentally addressed (64). Therefore, excluding this last study, acute and chronic 

alcohol decreased SOD activity leading to oxidative damage.

2.2.2 Antioxidants—The alcohol-induced decrease in SOD activity has been successfully 

ameliorated by several interventions administered prior to acute alcohol intoxication or 

during long-term alcohol feeding. For example, pretreatment (30 days) with the anti-

oxidants selenium or vitamin E partially offset the acute alcohol-induced decrease in SOD 

activity (65). Caloric restriction was also protective as 5 wks of a restricted diet (30–40% of 

normal intake) prevented the decrease in SOD activity caused by 5 doses of alcohol (2 g/kg/

dose, every 12 hr) given over the last 3 days of the dietary restriction period (66). In contrast, 

a more severe caloric restriction (i.e., 40–50% of normal intake) exaggerated the alcohol-

induced decrease in SOD (66). In the setting of chronic alcohol intake, an anti-oxidant 

extract from the thespesia populnea plant prevented the alcohol-induced decrease in SOD 

activity (59) as did daily supplementation with sodium hydrosulfide (NaHS), a donor of 

hydrogen sulfide (H2S) (60).

2.2.3 Specific SOD enzymes—Similar to SOD, chronic alcohol feeding to rats or mice 

decreased Cu/ZnSOD activity (15, 66), while activity was either decreased (4 g/kg/d, 3 days) 

(66) or unchanged after acute alcohol (1 g/kg, 3 days) (35). The chronic alcohol-related 

decrease was ameliorated by NaHS treatment (60) or cardiac-specific overexpression of 

IGF-I (15), suggesting plausible mechanisms for the alcohol-mediated increase in oxidative 

stress.

Manganese superoxide dismutase (MnSOD) metabolizes the superoxide free radical 

produced during mitochondrial respiration and maintains homeostasis in response to cellular 

oxidative stress. Both acute alcohol intoxication (5 doses in 3 days, 2 g/kg) (66) and chronic 

feeding in male rats (18 wks, 30% alcohol in water + 12 mL/kg, 3x/day, via intragastric 

administration) (60) decreased MnSOD. Analogous to SOD and Cu/ZnSOD, treatment with 

NaHS also offset the chronic alcohol-induced decrease in MnSOD (60).

The last isoform of the SOD enzyme is the anti-oxidant SOD3 that is secreted into the 

extracellular fluid and binds to the surface of endothelial cells and the extracellular matrix. 
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Reduced levels of SOD3 are observed in heart failure and are associated with an increased 

risk of hypertension and ischemic heart disease, while elimination of SOD3 leads to 

cardiomyocyte hypertrophy and fibrosis (67–70). Despite its association with heart disease, 

only a single study has measured the effect of alcohol on its activity. Ex vivo perfusion of 

the heart with low levels of alcohol (5 mM) decreased cardiac SOD3, whereas moderate 

levels of alcohol (25 mM) did not alter SOD3 and high levels (100 mM) increased SOD3 

content (51). Hence, the regulation of myocardial SOD3 by alcohol was dose-dependent, at 

least in response to acute alcohol exposure. However, these results contradicted the inverse 

relationship between alcohol dose and SOD activity observed for the other SOD isoforms. 

Additional work is needed to confirm these observations and clarify this relationship.

2.2.4 Hydrogen peroxide, metabolites and related enzymes—Hydrogen peroxide 

(H2O2), typically produced from the reaction catalyzed by SOD, is degraded to a molecule 

of water and oxygen by catalase thereby reducing the oxidant burden. The effect of chronic 

alcohol on catalase may be duration-dependent as enzyme activity was increased after 7–8 

wks of alcohol intake (58, 63) while a shorter duration of alcohol ingestion (15, 30 or 37 

days) decreased catalase (59, 62, 71). The relative importance of sex hormones in regulating 

catalase activity has also been highlighted by data that showed that estrogen pretreatment 

increased catalase activity in male rats in a binge drinking model (54, 56) and after a single 

acute dose of alcohol (0.5, 1.0, 1.5 g/kg) (54). Conversely, increased catalase activity was 

not seen in ovariectomized female rats given an acute dose of alcohol (1.5 g/kg) but was 

observed after estrogen replacement (56). Therefore, these data suggest a potential 

mechanism by which females maybe more susceptible to ACM.

Hydrogen peroxide can also be metabolized to water by glutathione peroxidase (GPx) which 

in the process converts glutathione (GSH) to glutathione disulfide (oxidized glutathione; 

GSSG). Alcohol has been reported to downregulate both GPx and GSH (59, 60, 63, 71, 72) 

in all but one study (58). GPx may also be influenced by sex as no change was observed 

following acute or chronic alcohol intake in female rats (64, 72). The anti-oxidant GSH was 

also decreased by chronic alcohol in mice and rats after shorter periods of alcohol (10–30 

days) (59, 61, 62, 71), while it was increased in response to alcohol consumption of longer 

duration (50 days) (58). In agreement, acute alcohol intoxication (1 dose (65) or 3 doses 

(64)) decreased (65) or did not change (64) GSH in myocardial tissue from female rats. 

Similar to SOD, pretreatment with Vitamin E or selenium partially ameliorated the acute 

alcohol-induced decrease in GSH (65). Likewise, treatment with either NaHS (60) or a 

processed fish protein hydrolysate with a high anti-oxidant capacity (62) attenuated the 

chronic alcohol-induced decrease in GPx.

Another important enzyme in ROS detoxification is glutathione S-transferase (GST), a phase 

II enzyme that allows endogenous water soluble substrates like GSH to activate and remove 

xenobiotics. The effect of alcohol on this important anti-oxidant is inconsistent both in past 

(pre 2010) and more current work as chronic alcohol increased (46, 58) or decreased (59, 

73) GST in male rats and GST content was unchanged in female rats (74). The length of 

alcohol treatment and dose differed in each study and these variables along with sex 

differences could explain the discrepant findings. Similar to chronic alcohol fed female rats, 

acute alcohol (1.5 days) did not alter GST levels in female rats (64). Overall, the consensus 
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indicates that alcohol downregulates the myocardial content of various anti-oxidants, 

including those important in the metabolism of hydrogen peroxide. The highlighted work 

also exemplifies the sex-dependent nature of several of the anti-oxidants potentially meriting 

different sex based prevention and treatment strategies.

2.3 Additional markers of oxidative stress

2.3.1 Protein carbonylation—Protein carbonyl status is also used as an indicator of 

oxidative stress due to the protein oxidation caused by ROS (including superoxide, hydrogen 

peroxide and other radical species). Protein carbonyl is generally found to be increased in 

response to chronic alcohol ingestion (57, 59, 62, 65), although one report noted no 

significant change after 8 wks of alcohol feeding (male Wistar rats, 30% v/v in drinking 

water) (63). The alcohol-induced increase in protein carbonyl was prevented by pretreatment 

with the anti-oxidants selenium or vitamin E (65), administration of sardinelle heads (62), or 

inhibition of alcohol metabolism by blocking CYP2E1 (57).

2.3.2 Malondialdehyde (MDA)—Similar to protein carbonyl production, lipids can also 

be modified and indicative of oxidative stress. Malondialdehyde (MDA) is commonly used 

as a marker of lipid peroxidation and is typically assessed via the thiobarbituric acid reactive 

substances (TBARS) assay, although this assay can be somewhat nonspecific as it can react 

with other aldehydes in addition to MDA (75). The majority of results obtained from studies 

using acute alcohol models showed myocardial MDA to be increased in both male and 

female rats (56, 64–66); however, exceptions were noted (54, 55) and as with other variables 

discussed it was not possible to discern whether such differences are due to sex, time post-

alcohol and/or dose. In regards to sex, or more accurately the presence of estrogen, MDA 

was increased in male rats following 5 doses of alcohol (1 dose every 12 hr) (66), while in 

another study estrogen was required for the induction of MDA by alcohol (54). Similarly, 

ovariectomy in female mice prevented the acute alcohol-induced increase in MDA until 

estrogen was replaced (56). Dose and time effects were also noted as myocardial MDA 

content was not altered by low (0.5 g/kg) (54, 56) or moderate (1 g/kg) doses of alcohol at 

time points earlier than 60 – 90 minutes (55).

Although consistent increases in MDA were seen in rats after chronic alcohol feeding 

ranging from 15 days −18 wks (59, 60, 62, 71), one study showed no change following 50 

days of alcohol (58), while another reported MDA was decreased after 8 wks of alcohol 

consumption (63). As the duration and dose of alcohol differed in each of these studies, the 

consensus of evidence favored an alcohol-induced increase in lipid peroxidation. Lastly, as 

with other oxidative markers discussed, treatment with NaHS or anti-oxidants either reduced 

or prevented the alcohol-induced increase in MDA (60, 62).

2.3.4 4-hydroxynonenal (4-HNE)—Another marker of oxidative stress and lipid 

peroxidation is 4-hydroxynonenal (4-HNE). As with MDA, the effects of alcohol on 4-HNE 

appear dose, time and sex-dependent. At alcohol concentrations greater than 1 g/kg, acute 

intoxication increased 4-HNE, although not before 60 minutes (55, 56). Similar to MDA, 

ovariectomy prevented the alcohol-induced increase in 4-HNE in female mice, while 

estrogen replacement restored the response (56). Future work should assess cardiac 4-HNE 
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levels in response to chronic alcohol feeding as well as directly validate the sex-dependent 

effect.

2.3.5 Heat shock proteins—Heat shock proteins (Hsp) play an important role in cellular 

protection from oxidative stress; however, from the limited available data they do not appear 

to have a prominent role in mediating the development of ACM. For example, alcohol did 

not significantly alter heat shock factor 1 (HSF1) (chronic alcohol) (61), Hsp25 (chronic 

alcohol) (58), Hsp 70 (chronic alcohol) (74), Hsp72 (chronic alcohol) (61), or Hsp90 (acute 

alcohol) (32). However, lower levels of alcohol intake in male mice increased total and 

phosphorylated Hsp27 (76). In contrast, work published before 2010 indicated that Hsp 60 

and 70 were decreased in hearts from chronic alcohol-fed rats (77, 78). Differences between 

in vitro and in vivo findings were also evident in previous reports as H9c2 cells incubated 

with alcohol for 1 hr increased Hsp70 (79). Taken together, alterations in the heat shock 

proteins do not appear essential for the development of ACM.

In summary, a relatively large number of studies have measured markers of oxidative stress 

following acute and chronic alcohol intake during the last 6 years. In general, alcohol 

negatively altered the oxidative stress markers SOD activity, protein carbonyl and MDA 

levels while other markers were either modulated in a sex-dependent manner (catalase, ROS, 

GSH, GPx) or the response so variable that unequivocal conclusions could not be reached. 

Further research should focus on clarifying the contribution of oxidative stress to ACM, 

especially in humans, but at the very least should use more consistent animal models to 

improve rigor and reproducibility.

2.4 Oxidative stress and contractility

Assessing a direct, causal link between oxidative stress and contractile dysfunction is 

difficult as a multitude of factors potentially contribute precluding specific mechanistic 

manipulations. With that in mind, antioxidant agents or superoxide mimetics have instead 

been employed to investigate the potential relationship between cardiac function and 

oxidative stress in the context of ACM. For example, the SOD mimetic, tempol, prevented 

the acute alcohol-induced increase in ROS production and normalized the alcohol-induced 

decrease in the maximal rise of ventricular pressure over time (dP/dt max) measured in 

conscious animals (55). In contrast, induction of the protein heme oxygenase-1 (HO-1) (via 

cobalt protoporphyrin treatment) to protect against oxidative stress, did not abrogate the 

negative effects of alcohol on contractile endpoints including peak shortening, the maximal 

velocity of shortening/relengthening (±dL/dt), and time to 90% of relengthening (TR90) in 

cardiomyocytes (57). Overall, definitive causal evidence is lacking to conclusively link 

increased oxidative stress specifically to the development of functional deficits following 

acute alcohol intake.

3 Apoptosis

There is a well-established link between apoptosis and cardiovascular disease in general, and 

the evidence of a relationship between apoptosis and the development of ACM in particular 

has continued to grow. Early work noted the number of myocyte nuclei in the left ventricle 

was decreased in rats after chronic (8 months) alcohol consumption (80), and altered 

Steiner and Lang Page 10

Int J Biochem Cell Biol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



myocyte morphology was also detected in samples of human hearts obtained at necropsy 

that was consistent with increased apoptosis (13). Subsequently, alcohol was shown to 

increase apoptosis in rat H9c2 cardiomyocytes (81) as well as in cardiomyocytes from 

animals and humans (82). Specifically, alcohol dose-dependently (50–100 mM or 100–400 

mM) increased apoptosis in H9c2 cells or freshly isolated cardiomyocytes (83, 84). Further, 

alcohol exacerbated apoptosis produced by serum withdrawal in primary cardiomyocytes 

and such an effect was prevented by IGF-I (81). Similarly, the number of TUNEL-positive 

cells (suggesting DNA fragmentation) and the expression of Bax and Bcl-2 (markers of pro-

apoptotic actions) were increased in hearts of alcoholic patients (82). Caspase 3 activity, one 

of the most commonly measured surrogate markers for apoptosis, was increased following 

acute alcohol intoxication in mice, in part due to enhanced ROS production caused by 

acetaldehyde accumulation (85, 86). Despite the well documented enhancement of apoptosis 

by alcohol (13, 80–87), the precise mechanism remains elusive although several contributing 

factors have been posited including: angiotensin II type I receptors (88, 89), metabolism of 

alcohol to acetaldehyde via CYP2E1 (57), and signaling of growth factors including 

myostatin and IGF-I (81, 90, 91). These factors likely contribute to apoptosis through 

production of oxidative stress and mitochondrial damage (83, 89). Significant work has been 

done subsequent to these early reports to further clarify this relationship and these findings 

are described in the following section.

3.1 Alcohol and markers of apoptosis

3.1.1 TUNEL staining—Alcohol increased several indices of apoptosis including the 

number of TUNEL-stained cells, expression of pro-apoptotic proteins caspase 3 and Bax, 

and the abundance of the anti-apoptotic protein Bcl-2. For instance, chronic alcohol intake 

increased apoptotic bodies in hearts from humans (90), male and female mice (15, 57, 89, 

92), and male rats (88, 93). Based on methodological variations it appears that apoptosis can 

be increased within as little as 6 wks (4% v/v liquid diet) in mice (57) and 4 months (5% v/v 

alcohol in drinking water) in rats (93). The use of Annexin V staining with fluorescence-

activated cell sorting has confirmed an alcohol-mediated increase in apoptosis in 

cardiomyocytes (94, 95). Similarly, the number of apoptotic nuclei detected via TUNEL was 

increased after acute alcohol in male mice (3 day, 3 g/kg alcohol/day) (20) and male rats (8 

g/kg alcohol) (96), as well as in H9c2 cardiomyocytes (100–400 mg/dL, 24 hr), neonatal rat 

cardiac myocytes (200 mM, 4 hr) and primary cardiomyocytes from adult rats (0.3–0.5% 

alcohol in media, 4 days). This effect appears specific to cardiomyocytes as there was no 

detectable increase in apoptosis in alcohol-treated cardiac fibroblasts (97). Overall, apoptosis 

detected via TUNEL was increased by alcohol in both animal and cell models at varying 

concentrations. However, some caution should be exercised when using TUNEL staining as 

the extent of apoptosis may be over-estimated because stained nuclei can represent either 

apoptotic cell death or DNA repair due to the reversible nature of DNA fragmentation (98).

3.1.2 Caspase 3—Caspase 3 is a pro-apoptotic protein that lies at the intersection of 

several apoptotic pathways, has been employed as a general apoptotic marker, and has been 

reported to be consistently increased by alcohol. Specifically, alcohol increased caspase 3 

staining (4–5 months liquid diet) in male Wistar rats (99) and caspase 3 protein and activity 

in alcohol-fed male mice (15, 57). Acutely, cleaved caspase-3 was also increased by alcohol 
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(3g/kg/day, 3 days) in male mice (95). Under in vitro conditions, pro-caspase 3/active 

caspase 3 protein expression was increased in endothelial progenitor cells (25 mM, 48 hr) 

(100), while cleaved caspase 3 was increased in H9c2 cells (100–400 mM, 24 hr) and 

neonatal rat cardiac myocytes (200 mM, 4 hr) (89, 95). In contrast, caspase 3 activity was 

unchanged in rat hearts in response to acute alcohol intoxication, despite increased caspase 3 

staining in isolated cardiomyocytes (96). Therefore, the majority of recent data indicate that 

caspase 3 is increased in response to acute and chronic alcohol indicating apoptotic pathway 

activation.

3.2 Regulation of apoptotic pathways by alcohol

3.2.1 Intrinsic pathway—The extrinsic or death receptor pathway and the intrinsic or 

mitochondrial pathway are the primary apoptotic pathways that have been evaluated. The 

mitochondrial pathway can be activated by several stimuli including growth factors, 

oxidative stress, DNA damage and hypoxia (101). Following activation of apoptosis, 

proteins in the Bcl-2 protein family regulate mitochondria membrane integrity and 

permeability. Bcl-2 is an anti-apoptotic protein that was unexpectedly shown to be increased 

in human alcoholic hearts (90), while it was decreased in male mice by acute alcohol 

intoxication (3g/kg/d, 3 days) (20, 95), possibly suggesting divergent effects of acute versus 

chronic alcohol. Staining for the anti-apoptotic protein Bcl-xL was also decreased in hearts 

from chronic alcohol-fed dogs (6 months) (88). Pro-apoptotic proteins from the Bcl-2 

family, including Bax and Bad, were consistently increased by alcohol (20, 57, 88, 90, 95). 

For example, Bax was increased by acute (20, 95) and chronic alcohol (4% v/v, 16 wk) (57) 

in male mice and chronic alcohol in human donor hearts (90), with enhanced Bad staining 

seen in the hearts of mongrel dogs following chronic alcohol consumption (88). When the 

actions of Bcl-2 do not counter the enhanced pro-apoptotic signaling, increased 

mitochondrial membrane permeability occurs and cytochrome c is released into the 

cytoplasm. Acute alcohol (3 g/kg, 3 days) in male mice increased cytosolic cytochrome c as 

well as apoptosis inducing factor (AIF) (20) in agreement with the decreased mitochondrial 

cytochrome c (i.e., increased cytosolic) observed in vitro. Following cytochrome c release, 

caspase 9 and 3 are activated and apoptosis occurs. Accordingly, acute alcohol increased 

cytosolic pro-caspase 9 and caspase 3 (as discussed above) (20).

3.2.2 Extrinsic pathway—The death receptor pathway is mediated via activation of the 

death receptor by the ligands tumor necrosis factor alpha (TNF-α) and Fas ligand (FasL). 

Ligand binding to the death receptor recruits a death domain (FADD) that activates 

downstream caspases, including caspase 8 and ultimately caspase 3. However, protein levels 

of caspase 8, cytosolic pro-caspase 8, TNF-α, Fas receptor and FasL were unchanged in 

mice after acute alcohol (20), and although an increase in cardiac TNFα mRNA was 

detected in alcohol-fed female adult and older Fischer 344 rats, this change was apparently 

insufficient to activate the extrinsic apoptotic pathway (102, 103). These data suggest that 

activation of the intrinsic pathway represents the predominant mechanism by which alcohol 

induces apoptosis.
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3.3 Alcohol metabolism and apoptosis

The byproducts of alcohol metabolism contribute meaningfully to the induction of apoptosis 

by alcohol and this has been shown through the manipulation of the enzymes responsible for 

catalyzing the oxidative metabolism of alcohol. For example, while the activity of CYP2E1 

in the heart low, compared to the liver, alcohol can modulate apoptosis by regulating the 

conversion of alcohol to acetaldehyde (57). Specifically, inhibition of CYP2E1 activity with 

diallyl sulfide attenuated the alcohol-induced increase in caspase 3 protein expression and 

activity, the expression of pro-apoptotic BAX and the number of TUNEL-stained nuclei 

(57). Consistent with these observations, cardiac-specific overexpression of ADH increased 

apoptosis in male mice following acute alcohol intoxication (3g/kg/d, 3 days), as evidenced 

by an increased number of TUNEL-stained nuclei, caspase 3 protein expression, Bax 

expression and cytosolic pro-caspase 9 (20). ALDH2 is responsible for the breakdown of the 

toxic metabolite acetaldehyde and has also been implicated in the alcohol-mediated 

regulation of apoptosis. In this regard, ALDH2 was repressed and apoptosis was increased in 

cardiomyocytes incubated with alcohol (0.3% and 0.5%, 4 days), and these changes were 

associated with enhanced expression of micro(mi)RNA-378a-5p (94). Moreover, the over-

expression of miR-378a-5p decreased ALDH2 mRNA content. These data provide 

convincing evidence that alcohol-induced apoptosis can be mediated directly via ALDH2 

gene suppression. Therefore, targeted regulation of these metabolizing enzymes may prove 

beneficial in patients to reduce acetaldehyde load and apoptosis until abstinence can be 

achieved.

4. Interaction between oxidative stress and apoptosis

The precise mechanism for alcohol-induced cardiac apoptosis is unknown although the 

protein Pin1 has been identified as a contributing factor (18). Pin1 is a peptidyl-prolyl cis-

trans isomerase of the parvulin family of PPIase enzymes with a role in the regulation of 

apoptosis (104). In cardiomyocytes from neonatal mouse hearts, apoptosis was correlated 

with the alcohol-mediated upregulation of Pin1 mRNA and protein expression in a dose-

dependent manner (18). Depletion of Pin1 by siRNA reduced the detrimental effects of 

alcohol on cell viability and attenuated alcohol-induced apoptosis as assessed by reduced 

caspase 9, caspase 3 activity and TUNEL staining. Conversely, overexpression of Pin1 

augmented alcohol-induced apoptosis and cell viability (18). Pin1 may also be involved in 

the ROS-mediated induction of apoptosis similar to other signaling molecules including 

p66Shc and PKC-β. Briefly, mechanisms through which p66Shc led to ROS production 

included enhanced RAC1, suppression of ROS scavenging enzymes following its interaction 

with FOXO (Forkhead box) transcription factors, and induction of H2O2 production after its 

phosphorylation by PKC-β and subsequent prolyl-isomerization by Pin1 (105, 106). Further, 

siRNA downregulation of p66Shc or inhibition of PKC-β decreased the alcohol (200 mM, 

24 hr) mediated increase in apoptosis and ROS production in primary cardiomyocytes (19). 

Finally, blocking PKC-β decreased binding between Pin1 and phosphorylated p66Shc that 

was enhanced by alcohol (19). It is quite evident then that Pin1 and related proteins have a 

central role in linking apoptosis with oxidative stress-induced by alcohol.
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In a related mechanism, Tan et al. (89) reported that PKC-β1 activation via the angiotensin II 

type I (AT1) receptor increased nitrative stress (i.e., nitrogen oxides) and produced cardiac 

cell death following acute alcohol (89). Antagonizing the AT1 receptor prevented the 

alcohol-induced increase in oxidative stress and cellular apoptosis (89) providing additional 

evidence for this mechanism in regulating apoptosis. As these studies provide a putative link 

between alcohol-induced ROS and apoptosis in cardiomyocytes, future in vivo work will 

need to confirm the importance of this signaling pathway and its role in apoptosis and 

oxidative stress during ACM.

Another novel factor recently identified to play a causative role in ACM in relation to 

apoptosis is the regulator of G protein signaling 6 gene (RGS6) that is implicated in 

extracellular signaling responses via G-protein coupled receptors. Whole-body knockout of 

RGS6 in male and female mice attenuated the effects of chronic alcohol consumption (5% 

v/v liquid diet, 2 month) on cardiac apoptosis; it reduced the number of TUNEL-stained 

nuclei in the right ventricle and prevented the accompanying increase in heart weight, 

fibrosis and myofilament disarray (92). The RGS6-dependent decrease in apoptosis was due 

in part to a reduction in NADPH oxidase-induced ROS generation that had subsequently 

increased cardiac myocyte apoptosis (89, 92).

Most recently, Zhu et al. (95) linked the induction of apoptosis by alcohol with the ROS-

mediated increase in autophagy (i.e., cleaved caspase 3, TUNEL, Bax), as the inhibition of 

autophagy prevented the alcohol-induced increase in apoptosis in vivo and in vitro. The 

protein c-JUN N-terminal kinase (JNK) was identified as the mechanistic link between the 

alcohol-mediated induction in ROS and activation of autophagy and apoptosis by alcohol. 

Specifically, JNK inhibition prevented bcl-2 phosphorylation and the dissociation of the 

Beclin1-Bcl-2 complex thereby reducing markers of apoptosis (TUNEL, cleaved caspase-3, 

annexin staining).

Overall, excessive alcohol enhances apoptotic signaling in the heart of rodents and the 

majority of in vitro experiments. However, findings in humans with alcoholic 

cardiomyopathy provided by Fernandez-Sola et al. (82) are not as unequivocal as both anti-

and pro-apoptotic signals were detected. It will be important to continue to assess apoptosis 

in the context of other causative mechanisms contributing to ACM, including oxidative 

stress and mitochondrial dysfunction. The lack of clinical studies in this area represents an 

important limitation as it precludes appropriate preclinical model development and forward 

progress in the design of rational treatment strategies.

Conclusion

In summary, recently published studies emphasized the negative effects of alcohol on 

mitochondria and related processes within the heart. Alcohol decreased mitochondria 

membrane potential, respiration and complex activity along with inducing DNA damage. It 

is likely that these mitochondrial perturbations contributed to the increased mediators of 

oxidative stress and apoptosis and subsequent contractility defects. In some instances 

alcohol metabolism, via the production of acetaldehyde, also contributed to these effects, 

while in others the presence of estrogen appeared to influence the response. Several of these 
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alcohol-induced changes were also dose-dependent potentially indicating a personalized 

medicine approach will be necessary to most successfully identify and treat patients with 

ACM. Overall, increased markers of oxidative stress and apoptosis along with mitochondrial 

dysfunction appear to comprise primary processes implicated in the etiology of ACM. With 

the advances in proteomic and genomic methodology other mechanisms will likely be 

identified as important aspects of disease development.
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Abbreviations

ACM alcoholic cardiomyopathy

ALDH aldehyde dehydrogenase

ADH alcohol dehydrogenase

PKC-β protein kinase C (PKC)-beta

TCA tricarboxylic acid cycle

ETC electron transport chain

RCI mitochondrial respiratory control index/ratio

FAD+ flavin adenine dinucleotide

CoQ Coenzyme Q

COX IV cytochrome c oxidase

AMPK AMP-activated protein kinase

ANT1 adenine nucleotide translocator 1

PGC-1α peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha

UCP2 uncoupling protein-2

ERRα estrogen related receptor alpha

mtDNA mitochondria DNA

ROS reactive oxygen species

O2
·− superoxide anion radical

˙OH hydroxyl radical

H2O2 hydrogen peroxide

1O2 singlet oxygen
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GSH glutathione

SOD superoxide dismutase

E2 estrogen

IGF-I insulin like growth factor – I

CYP2E1 cytochrome P450 2E1

Cu/ZnSOD, SOD1 copper/zinc-containing SOD

MnSOD, SOD2 manganese SOD

ECSOD, SOD3 extracellular superoxide dismutase

kcal kilocalories

NaHS sodium hydrosulfide

H2S hydrogen sulfide

GSH glutathione

GPx glutathione peroxidase

GSSG glutathione disulfide

SPH sardinelle heads

GST glutathione S-transferase

MDA Malondialdehyde

TBARS thiobarbituric acid reactive substances

4-HNE 4-hydroxynonenal

Hsp Heat shock proteins

HSF1 heat shock factor 1

HO-1 heme oxygenase-1

dP/dt max maximal rise of (ventricular) pressure over time

±dL/dt maximal velocity of shortening/relengthening

TR90 time to 90% of relengthening

AIF apoptosis inducing factor

TNF-α tumor necrosis factor alpha

FasL Fas ligand

AT1 angiotensin II type I
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RGS6 regulator of G protein signaling 6 gene

LV left ventricular

TUNEL terminal deoxynucleotidyl transferase dUTP nick end 

labeling

GR glutathione reductase
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Figure 1. 
Overview of the impact of acute alcohol intoxication on mitochondrial mediated aspects of 

ACM. Those factors listed in red were decreased by alcohol, those in green were increased 

and those in blue were unchanged. Orange print indicates that measured changes were 

inconsistent between studies and black signifies that no measurement was made in the 

included literature between 2010–2017.
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Figure 2. 
Overview of the impact of chronic alcohol intoxication on mitochondrial mediated aspects 

of ACM. Those factors listed in red were decreased by alcohol, those in green were 

increased and those in blue were unchanged. Orange print indicates that measured changes 

were inconsistent between studies and black signifies that no measurement was made in the 

included literature between 2010–2017.

Steiner and Lang Page 25

Int J Biochem Cell Biol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	1. Mitochondria
	1.1 Structure and function
	1.1.1 Membrane potential
	1.1.2 Citric acid cycle and respiratory chain complexes
	1.1.3 ATP synthesis

	1.2 Regulators of mitochondrial biogenesis
	1.2.1 PGC1α, UCP2 and ERRα
	1.2.2 mtDNA


	2 Oxidative stress
	2.1 Alcohol and ROS production
	2.2 Superoxide dismutase and byproducts
	2.2.1 Superoxide dismutase
	2.2.2 Antioxidants
	2.2.3 Specific SOD enzymes
	2.2.4 Hydrogen peroxide, metabolites and related enzymes

	2.3 Additional markers of oxidative stress
	2.3.1 Protein carbonylation
	2.3.2 Malondialdehyde (MDA)
	2.3.4 4-hydroxynonenal (4-HNE)
	2.3.5 Heat shock proteins

	2.4 Oxidative stress and contractility

	3 Apoptosis
	3.1 Alcohol and markers of apoptosis
	3.1.1 TUNEL staining
	3.1.2 Caspase 3

	3.2 Regulation of apoptotic pathways by alcohol
	3.2.1 Intrinsic pathway
	3.2.2 Extrinsic pathway

	3.3 Alcohol metabolism and apoptosis

	4. Interaction between oxidative stress and apoptosis
	Conclusion
	References
	Figure 1
	Figure 2

