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Abstract Cohort identification for clinical studies tends to be laborious, time-consum-
ing, and expensive. Developing automated or semi-automated methods for cohort
identification is one of the Bholy grails^ in the field of biomedical informatics. We
propose a high-throughput similarity-based cohort identification algorithm by applying
numerical abstractions on electronic health records (EHR) data. We implement this
algorithm using the Observational Medical Outcomes Partnership (OMOP) Common
Data Model (CDM), which enables sites using this standardized EHR data representa-
tion to avail this algorithm with minimum effort for local implementation. We validate
its performance for a retrospective cohort identification task on six clinical trials
conducted at the Columbia University Medical Center. Our algorithm achieves an
average area under the curve (AUC) of 0.966 and an average Precision at 5 of 0.983.
This interoperable method promises to achieve efficient cohort identification in EHR
databases. We discuss suitable applications of our method and its limitations and
propose warranted future work.
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1 Introduction

Computational reuse of electronic health records (EHR) promises to accelerate bio-
medical discoveries [1, 2]. Identification of patients with certain phenotypes or meeting
a set of eligibility criteria using the EHR supports numerous applications, including
study recruitment, phenotype modeling, comparative effectiveness research, and so on.
Many methods have been developed for EHR-based cohort identification [3]. Clinically
supervised rule-based algorithms have been used for cohort identification. However,
this school of methods is laborious and lack scalability [4], and hence often fails to
facilitate efficient study recruitment, especially for multi-site studies [5]. There is a need
for unsupervised and data-driven approaches to improve the efficiency and cost-
effectiveness of cohort identification for clinical studies [6]. Machine learning methods
for cohort identification have been developed, including discriminative techniques, [7]
such as support vector machines (SVM) [8] and Random Forests [9]. Their major
limitation is their requirement of using controls in addition to cases for algorithm
training, because getting a reliable set of controls to train a cohort identification
algorithm is equally tedious and challenging as is defining cases.

The use of case-based reasoning or similarity-based approaches [10, 11], which
starts with only a handful of cases to identify other similar cases, is a promising
alternative. Case-based reasoning (CBR) has previously shown success in identifying
cohorts for clinical trials [12], in identifying treatments for patients of Alzheimer’s
Disease [13], in healthcare planning [14], health event predictions [15], and
pharmacovigilance [16]. Learning from past patients that are similar to a patient of
interest has also been identified as a tool to guide clinical care at the point of care [17].
A related study identified similarities between patient treatment event series to perform
patient trace identification and anomaly detection [18]. The method is primarily
promising for identifying patient cohorts that have similar health event series over a
large time period. Cohort identification for clinical studies, however, requires the
identification of patients who are similar to each other at a certain point in time, in
particular, the time of recruitment for clinical studies. This article focuses on building a
time-specific CBR-based cohort identification algorithm. CBR approaches bypass the
difficulty in transforming eligibility criteria to EHR-compatible rules and are immune
from EHR database terminology heterogeneity and data quality imperfections, which
often impede other cohort recruitment methods [19]. Prior studies using CBR for cohort
identification have largely ignored the numerical details present in different data types
in the EHR to build relatively simple CBR models. For example, Kopcke et al. used
only diagnosis and procedure codes for cohort identification while ignoring clinical
laboratory variables [9]. Miotto et al. used simplified abstractions of all data types (i.e.,
either presence or absence or averages) as predictors of potential cases [12].

To address the limitations in these methods, this study aims to support similarity-
based cohort identification by using numerical abstractions of all major structured data
in the EHR, i.e., patient demographics, diagnoses, medications, laboratory results, and
procedures. EHR data is highly time-dependent and often consists of a large amount of
complex longitudinal data [20]. EHR data also suffer from biases, incompleteness, and
representational heterogeneities across institutions [6, 21]. Hence, appropriate prepro-
cessing, abstraction, and summarization of EHR data [22, 23] are indispensable prior to
the application of cohort identification algorithms. Methods for data abstractions have
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been used to build similarity-based personalized patient prediction models [24, 25].
However, prior similarity-based personalized prediction and cohort identification sys-
tems were not based on a widely adopted common data standard and hence have
limited interoperability with heterogeneous clinical databases [3]. If a cohort identifi-
cation algorithm developed at one institution needs to be reused at another institution,
data extraction and transformation need to be redeveloped anew. This process is costly
and can introduce interpretation variations.

To further enhance CBR-based recruitment methods, this study contributes a
CBR-based approach that does not define rules for patient search but uses a set of
seed cases to automatically train a similarity-based patient matching algorithm.
This study makes three major contributions. First, this method uses numerical
abstractions of EHR data in order to achieve more precise cohort identification
than an earlier method [12]. Second, this method uses a scalable approach for data
preprocessing and abstraction, which is independent of the heterogeneities, dis-
crepancies, and incompleteness of EHR data. Third, our method employs the
Observational Medical Outcomes Partnership (OMOP) Common Data Model
(CDM) [26] standard, which is widely adopted by the Observational Health Data
Sciences and Informatics (OHDSI) [27] community, to represent EHR data in this
shared information model and to enable the interoperability between this cohort
identification method and heterogeneous EHR databases.

2 Material and methods

2.1 Dataset

We assess the use of our algorithm in a recruitment task for six clinical trials in
conjunction with Columbia University Medical Center’s Clinical Data Warehouse
(CDW). Trials are chosen on the basis of their sample sizes. Specifically, trials
that have at least 100 enrolled participants, or cases, in the EHR, are selected for
this study. The trials used, their trial identification numbers, start and end dates,
and the number of previously identified cases with EHR data are shown in
Table 1.

The gold standards for training and validating our algorithm are the set of enrolled
participants for these six trials (shown in the last column of Table 1), who have all been
manually confirmed by clinical research coordinators. We also use a random sample of
30,000 unknown patients in the EHR, who were not enrolled in any of these six trials,
in the evaluation of our method.

2.2 Data collection and processing

We use patient demographics, laboratory results, conditions, medications, and proce-
dures as features for our cohort identification algorithm. Age, gender, laboratory results,
conditions, medications, and procedures were extracted using the OMOP CDM version
5 data standard. The OMOP CDM [28] is a relational data model, centered at the
patient, which contains demographics, clinical observations, observation periods, drug
exposure, condition occurrences, procedures, and visits mapped to a standard
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vocabulary from a host of disparate source vocabularies. The source vocabularies range
from Health Level 7 (HL7) [29], Office of Management and Budget (OMB) codes [30],
and Center for Disease Control and Prevention (CDC) [31] codes for demographics,
International Classification of Diseases (ICD) 9, ICD 10 [32], and Systematic Nomen-
clature of Medicine-Clinical Terms (SNOMED-CT) [33] for conditions and procedures,
Logical Observation Identifiers Names and Codes (LOINC) [34], United Codes for
Units of Measure (UCUM) [35] codes, and SNOMED-CT codes [33] for observations,
and the Cerner Multum Lexicon Drug Database [36], and National Drug Codes (NDC)
[37] for drugs. In addition to these codes, institution specific source vocabularies (e.g.,
Medical Entities Dictionary (MED) [38] which is a repository of concepts used at the
New York Presbyterian Hospital including the Unified Medical Language System
(UMLS) [39], ICD 9 Clinical Modification (ICD-9-CM) [32], and LOINC [34]) also
map to the standard OMOP vocabulary at the institution level. For our study, age (at the
start of the trial) and patient gender (male or female) constitute patient demographics.
Distinct laboratory tests are identified by the source MED [38] code, and medical
conditions are defined by the source ICD 9 codes [32] assigned to the patients in the
enrollment window of each trial. Patient medications are defined by either the MED
[38] or the NDC [37] codes assigned to the patient during the enrollment window of the
trial. Patient procedures are defined by the ICD 9 [32] and Current Procedural
Terminology (CPT) codes [40] assigned to the patient during the enrollment window
of the trial. We use the source vocabularies at our site to identify EHR data types due to
incompleteness in the source vocabulary to OMOP vocabulary mapping at our site.
However, we develop queries that are generalizable to the complete mapped OMOP
vocabulary at any OMOP CDM v5 database. We make the associated source and
OMOP concept-based queries available as an R package in the following Github
repository:

https://github.com/scdbmi/StudyProtocolSandbox/tree/master/phenotypeDataExtraction

Table 1 Clinical trial identification numbers, trial conditions, start and end dates, and the number of
previously identified cases (or trial participants) in the EHR, for the six clinical trials used in this study

Trial NCT ID Condition Start Date End Date No. of available
cases
in the CDW

T1: NCT00995150 Contraception November
2009

December
2021

139

T2: NCT00831116 Myocardial Infarction, Angina,
Coronary Artery Disease,
Myocardial Ischemia

February
2009

November
2016

463

T3: NCT01019369 Contraception March 2010 November
2012

133

T4: NCT02033694 Coronary Artery
Disease,Atherosclerosis

January
2014

March 2018 148

T5: NCT00530894 Critical Aortic Stenosis April 2007 March 2017 294

T6: NCT01314313 Symptomatic Severe Aortic
Stenosis

March 2011 September
2020

562
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2.3 The conceptual framework for similarity-based cohort identification

The populations that are typically associated with a clinical cohort identification task
are illustrated by the Venn diagram in Fig. 1. The boundaries of the various shapes in
Fig. 1 denote particular populations and are labeled by bold capital alphabets shown in
the legend. Population A represents the universe of all patients. Population B represents
patients that are recorded in the EHR of a particular institution. PopulationC consists of
patients being sought (cases). Population D represents patients who have previously
been identified as cases and are also present in the EHR. This population represents
seed patients for the cohort identification task. In reality, population C is often not well
defined due to the ambiguity and complexity of EHR-based phenotyping algorithms [4]
and clinical study eligibility criteria [19]. Identification of population C requires a lot of
manual effort in transforming these poorly defined eligibility criteria to EHR-
compatible phenotyping rules. Similarity-based cohort identification methods aim to
bypass this problem by identifying a population E to represent patients who are similar
to the seed patient population D. This population E then represents potential cases for
the cohort identification task at hand. It should be noted here that similarity between
two populations is defined later in this article in terms of the cosine distance between
feature representations of the respective populations (Eq. (2)).

These populations partition A into various sub-populations shown with different
colored patterns in Fig. 1. Next, we describe the characteristics of each of these sub-
populations denoted by R1, R2,…, R9. The operator B−^ here denotes the set difference

R1

R2

R3

R4

R5

R6
R7

R9

R8

A: Real World Population B: EHR Population C: Patients being sought (cases)
D: Previously identified cases (seed patients) E: Patients similar to seed patients

Fig. 1 Populations and sub-populations associated with a cohort identification task: a similarity-based cohort
identification algorithm uses the seed patient populationD to identify new cases in sub-populationsR2 andR3
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operator. Thus, for any two populations Y and Z, Y − Z represents all members of Y that
are not members of Z.

R1 =D represents patients who are known to be cases and have EHR data. These
patients are the seed patients to be used for similarity-based identification of more
potential cases.

R2 = (B∩C∩ E) −D represents patients in the EHR who are similar to previously
identified cases and are also actual cases that have not yet been identified (so that they
do not yet belong to R1). This is the sub-population that our algorithm will help
identify. Thus, R2 represents the true positives of our algorithm.

R3 = (B∩ E) −C represents patients who are similar to previously identified cases
but are not cases. This represents the false positives of our algorithm.

R4 = (B∩C) − E represents patients in the EHR who are not similar to previously
identified cases but who are actually cases. This represents the false negatives of our
algorithm.

R5 = (B − C) − E represents patients in the EHR who are not similar to previously
identified cases and are not cases. This represents the true negatives of our algorithm.

R6 = (E∩C ) − B represents patients who would be similar to previously identified
cases (if their records were available) and who are cases but who do not have data in the
EHR.

R7 = (C − B) − E represents patients who are cases but are not in the EHR and
would not be similar to previously identified cases (if their records were available).

R8 = (E − B) −C represents patients who would be similar to previously identified
cases (if their records were available) but would not be cases and are not in the EHR.

R9 = ((A − B) −C) − E represents patients who would not be similar to identified
cases (if records of their phenotypic traits were available), would not be cases, and are
not in the EHR.

EHR-based cohort identification algorithms disregard R6, R7, R8, and R9, as these
patient sub-populations do not have EHR data. However, these sub-populations are
defined here for the completeness of the Venn Diagram shown in Fig. 1. A similarity-
based cohort identification algorithm uses the seed sub-population of patients, R1, to
identify new patients falling into regions R2 and R3. A manual review by clinicians will
then follow to screen patients in R2 and R3 and verify how many of these patients are
true cases, i.e., R2. All the patients classified into R4 are true controls if the algorithm
has 100% negative predictive value. Therefore, an ideal similarity-based cohort iden-
tification algorithm should maximize the sensitivity and specificity until the recruitment
target for the cohort identification task is reached [41]. The errors associated with a
similarity-based cohort identification algorithm can be defined as follows:

Type I error: members in R3 who are falsely identified as cases (false positives)
Type II error: members in R4 who are not identified as cases (false negatives)

The evaluation metrics for a similarity-based cohort identification algorithm are
defined below.

Precision = R2/(R2 + R3), which measures the fraction of patients identified by the
cohort identification algorithm that are true cases.

Sensitivity = R2/(R2 + R4), which measures the ability of the similarity-based algo-
rithm to identify true cases.
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Specificity = R5/(R3 + R5), which measures the ability of the similarity-based algo-
rithm to identify true controls.

Accuracy = (R2 + R5)/(R2 + R3 + R4 + R5), which measures the ability of the
similarity-based algorithm to recognize cases and controls.

It should be noted that this similarity-based cohort identification algorithm is not
exhaustive in its recommendation of all possible cases but only suggests a list of
patients who are similar to known cases. The patients recommended by the algorithm
are Bpotentially eligible^ [41] for the cohort identification task at hand and need to then
be reviewed by a clinical researcher in order to find true cases among them. This
approach is designed to recommend Bworthy review^ candidates to clinical researchers.
Without the use of our method, clinical researchers would have to perform chart
reviews for patients in R2, R3, R4, and R5 to find potential cases. In contrast, our
algorithm enables researchers to focus on patients that are in sub-populations R2 and
R3, which significantly reduces the manual burden and expedites the cohort identifi-
cation task.

2.4 Algorithm design

We train our algorithm using half of the cases for each trial and test it using the other
half of the cases and the 30,000 randomly selected patients. These form the training and
test sets, respectively.

The similarity-based cohort identification algorithm is demonstrated in Fig. 2. We
formally define our similarity-based cohort identification algorithm as follows:

(1) Extract records of demographics, laboratory results, conditions, medications, and
procedures for all training and testing patients from the CDW, using the standard-
ized OMOP CDM v5 data standard.

(2) For each patient, we create a patient feature vector (Fig. 2), which contains a
scaled summary of each demographic, laboratory result, condition, medication,
and procedure that the patient has. To address data incompleteness and different
numbers and scales of readings present for each patient, we summarize and
normalize all data types for each patient as follows.

(2.1) First, we summarize all data types for each patient using the following
metrics:

(a) Each laboratory test for a patient may contain one to multiple readings
within the enrollment window of a trial, and various approaches exist for
summarizing laboratory measurements independent of time [42]. Median
has been shown to be one of the more robust and stable estimates of central
tendency, as compared to other measures such as the mean [43, 44]. Hence,
we use the median of the laboratory results instead of other non-robust
statistics such as the mean, most recent measurement, all of which are
highly susceptive to noise and statistical outliers [44]. Laboratory results
are also sparsely represented in the EHR; just the presence or absence of a
lab test is often an important indicator for a patient’s condition and is used in
addition to its median (if present).
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(b) Each medical condition is summarized by the number of times a patient has
a certain diagnosis code prior to the enrollment end date of the trial.

(c) Each medication is summarized by the number of times a patient is exposed
to a particular medication within the enrollment window of the trial.

(d) Each procedure is summarized by the number of times a patient underwent
a certain procedure during the enrollment window of the trial.

(2.2) Secondly, we normalize all summarized features to a unit scale between 0
and 1. This is done to ensure that all features are on the same arithmetic
scale prior to additional computation and similarity-based comparison.

Following steps (2.1) and (2.2), we obtain a normalized and summarized patient
feature vector for each patient, which is shown in Fig. 2.

(3) Perform feature selection. Features which are present for at least 50% of training
patients are selected to be included in the target patient representation derived in
the next step, such that number of features does not fall below a value of ε. ε was
empirically found to be 30 for our experiments. If this feature selection step causes
the number of features to fall below ε, then only features that are present for a
non-trivial number of training patients are selected to be included in the target
patient. We perform feature selection, because the number of features that are
present across all training patients is very large, and including all of them in our

Age Glucose Hba1c Serum Creatinine Insulin Kidney Disease
------ ------------ -------- ------------------------ --------- --------------------
0.68 0.72 0.78 0.34 0.8 0.9

Cohort
Identification

Task

Clinical Data
Warehouse

(OMOP CDM v5)

Cases EHRs Summarization
of Standardized

Features

Averaging

Patients in the CDW
ranked by distance to TP

Age Glucose Hba1c Insulin Metformin Hypertension
---- ---------- -------- --------- -------------- ------------------
0.27 0.89 0.95 0.9 1.0 0.2

Summarization
of Standardized
Features for all

patients

Similarity
Matching

Target Patient (TP)

Distance=0.02

Distance=0.12

Distance=0.92

.

.

.

Distance=0.93

.

.

.

Age Serum Bilirubin Test . . . . Cardiomyopathy
----- ----------------------------- -----------------------
0.98 0.82 . . . . 0.9

Age Elavil 20 mg . . . . Ultrasound of Heart
------- ------------------ ---------------------------
0.32 1.0 . . . . 1.0

Age Glucose Hba1c Insulin . . . . Hypertension
---- ---------- -------- --------- -------------- ------------------

0.56 0.78 0.92 0.85 . . . . 0.25

.

.

.

Fig. 2 Method for building the target patient for a cohort identification task using the summarized EHR traits
for n previously identified cases and using it to rank patients in the CDW based on similarity to the target
patient; this figure shows the summarized and normalized feature vectors for different patients as well as for
the target patient
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classification and ranking methods would cause overfitting due to the curse of
dimensionality problem that affects high-dimensional statistical models [45].

(4) Find the mean of the normalized feature vectors, aggregated by feature, over all
training cases. When computing the mean across all training cases, if a feature is
not present for a particular case, then it is assigned a value of 0 for that case, prior
to computing the mean of that feature across all cases. The Target patient, TP, is
defined as follows:

TP ¼ 1

n
∑
n

m¼1
Tm1

1

n
∑
n

m¼1
Tm2…

1

n
∑
n

m¼1
Tml

� �
ð1Þ

where Tm1 , Tm2 , … Tml, are the normalized l features for the mth training case. Each
of the l features is averaged across the n training cases to obtain the target patient.

(5) For each patient in the test set of a trial, find the cosine distance of its normalized
feature vector to the target patient’s feature vector, obtained in step 4 [46], i.e.,
find |Ti − TP|, where Ti , i = 1 , 2 , 3… s are the normalized feature vectors for the
s testing patients and TP is the target patient’s feature vector. If a feature is not
present for a particular test patient but exists in the target patient’s feature vector,
then that particular feature is assigned a value of 0 in the test patient’s feature
vector, prior to computing the cosine distance. Since the target patient represents
the gold standard for a particular cohort identification task, if a feature is not
present in the target patient’s feature vector but is present in a test patient’s feature
vector, then that feature is removed from the test patient’s feature vector prior to
computing the test patient’s cosine distance to the target patient.

(6) Classification:

(6.1) Classify a patient as eligible if his or her cosine distance to the target
patient of the trial is less than a certain threshold, i.e.,

Ti−TPj j < Pt T∀i−TPj jð Þ for i ¼ 1; 2; 3…s; ð2Þ

where Pt(|T∀i − TP|) is the tth percentile of cosine distances of all testing patient
vectors to the target patient vector TP. The symbol ∀i represents Bfor all i^.

(6.2) Vary t in Eq. (2) over different values from 0 to 100, in steps of 1, to plot the
Receiver Operating Characteristic (ROC) curve. The optimal value of t is obtained
from this ROC curve, and the area under the curve (AUC) is the AUC computed
for this optimal value t. Pt(|T∀i − TP|) for the optimal value of t then represents the
optimal cosine distance to the target patient.

(7) Ranking:

(7.1) Rank the s patients in the test set in ascending order of cosine distances
computed in step (5). The higher up a patient is in this list, the more similar the
patient is to TP and the more likely the patient is to be a case for the trial.
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(7.2) Evaluate this ranked list of patients using evaluation measures discussed
in Section 3.4 (2).

We make all our MATLAB software developed for this algorithm available at the
following github repository:

https://github.com/scdbmi/Similarity-based-Cohort-Identification

2.5 Algorithm evaluation

The evaluation of our method is done using the testing set for each trial, and the results
reported in Section 3, Table 2, Table 3, and Fig. 2 are obtained using only this testing
set for each trial, consisting of 30,000 randomly selected EHR patients and half of the
cases for each trial. The eligibility statuses of these 30,000 randomly selected EHR
patients are unknown, but we make the assumption of ineligibility for these patients and
use them to compute the ROC curves and the AUC. Our assumption is based on the
fact that these patients were not selected by clinical research coordinators for recruit-
ment after their manual search for eligible patients in the database. The precision
metrics computed for our method (described in (2) below), however, do not make
any assumptions for these 30,000 patients and are thus, more accurate measures of
evaluation for our algorithm. We evaluate the performance of our cohort identification
algorithm using the following metrics.

(1) Classification performance metrics

The ROC curve is used to determine the optimum value of t in Eq. (2) for each
cohort identification task. The AUC for this optimal cosine distance represents the
AUC for each trial.

(2) Information retrieval performance metrics

Precision at k, which represents the fraction of true positives in the top-k of
the ranked list of test patients, is used to evaluate the ranking performance of

Table 2 Trial wise and average classification results: AUC scores and corresponding optimal threshold on the
cosine distance to TP for the classifier

Trial Optimal AUC Optimal threshold on
the Cosine Distance to TP

T1 0.999 0.993

T2 0.999 0.937

T3 0.795 0.949

T4 0.999 0.944

T5 0.999 0.978

T6 0.999 0.946

Average 0.966 0.958
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our algorithm. We use four values of k, namely, k = 5, k = 10, k = 20, and
k = 30. The second metric of evaluation we use is the mean average precision
(MAP) which is the average of the precision evaluated at each index of the
ranked list where a patient is correctly identified [12]. Finally, the mean
reciprocal rate (MRR) represents the inverse of the rank of the first correctly
identified patient [12].

(3) Robustness metric

We conduct one-way analyses of variance (ANOVAs) [47] to evaluate the robust-
ness of our cohort identification algorithm to changes in (1) the condition that is being
studied by the cohort identification task and (2) the number of cases used to train the
algorithm. For these comparisons, the significance level α is selected to be 0.05.

3 Results

The performance of our algorithm for each of the six cohort identification tasks, i.e., the
six clinical trials listed in Table 1 is reported in this section.

(1) Classification performance measure:

Table 2 shows the optimal AUC and the optimal cosine distance that it corresponds
to, for each of the six clinical trials evaluated in this study. It can be seen that with the
exception of T3, an optimal AUC of almost 1 is achieved for all the trials. The
sensitivity versus specificity curves, obtained by varying the threshold t (in Eq. 2) from
0 to 100 in steps of 1, for the six trials are shown in Fig. 3.

(2) Information Retrieval Performance Measures:

Table 3 shows the information retrieval performance metrics for each of the six
testing trials. The average Precision at 5 (P5), Precision at 10 (P10), Precision at 20
(P20), Precision at 30 (P30), MAP, and MRR across the six trials are 0.983, 0.975,

Table 3 Trial wise and average ranking results: precision at k (k=5, 10, 20, 30), MAP, and MRR scores

Trial P5 P10 P20 P30 MAP MRR

T1 1.000 1.000 1.000 0.830 0.526 1.000

T2 0.900 0.950 0.800 0.717 0.304 1.000

T3 1.000 1.000 0.950 0.870 0.526 1.000

T4 1.000 0.900 0.800 0.683 0.555 1.000

T5 1.000 1.000 1.000 1.000 0.631 1.000

T6 1.000 1.000 1.000 0.983 0.856 1.000

Average 0.983 0.975 0.925 0.847 0.566 1.000

J Healthc Inform Res (2017) 1:1–18 11



0.925, 0.847, 0.566, and 1.000, respectively. Figure 4 shows an example of how the
similarity matching algorithm ranks patients based on the target patient for Trial T1,
which is an intrauterine contraception trial accepting healthy women of ages 16–
45 years at enrollment [48]. The higher up a patient is in the ranked list and the lower
its distance from the target patient, the more phenotypically similar the patient is to the
target patient.
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Fig. 3 Sensitivity versus specificity plots for the six trials, plotted for various thresholds on the cosine
distance from the target patient TP (t in Equation (2) varied from 0 to 100, in steps of 1)

.

.

.

.

Target Patient (TP)

25 year old, healthy female,
with lab tests (e.g. folate,
magnesium, calcium, iron,
ferritin, Thyroid Stimulating
Hormone (TSH), creatinine
levels in blood, Red Blood
Cell (RBC) count, mean
platelet value), little
incidence of conditions
other than minor infections,
little to no medications and
procedures.

27 year old female with lab tests similar to
TP (e.g. folate, ferritin, iron, magnesium,
TSH level, creatinine, calcium, RBC), no
medications, conditions, and procedures
in common with TP.

31 year old female with with lab tests
similar to TP (such as folate, ferritin, iron,
magnesium, TSH level, creatinine,
calcium), no medications, conditions, and
procedures in common with TP.

32 year old female with with lab tests in
common with TP (e.g. folate, ferritin, iron,
magnesium, TSH level, creatinine,
calcium), no medications, conditions, and
procedures in common with TP.

10 year old male with no lab tests,
conditions, medications, and procedures
in common with TP.

Fig. 4 An example of the similarity based ranked list of test patients obtained using the target patient
representation derived for Trial 1; the term 'dist' here refers to the cosine distance. The patients marked with
a green tick and a red cross would be deemed similar and dissimilar to the target patient respectively
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(3) Robustness:

Both the factors, namely the trial condition and the number of cases used to train the
cohort identification algorithm, demonstrated non-significant influences on each of the
performance metrics, i.e., AUC, P5, P10, P20, P30, MAP, and MRR. In other words, a
one-way ANOVA resulted in a p value > 0.05 for each influence-metric pair.

4 Discussion

4.1 Applications and merits of our method

The cohort identification framework proposed here helps identify patients being
sought by performing a similarity-based matching to previously identified cases.
We demonstrate the usefulness of our method for a specific application of cohort
identification, namely, clinical trial recruitment. In comparison to a previous study
on similarity-based clinical trial eligibility screening that does not use numeric
summaries of the EHR data types [12], our method enables an improvement in
performance of 136.87 and 200.93% for the precision at k (k = 5, k = 10) metrics,
and of 39.47% for the MRR metric.

A practical application of this algorithm in a cohort identification setting would be to
use the set of cases as and when they become available to train our cohort identification
algorithm. An alert system can then be implemented in the EHR so that whenever our
method identifies a potential case, a clinical researcher is alerted to perform a review of
the recommended patient. In a real-time cohort identification setting, the threshold
parameter (t in Eq. (2)) in our patient identification algorithm can also be tuned to meet
the recruitment needs. This threshold can be increased if a large number of patients
have to be recruited and decreased otherwise.

The target patient representation that we use can be trained on as few as one
identified case. Despite this important advantage of using the target patient
representation, it should be noted that using only a small number of training cases
is likely to lead to poor performance in cohort identification. The larger the
number of cases, the better would be the performance of this method. However,
practical recruitment constraints may often limit the number of cases available for
training. In such a situation, the advantage of our method over other standard
machine learning approaches becomes salient. As described in Miotto et al. 2015,
it is worth noting that in comparison to other classifiers, our method is the most
cost-effective as it relies on the storage and use of only a target patient summary
representation for each cohort identification task based on formerly identified
cases [12].

One advantage of this algorithm is that it is implemented using the OMOP CDM v5
[26], which makes it interoperable with other CDM-compliant databases developed by
the OHDSI consortium [27]. This can save researchers the tedious effort of
transforming site-specific cohort identification algorithms to the data terminologies
being used at the researcher’s site. This will also help validate our proposed cohort
identification algorithm at other sites that are part of the collaborative OHDSI network.

J Healthc Inform Res (2017) 1:1–18 13



We make all the software developed for data extraction and algorithm implementation
available to researchers, who can apply our algorithm to cohort identification tasks at
their site.

4.2 Caution in the appropriate use of our method

The representativeness of the cases used to train our cohort identification algo-
rithm heavily biases the selection of new potential cases for the task. For example,
if the training cases are all female, then all recommended potential cases will also
be only female and may not be representative of the target population. In other
words, if the identified cases are already biased towards certain population sub-
groups, our methods will only amplify this bias. Thus, the choice of a represen-
tative and unbiased set of cases to train our cohort identification model is vital to
using patient similarity for selecting new potential cases that are well representa-
tive of the target population for the cohort identification task. The number of
previously identified cases whose data is used to train our cohort identification
model also affects the goodness of our model. The larger the number of previously
identified cases used to train our model, the better our model will perform in the
cohort identification task.

On the other hand, a largely heterogeneous population of cases can also
compromise the usefulness of similarity-based cohort identification methods. It
remains unknown if identified cases for a cohort identification task will be
homogeneous enough for modeling a target patient and for finding potential cases.
This is particularly problematic for clinical study recruitment tasks, as clinical trial
participants have been shown to often be heterogeneous [49]. Therefore,
similarity-based methods for clinical trial recruitment may have unaccounted
sources of variance due their implicit assumption of homogeneity. In such a
situation, a heterogeneity or subgroup analysis would need to be performed in
order to reveal how many participant subgroups exist in the previously identified
cases, or the seed patients. Such an analysis can then inform the design of more
sophisticated similarity matching techniques that would take these subgroups into
account, instead of assuming a homogeneous set of previously identified cases.

Finally, the similarity-based cohort identification method proposed here aims to
maximize the recall of the cohort identification task, without much regard for
precision. Thus, the aim of a similarity-based cohort identification task is to
maximize the number of cases being recommended by the algorithm, so that these
cases can then be reviewed by clinical researchers and the recruitment targets for a
cohort identification task be reached on time. However, there may also be a
number of false positives among the recommended cases. Thus, any clinical
researcher who wishes to use our method for precise cohort identification should
ensure that a manual review follows the use of our algorithm in order to find the
true positives among all the cases being recommended by our method and use
only the true positives for the clinical research that the cohort identification task is
designed for. Moreover, this similarity-based algorithm performs better with the
inclusion of continuous data types (e.g., laboratory results), and clinical re-
searchers using this algorithm are recommended to include these numerically rich
data types for more precise cohort identification (whenever available).
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4.3 Limitations and future work

This study has multiple limitations. The first limitation is the relatively small number of
cases used in the training and evaluation of this method. The seed patients had to be
confirmed by clinical trial coordinators for the selected studies so that our study was
constrained by their availability. The set of cases (PopulationD in Fig. 1)may also have
been biased towards population sub-types due to unknown recruitment constraints. The
small number of cases not only limited and potentially biased our training data set but
also limited the sophistication of the target patient representation to a simple mean of
all training patients. A larger number of cases would enable us to use more sophisti-
cated distribution fitting approaches [50]. In the future, we would like to use a larger
and more representative sample to serve as the gold standard (true cases). For this, we
need to measure the representativeness of populations enrolled in clinical studies. This
will be an extension of our work on quantifying clinical study eligibility-based
representativeness [51].

Moreover, we used a randomly selected unknown EHR patient sample to evaluate
our algorithm, because we did not have access to true controls. Some of these randomly
selected unknown EHR patients may be eligible cases for the cohort identification task,
and this will create a bias in the evaluation strategy used here. One way to address this
in the future would be to perform a manually review to derive controls. Use of true
controls will help us evaluate our algorithm using measures such as recall, specificity,
and accuracy, in addition to the measures of precision used here.

Since our method currently uses only structured phenotypic traits, our method might
not help clinical studies that rely heavily on clinical features available in free-text
clinical notes, such as the Bability to run 5 miles on the treadmill^ or Bfamily history of
breast cancer .̂ In the future, we would like to extend our similarity-based cohort
identification algorithm to include unstructured free-text clinical notes to address this
limitation.

In our experiments reported here, we use only the Columbia University Medical
Center’s CDW as our EHR source. Routine clinical data, such as those recorded in
EHRs are collected primarily for clinical and billing purposes, and reuse of this type of
data for research should always be treated with caution, and our data set is no
exception. There are often severely limiting data quality issues with the EHR, such
as missing values, sampling biases, and incorrectness [52, 53], and this invariably
implies that a certain margin of error exists in research using EHRs. In the future, we
plan to validate our algorithm using EHRs at other sites that are part of the collaborative
OHDSI framework [27]. We also plan to conduct a comprehensive evaluation of the
effect of EHR data quality on cohort identification algorithms.

5 Conclusions

This article proposes a portable high-throughput similarity-based cohort identification
algorithm using the OMOP CDM v5 framework. Its performance is promising in
selected clinical trials. Validation of our algorithm at other OHDSI sites and a practical
evaluation of our method in a real-time cohort identification setting are immediate next
steps for this research.
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