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Abstract

There has been an increasing interest in joint association testing of multiple traits for possible 

pleiotropic effects. However, even in the presence of pleiotropy, most of the existing methods 

cannot distinguish direct and indirect effects of a genetic variant, say SNP, on multiple traits, and a 

conditional analysis of a trait adjusting for other traits is perhaps the simplest and most common 

approach to addressing this question. However, without individual-level genotypic and phenotypic 

data but with only GWAS summary statistics, as typical with most large-scale GWAS consortium 

studies, we are not aware of any existing method for such a conditional analysis. We propose such 

a conditional analysis, offering formulas of necessary calculations to fit a joint linear regression 

model for multiple quantitative traits. Furthermore, our method can also accommodate conditional 

analysis on multiple SNPs in addition to on multiple quantitative traits, which is expected to be 

useful for fine mapping. We provide numerical examples based on both simulated and real GWAS 

data to demonstrate the effectiveness of our proposed approach, and illustrate possible usefulness 

of conditional analysis by contrasting its result differences from those of standard marginal 

analyses.

1 Introduction

There is an increasing interest in association analysis of multiple traits with many new tests 

being recently proposed; see, e.g. He et al. (2013), Jiang et al. (2014), Zhang et al. (2014), 

Wang et al. (2016), Kim et al. (2016) and Schaid et al. (2016) and references therein. There 

are two main reasons: one is to increase statistical power and the other is to detect pleotropic 

effects, which may shed light on underlying biology and for possible repurposing the use of 

existing drugs. However, as pointed out by Schaid et al. (2016), almost all existing methods 

test with a null hypothesis of no associated trait, which may be rejected even in the absence 

of pleiotropy if only one of the multiple traits is indeed associated; they cannot tell whether 

there is indeed pleiotropy. Accordingly, several methods have appeared to explore which of 

the multiple traits are indeed associated (Stephens, 2013; Majumdar et al., 2016). In 

particular, Schaid et al. (2016) proposed a formal testing framework to sequentially test for 

the number of associated traits. However, even in the presence of multiple associated traits, 

these approaches cannot distinguish direct and indirect associations. For example, if it is 

known two traits are associated with one SNP, it is unknown whether one of the traits is a 
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mediator between the SNP and the other trait, the answer to which would be of interest. For 

this purpose, a conditional analysis would be useful: we can test for possible association 

between a trait and an SNP by conditioning on all other traits; if the effect of the trait being 

tested is indirect and solely through some other trait as a mediator, it will not be significantly 

associated with the SNP in the conditional analysis, though it may be marginally associated 

with the SNP (without adjusting for other traits) in a standard GWAS analysis. With the 

availability of individual-level genotypic and phenotypic data, such a conditional analysis is 

straightforward. However, due to confidentiality concerns or logistic reasons, often we only 

have summary statistics available from a GWAS or a meta-analysis of multiple GWAS. Most 

existing association testing methods for multiple traits are applicable only to individual-level 

data, though a few exceptions exist for marginal analyses (Zhu et al., 2015; Kim et al., 2015; 

Cichonska et al., 2016; Kwak, & Pan, 2016, 2017). A major contribution here is to extend a 

conditional analysis of multiple quantitative traits to GWAS summary statistics without 

individual-level data. Our idea is similar to conditional analysis of a single quantitative trait 

on multiple SNPs with only GWAS summary statistics (Yang et al., 2012). The difference is 

that, in our approach we use the GWAS summary statistics to estimate the correlations 

among the multiple quantitative traits, while in the latter a reference panel of individual-level 

genotypic data is used to estimate the correlations (LD) among the SNPs. We will also 

combine the two approaches for a joint conditional analysis of multiple traits and multiple 

SNPs. The proposed approach will be useful to sort out specific effects of the SNPs in a 

locus associated with one or more traits, e.g. in fine mapping. It can be also used to infer the 

causal relationships among multiple quantitative traits as in structural equation modeling (Li 

et al., 2006).

A caveat of our approach is that we implicitly assume that a set of multiple traits is collected 

on each subject, as in usual multivariate analyses. However, for GWAS summary statistics, 

this assumption may not exactly hold due to missing values of one or more traits on some 

subjects. This can be easily seen from unequal numbers of subjects across the multiple traits 

for the same SNP in a typical dataset of GWAS summary statistics. The consequence is 

biased parameter estimation with the bias increasing with the proportion of non-overlapping 

subjects across the traits. In the extreme case that no more than one trait is collected from 

any subject, then the multiple traits will be estimated as uncorrelated, implying that a 

conditional analysis of multiple traits will be equal to marginal analyses on each trait 

separately. We will use simulations to demonstrate this phenomenon. Finally, we will apply 

our proposed method to two large GWAS datasets, confirming differences between usual 

marginal analyses and a conditional analysis.

2 Methods

2.1 Adjusting for One Phenotype

We first consider the simplest case with two traits and a single SNP. Denote the two traits as 

Y1 = (yi1)n×1 and Y2 = (yi2)n×1, and the additive coding of the SNP as X1 = (xi1)n×1, where n 
is the number of subjects. We assume that both the two traits and the SNP have been 

centered so that an intercept is not needed in a regression analysis. Given a dataset of GWAS 
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summary statistics, we have the estimates  and  from a marginal 

analysis with marginal linear models

Now our goal is to obtain parameter estimates from a conditional analysis with a joint linear 

regression model

where b1, b2 are the joint effects, and e~N(0, σJ
2In). In particular, b1 is the parameter of 

interest, giving conditional association of the SNP with trait 1 after adjusting for trait 2. 

Based on the ordinary least squares estimator, we have

where σ̂
J
2 is the estimated residual variance for the joint model.

σĴ
2 can be calculated as

Hence, we only need X1′X1, X1′Y1, X1′Y2, Y1′Y1, Y2′Y2 and Y1′Y2 to estimate the 

coefficients and their covariance matrix.

We can obtain X1′Y1, X1′Y2, Y1′Y1 and Y2′Y2 using the following equations
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where  and  are the estimated residual variances for the two marginal models.

Suppose X2, X3, … Xm+1 are some other SNPs that do not have marginal associations with 

both Y1 and Y2. Following Kim et al. (2015), if we have the Z-scores Z1 = (Zi1)m×1 for β1 in 

the marginal models Y1 = Xi+1β1 + e1, and Z2 = (Zi2)m×1 for Y2 = Xi+1β2 + e2, and if the 

sample size is large (as usual in GWAS), we can estimate Y1′Y2 as 

, since we have

where cor(Z1, Z2) is the sample Pearson correlation between the two sets of the Z-statistics 

Z1 and Z2.

When the summary statistics are fixed, the calculated X1′Y1, X1′Y2, Y1′Y1 and Y2′Y2 are 

proportional to X1′X1. As a result, Y1′Y2 is also proportional to X1′X1, and the calculated 

coefficients and covariance do not depend on the value of X1′X1 we specify. Hence, we can 

simply set X1′X1 to 1.

As a result, we have
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where . Again Z1, Z2 are the Z-scores for 

a large number, say a few hundreds of thousands, of some null SNPs’ for Y1, Y2 

respectively, drawn from the given GWAS summary statistics.

We note that in practice, the subjects used to generate summary statistics for Y1 and Y2 may 

not be exactly the same, which may lead to biased estimates; the degree of the bias increases 

with the proportion of the subjects who did not have all the measurements for all the traits. 

For operational purpose, we can set n as the number of all subjects and carry on the above 

process.

2.2 Adjusting for Multiple Phenotypes and Multiple SNPs

We extend our method to the general situation where Y2 includes more than one phenotype, 

and X1 includes more than one SNP. Suppose Y2 = (yik)n×(K−1), k = 2, … K, where (K − 1) 

is the number of phenotypes we want to adjust for in the joint model; X1 = (xil)n×L, where L 

is the number of SNPs. Based on the given GWAS data, we have the summary statistics 

and  in marginal analyses with marginal linear models

where Y(k) is the kth column of (Y1 Y2), k = 1, … K, X1l = (xil)n×1, and ekl~N(0, σkl
2In). 

Now we are interested in inference for conditional analysis with a joint (full) linear 

regression model

where b1, b2 are the joint effects, and e~N(0, σJ
2In).

In practice, due to missing values, different summary statistics often came from different 

numbers of individuals. Suppose nkl is the sample size used to calculate  and , and 

n is the number of all subjects; we assume . Each sample of nkl < n individuals is 

regarded as a random sample from the n subjects.
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Similar to what we did before, we have

The residual variance σ̂
J
2 can be estimated as

Denote the (k − 1)th column of Y2 by Y(k) and Y1 by Y(1). We have

We can obtain X1l′Y(k), Y(k)′Y(k) using
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Note that  is the estimated coefficient using all n subjects. It is different from the  we 

have, which only used nkl subjects. We can replace the unknown  by , assuming the 

sample size is large enough (which is the case in GWAS). As for , we should 

replace it by  because the sample size does influence the variance of the 

estimator. Then we have

When n is large, we can also use

As before, given the GWAS data of summary statistics, we have Z-statistics Zk for Y(k) 

versus SNPs that are not significant for all phenotypes, which are used to estimate Y(k)′Y(q) 

as  when k ≠ q.

If we can get individual level data  from some reference panel for the L SNPs of interest, 

we can estimate X1′X1 as Σ, where Σ is the sample variance-covariance matrix obtained 

from .

To summarize, if we have  and  for Y(k)~X1l (k = 1 … K, l = 1 … L) and nkl, the 

sample size to get the summary statistics, as well as Σ, an estimate of the variance-

covariance matrix of the SNPs, and Zk, Z-scores for Y(k) versus null SNPs, we can use the 

following procedure to get the coefficients and the variance estimates:

Deng and Pan Page 7

Genet Epidemiol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the calculated  does not depend on the choice of n, but σĴ
2 does. When 

there are many non-overlapping subjects, e.g. if  is small, we shall obtain 

biased estimates of σ̂
J
2 and other parameters.
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From our experience, the estimate of X1′X1 tends to affect the result. In some cases, it may 

even make some diagonal elements of  negative. To fix this problem, we may use 

a modified version of  when calculating  and . 

Inspired by Cichonska et al. (2016), we can use (A + λI)/(λ + 1), where I is an identity 

matrix and λ > 0 is a small positive number to be manually selected. In the data analysis 

part, we still used the default λ = 0 unless specified otherwise.

2.3 Hypothesis Testing

Denote (b1, b2)′ and  by b and b̂. Since we are able to obtain b̂ and , we can 

test any null hypothesis in the form of Cb = l by the Wald test, where C is a rank Q matrix 

with (K + L) columns and Q rows, l is a Q dimensional vector. If Q is greater than 1, the test 

is testing multiple hypothesis, otherwise a single hypothesis. The test statistic is

Under the null hypothesis, T approximately follows a chi-squared distribution with Q 
degrees of freedom.

3 Results

3.1 Simulations

To evaluate the effectiveness of our proposed approach, we first compared the performance 

of using summary statistics only with that of using individual-level data in a simulation 

study with one SNP and two traits. We generated the genotypes of a single SNP from a 

binomial distribution with frequency f0. Then we generated Y2 using the model Y2 = X1β2 + 

e1, and Y1 using the model , where ei follows a standard normal 

distribution. To obtain the Z-scores, we generated 500 independent null SNPS with varying 

allele frequencies f~U [0.08,0.2] and then estimated their marginal effect sizes and 

variances. The sample size was set to n. We compared our approach using only summary 

statistics with the golden standard approach of using individual-level data.

Next, we did simulations to assess the influence of non-overlapping subjects. After 

generating the data for n subjects, we only used the first n1 subjects to obtain summary 

statistics for Y1, and the last n2 subjects for Y2. When building the model based on 

individual data, we only used the overlapping subjects. We obtained the means and the 

standard deviations using 100 iterations. We also compared the results with marginal 

estimates.

In addition, we looked at the performance of the new method for adjusting for multiple traits 

and multiple SNPs. A new simulation was conducted based on a dataset from the Genetic 
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Investigation of Anthropometric Traits (GIANT) consortium (Randall et al., 2013). The 

dataset contains summary statistics for the marginal effects of each single SNPs on each of 

the anthropometric traits like body mass index (BMI), hip circumference (HIP), waist 

circumference (WC) and weight, etc., stratified by sex.

For this simulation, we only simulated data for males. We chose 8 SNPs that are marginally 

significant for the four traits (p-value < 5e-8) but not highly correlated. We generated the 

genotypes from a multivariate binomial distribution based on the 8 SNPs’ minor allele 

frequencies and their correlations estimated from the reference panel. In this step, we 

multiplied the correlation between each pair of SNPs by 0.8 to avoid numerical problems. 

We also standardized the genotypes. Then we simulated HIP and WC using the estimated 

models for HIP~SNP1 + SNP2 + SNP3 + SNP4, WC~SNP5 + SNP6 + SNP7 + SNP8. Next, 

we generated BMI using the estimated model for BMI~HIP + WC + SNP1 + SNP2 + ⋯ + 

SNP8. The sample size was set to 2000. After that, we conducted the marginal analysis. 

Then we did the conditional analysis using the obtained summary statistics.

The results shown in Table 4 indicate that the regression coefficient estimates from the 

conditional model tended to be more accurate than those from the marginal models, and that 

they had smaller standard errors, suggesting possible power gains from conditional analyses.

3.2 BCX Data

The Blood Cell Consortium (BCX) data (Chami et al., 2016) contains summary statistics for 

single SNP effects on red blood cell traits. We applied the method to traits red blood cell 

count (RBC) and hematocrit (HCT) for European subjects, denoted by Y1 and Y2. We 

examined each SNP that has both significant marginal effects on BCX and HCT. The 

number of such SNPs is 25. We used the Z-scores for those 206751 SNPs in the same 

chromosome that were not marginally associated with either trait.

Y2 in every case turned out to be highly significant, while only 15 SNPs (e.g. rs218237, 

rs172629) remained significant (p-value < 5e-8) after adjusting for Y2 in conditional 

analyses. This might suggest that the other SNPs (e.g. rs11611647, rs837763) influence 

RBC through HCT. Table 4 shows some examples.

3.3 GIANT Data

We applied the methods to the GIANT data. Before conducting the analysis, for each sex, 

we estimated the correlations among the traits using 2723514 SNPs that were not marginally 

significant for BMI, HIP, WC and weight (i.e. p-value > 5e-8) for men and 2723477 SNPs 

for women. The number of subjects used to obtain the summary statistics varies a lot, 

depending on SNPs, traits and genders, as shown in Table 5.

First, we looked at the data for males. We considered those SNPs that were marginally 

significant for BMI, HIP, WC and weight (p-value < 5e-8). Only 44 SNPs satisfied this 

condition, and they were all mapped to gene FTO on chromosome 16. Since these SNPs 

were highly correlated, we chose 8 of them so that the correlation matrix estimated from the 

reference panel was not nearly singular. The panel we used was the 381 European subjects 

from the 1000 Genomes Project data (The 1000 Genomes Project Consortium, 2015). If the 
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absolute value of the correlation between two SNPs was greater than 0.98, we excluded the 

second one. We list the effective sample sizes in Table 6. Note that, due to the inclusion of 

some family-based studies in the meta-analysis, the effective sample sizes may not be 

integers.

We conducted a conditional analysis with a joint (full) model for BMI vs. the other traits 

plus the 8 SNPs. We also considered models adjusting for traits only or for SNPs only. The 

four types of models can be viewed as BMI~SNPi (marginal), BMI~SNPi + HIP + WC + 

Weight (adjusted for only the traits), BMI~SNP1 + SNP2 + ⋯ + SNP8 (adjusted for only the 

SNPs) and BMI~HIP + WC + Weight + SNP1 + SNP2 + ⋯ + SNP8 (adjusted for both the 

traits and SNPs).

As shown in Figure 1, after adjusting for both SNPs and traits, three marginally significant 

SNPs became insignificant, while one became more significant (rs8057044). If we only 

adjusted for traits, all 8 SNPs became insignificant. The estimated effects were all very 

small. If we only adjusted for SNPs, a few SNPs retained much larger effect sizes. The effect 

size of rs8057044 was much larger than those of the other SNPs, yielding p-value 0. Note 

that SNP rs11075987 was insignificant in the full model, but highly significant in the partial 

model only adjusting for SNPs, which demonstrates the effects of conditional analysis.

Next, we built the joint model with the same SNPs for females. The results are shown in 

Figure 2. After adjusting for SNPs and traits, 2 SNPs became insignificant. The most 

significant SNP in our analysis for males, rs8057044, was much less significant for females: 

the estimated effect sizes were 0.239 and 0.095, with the standard errors 0.013 and 0.011, 

respectively. In contrast, in the marginal models, the corresponding effect sizes were 0.072 

and 0.058 respectively. The joint analysis seems able to better capture the sex difference for 

this SNP.

Furthermore, we considered both marginally significant and insignificant SNPs mapped to 

gene FTO. We looked at the 8 significant SNPs from above plus 20 SNPs that are not 

marginally significant for BMI in the male data. Again we selected 20 SNPs so that none of 

the pairwise correlation was greater than 0.9, while intentionally reserving rs8057044. Then 

we built the joint models for men and women respectively.

As shown in Figure 3, some SNPs (e.g. rs9922370, rs12447427, rs12596862) that were not 

marginally significant for association with BMI became highly significant in the joint model 

for men. However, their estimated effect sizes were not as large in the joint model for 

women. Note that the reference panel we used was not stratified by sex.

We also only looked at the 17 marginally insignificant SNPs among the selected SNPs. As 

shown in Figure 4, none of them became significant in the joint model, suggesting that their 

significant results obtained earlier were due to their correlations with other marginally 

significant SNPs.
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4 Discussion

We have presented the conditional analysis adjusting for one or more traits and possibly for 

one or more SNPs using only GWAS summary statistics. Our simulation study confirmed 

that when an SNP influences one trait through another trait, the conditional analysis is more 

reliable than the marginal analysis to detect the mediating effects, thus distinguishing direct 

and indirect effects.

We applied our analysis to the BCX data for the subjects of European ancestry. Among the 

25 SNPs that were both marginally significant for RBC and HCT, 10 of them became 

insignificant for RBC after adjusting for HCT. This may suggest these SNPs affect RBC 

through HCT, though it may be also due to reduced power in conditional analysis. We also 

applied our analysis to the GIANT data. We found that the joint models could reduce the 

number of significant SNPs, and more importantly, possibly better distinguish sex-specific 

associations.

We assume that all the traits were collected from the same set of subjects, which may not 

hold in practice due to missing values, as often shown in varying samples sizes for trait-

specific summary statistics in GWAS data. If this assumption is violated, we may obtain 

estimates with bias, whose degree depends on the proportion of non-overlapping subjects. In 

the worst case of no-overlapping subjects among the multiple traits, a conditional analysis 

reduces to marginal analysis (because the traits would be estimated to be uncorrelated to 

each other).

In addition to conditional analysis of multiple traits to unravel specific pleiotropic effects, 

our proposed method can also be applied to conditional analysis of both multiple traits and 

multiple SNPs. We expect that our proposed method will be useful in future fine mapping 

studies.

The proposed method is implemented as an R function available at https://github.com/

yangq001/conditional.
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Figure 1. 
The effect of each SNP on BMI in different models (Men)

The black horizontal lines at −log10p=7.3 indicate the genome-wide significance cut-off 

(p=5e-8).
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Figure 2. 
The effect of each SNP on BMI in different models (Women)
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Figure 3. 
The effect of each SNP on BMI in different models
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Figure 4. 
The effect of each SNP on BMI in different models (Men)
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Table 2

Estimated coefficients, standard errors and p-values when non-overlapping subjects exist for the two traits

f0 = 0.1, (β2, b1, b2) = (1, 0.8, 1.2), n = 500, n1 = 400, n2 = 500

Mean( )

SD

Mean( )

SD

summary 0.82 0.22 1.18 0.09

individual 0.79 0.18 1.21 0.05

marginal 2.07 0.25 2.03 0.23

f0 = 0.1, (β2, b1, b2) = (1, 0.8, 1.2), n = 500, n1 = 500, n2 = 400

Mean( )

SD

Mean( )

SD

summary 1.07 0.20 0.94 0.07

individual 0.80 0.18 1.21 0.05

marginal 2.03 0.23 2.01 0.25

f0 = 0.1, (β2, b1, b2) = (1, 0.8, 1.2), n = 500, n1 = 400, n2 = 400

Mean( )

SD

Mean( )

SD

summary 1.16 0.26 0.84 0.10

individual 0.79 0.21 1.21 0.06

marginal 2.07 0.25 2.01 0.25

As shown in Table 2, the presence of non-overlapping subjects did affect the results of our method. The main reason is due to the poor 
approximation cor(Y1, Y2) ≈ cor(Z1, Z2) in this case. Table 3 shows the averages of the estimated correlations based on 20 samples for varying 

degrees of overlapping subjects. We generated one set of (Y1, Y2), and then simulated (Z1, Z2) 20 times for each set-up. It is clear that as the 

proportion of the non-overlapping subjects increased, the bias of the correlation estimates also increased.
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Table 3

The correlation between Y1, Y2 and Z1, Z2 under each setting

n = 500 n1 = 500, n2
= 500

n1 = 400, n2
= 500

n1 = 500, n2
= 400

n1 = 400, n2
= 400

cor(Y1, Y2) 0.77

cor(Z1, Z2) 0.77 0.71 0.69 0.59

Since the estimated correlation between Y1 and Y2 was under-biased,  became underestimated. Meanwhile,  was inflated. Nevertheless, the 

estimates from our conditional analysis were still better than those from marginal analysis (i.e. closer to the true parameters in the conditional 
model).
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Table 6

Estimated correlation between traits using Zk’s and the range of sample size for each trait (Upper: Men; 

Lower: Women)

Correlation BMI (221,
58665)

HIP (118,
32851)

WC (118,
38313)

Weight (113,
58351)

BMI (124, 67959) 1 0.54 0.70 0.84

HIP (120, 40358) 0.63 1 0.68 0.61

WC (120, 47322) 0.72 0.70 1 0.70

Weight (125, 67594) 0.89 0.66 0.72 1
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Table 7

Effective sample size for each trait-SNP pair (men)

SNP BMI HIP WC Weight

rs10852521 58612.9 32844.1 38299.9 58317.5

rs11075985 58612.1 32843.3 38299.4 58316.7

rs11075987 58615.9 32846.5 38302.5 58320.5

rs11075989 58618.1 32848.3 38304.2 58322.7

rs11642841 58604.5 32841.8 38297.5 58309.1

rs12149832 58597.6 32838.7 38294.8 58302.2

rs8057044 58556.0 32791.5 38247.5 58260.7

rs9922619 58615.8 32846.2 38302.3 58320.4

The (effective) sample size did not vary much among these SNPs for a given trait, but it did vary across the traits, suggesting at least about 1/4 of 
the subjects were not overlapped, thus cautions are needed with regard to possible biases of the parameter estimates.
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