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Abstract

There has been an increasing interest in joint association testing of multiple traits for possible
pleiotropic effects. However, even in the presence of pleiotropy, most of the existing methods
cannot distinguish direct and indirect effects of a genetic variant, say SNP, on multiple traits, and a
conditional analysis of a trait adjusting for other traits is perhaps the simplest and most common
approach to addressing this question. However, without individual-level genotypic and phenotypic
data but with only GWAS summary statistics, as typical with most large-scale GWAS consortium
studies, we are not aware of any existing method for such a conditional analysis. We propose such
a conditional analysis, offering formulas of necessary calculations to fit a joint linear regression
model for multiple quantitative traits. Furthermore, our method can also accommodate conditional
analysis on multiple SNPs in addition to on multiple quantitative traits, which is expected to be
useful for fine mapping. We provide numerical examples based on both simulated and real GWAS
data to demonstrate the effectiveness of our proposed approach, and illustrate possible usefulness
of conditional analysis by contrasting its result differences from those of standard marginal
analyses.

1 Introduction

There is an increasing interest in association analysis of multiple traits with many new tests
being recently proposed; see, e.g. He et al. (2013), Jiang et al. (2014), Zhang et al. (2014),
Wang et al. (2016), Kim et al. (2016) and Schaid et al. (2016) and references therein. There
are two main reasons: one is to increase statistical power and the other is to detect pleotropic
effects, which may shed light on underlying biology and for possible repurposing the use of
existing drugs. However, as pointed out by Schaid et al. (2016), almost all existing methods
test with a null hypothesis of no associated trait, which may be rejected even in the absence
of pleiotropy if only one of the multiple traits is indeed associated; they cannot tell whether
there is indeed pleiotropy. Accordingly, several methods have appeared to explore which of
the multiple traits are indeed associated (Stephens, 2013; Majumdar et al., 2016). In
particular, Schaid et al. (2016) proposed a formal testing framework to sequentially test for
the number of associated traits. However, even in the presence of multiple associated traits,
these approaches cannot distinguish direct and indirect associations. For example, if it is
known two traits are associated with one SNP, it is unknown whether one of the traits is a
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mediator between the SNP and the other trait, the answer to which would be of interest. For
this purpose, a conditional analysis would be useful: we can test for possible association
between a trait and an SNP by conditioning on all other traits; if the effect of the trait being
tested is indirect and solely through some other trait as a mediator, it will not be significantly
associated with the SNP in the conditional analysis, though it may be marginally associated
with the SNP (without adjusting for other traits) in a standard GWAS analysis. With the
availability of individual-level genotypic and phenotypic data, such a conditional analysis is
straightforward. However, due to confidentiality concerns or logistic reasons, often we only
have summary statistics available from a GWAS or a meta-analysis of multiple GWAS. Most
existing association testing methods for multiple traits are applicable only to individual-level
data, though a few exceptions exist for marginal analyses (Zhu et al., 2015; Kim et al., 2015;
Cichonska et al., 2016; Kwak, & Pan, 2016, 2017). A major contribution here is to extend a
conditional analysis of multiple quantitative traits to GWAS summary statistics without
individual-level data. Our idea is similar to conditional analysis of a single quantitative trait
on multiple SNPs with only GWAS summary statistics (Yang et al., 2012). The difference is
that, in our approach we use the GWAS summary statistics to estimate the correlations
among the multiple quantitative traits, while in the latter a reference panel of individual-level
genotypic data is used to estimate the correlations (LD) among the SNPs. We will also
combine the two approaches for a joint conditional analysis of multiple traits and multiple
SNPs. The proposed approach will be useful to sort out specific effects of the SNPs in a
locus associated with one or more traits, e.g. in fine mapping. It can be also used to infer the
causal relationships among multiple quantitative traits as in structural equation modeling (Li
et al., 2006).

A caveat of our approach is that we implicitly assume that a set of multiple traits is collected
on each subject, as in usual multivariate analyses. However, for GWAS summary statistics,
this assumption may not exactly hold due to missing values of one or more traits on some
subjects. This can be easily seen from unequal numbers of subjects across the multiple traits
for the same SNP in a typical dataset of GWAS summary statistics. The consequence is
biased parameter estimation with the bias increasing with the proportion of non-overlapping
subjects across the traits. In the extreme case that no more than one trait is collected from
any subject, then the multiple traits will be estimated as uncorrelated, implying that a
conditional analysis of multiple traits will be equal to marginal analyses on each trait
separately. We will use simulations to demonstrate this phenomenon. Finally, we will apply
our proposed method to two large GWAS datasets, confirming differences between usual
marginal analyses and a conditional analysis.

2.1 Adjusting for One Phenotype

We first consider the simplest case with two traits and a single SNP. Denote the two traits as
Y1 =) and Yo = (Vp) ax1, and the additive coding of the SNP as X1 = (xj1) 1, Where n
is the number of subjects. We assume that both the two traits and the SNP have been
centered so that an intercept is not needed in a regression analysis. Given a dataset of GWAS
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summary statistics, we have the estimates 3, 3, and vai(3;), var(j3,)from a marginal
analysis with marginal linear models

Y 1=X/51+e;
Y =X /2+er

e;~N(0,0,°1,) i=1,2

Now our goal is to obtain parameter estimates from a conditional analysis with a joint linear
regression model

where by, b are the joint effects, and e~N(0, o.£1,). In particular, b, is the parameter of
interest, giving conditional association of the SNP with trait 1 after adjusting for trait 2.
Based on the ordinary least squares estimator, we have

h\ (XX, vix, )\ [ Xy,
h )=\ xiv, viv, | vy,
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where &JZ is the estimated residual variance for the joint model.

o # can be calculated as

~ !
b1 XY,
Yy, - [ X !
A2_11 <b2><Y{2Y1

n—2

Hence, we only need X1" X1, X1 Y1, X1"Y2, Y1'Y1, Y2 Y5 and Y1 'Y, to estimate the
coefficients and their covariance matrix.

We can obtain X;"Y1, X1"Y>, Y1"Y1 and Y, Y using the following equations
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where 5} and 7; are the estimated residual variances for the two marginal models.

Suppose X», X3, ... Xpn+1 are some other SNPs that do not have marginal associations with
both Y1 and Y. Following Kim et al. (2015), if we have the Z-scores Zy = (Zj1) mx1 for By in
the marginal models Y1 = X181 + €1, and Zy = (Zp) mx1 for Yo = X416 + €5, and if the
sample size is large (as usual in GWAS), we can estimate Y'Y as

VY Y 1Y,Y 5cor(Z1, Z2), since we have
Y'Y,

NADAT

~cor(Y1,Ys) = cor(Z1,Z5)

where cor(Z,, Z5) is the sample Pearson correlation between the two sets of the Z-statistics
Zy and Z,.

When the summary statistics are fixed, the calculated X;"Y1, X1"Y5, Y1 Y and Y, Y, are
proportional to X1"X;. As a result, Y1"Y is also proportional to X;"X4, and the calculated
coefficients and covariance do not depend on the value of X;"X; we specify. Hence, we can
simply set X1 X1 to 1.

As a result, we have

hY_ (1 B B
by Ba Sy cor(Z1,7Z5) /515,
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where §,—(n — 1)7ar(B1)+ 51, So=(1 — 1)7aT(5a)+ 5 - Again Z3, Z, are the Z-scores for
a large number, say a few hundreds of thousands, of some null SNPs’ for Y4, Y,
respectively, drawn from the given GWAS summary statistics.

We note that in practice, the subjects used to generate summary statistics for Y1 and Y, may
not be exactly the same, which may lead to biased estimates; the degree of the bias increases
with the proportion of the subjects who did not have all the measurements for all the traits.
For operational purpose, we can set /7as the number of all subjects and carry on the above
process.

2.2 Adjusting for Multiple Phenotypes and Multiple SNPs

We extend our method to the general situation where Y, includes more than one phenotype,
and Xy includes more than one SNP. Suppose Y, = (Vi) mx(k-1), K= 2, ... K, where (K- 1)
is the number of phenotypes we want to adjust for in the joint model; X1 = (Xj) i<, Where L

is the number of SNPs. Based on the given GWAS data, we have the summary statistics [7/’;1

and @(B\kl) in marginal analyses with marginal linear models

Y (3)=X1 b +ewu,

where Y 4 is the Ath column of (Y1 Y2), k=1, ... K, X1/= (Xi) m1, and ex~N(O, oyl ).
Now we are interested in inference for conditional analysis with a joint (full) linear
regression model

where by, by are the joint effects, and e~N(0, o'/l ,).

In practice, due to missing values, different summary statistics often came from different

numbers of individuals. Suppose 71 is the sample size used to calculate j3,, and V/a\r([/fil)’ and

nis the number of all subjects; we assume ""=™a% il Each sample of 775,< nindividuals is
regarded as a random sample from the 77 subjects.
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Similar to what we did before, we have
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The residual variance &f can be estimated as
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by XY,
Y Y,-| = !
& 2 ' ( b2 > < leYl

7 n— (K+L—1)

Denote the (k- 1)th column of Y, by Y (4 and Yy by Y(1). We have

Yo=(Yy ... Y(K))

We can obtain Xl//Y(k), Y(k)/Y(k) using

—~ X/uY(k)

kl =
X/UXll

—12
Y)Y ) — X0 X118

o
— =X1 Xu1var (B )
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Note that B\ml is the estimated coefficient using all 77subjects. It is different from the B\kl we
have, which only used 7/ subjects. We can replace the unknown B;l' by gAkl assuming the
sample size is large enough (which is the case in GWAS). As for @(E,;'), we should
replace it by r,, var (3, ) /n because the sample size does influence the variance of the
estimator. Then we have
Ba= XuY x)
X/UXll

—2
Y Yo — XuXube  ny (G
k¥ ( )n_ : :#X'HXnVar(ﬂkl)

When nis large, we can also use

) -
Y/(k)Y(k) — X1 X118k & nga X X var (B )

As before, given the GWAS data of summary statistics, we have Z-statistics Z 4 for Y 4
versus SNPs that are not significant for all phenotypes, which are used to estimate Y(/()’Y(q)

as \/ YiinYwY (Y @oor(Zk, Z,) when k# g

If we can get individual level data x, from some reference panel for the L SNPs of interest,
we can estimate X1’ Xy as X, where X is the sample variance-covariance matrix obtained

from x,.

To summarize, if we have 5Akl and Va\r(ﬁAkl) for Y(»~Xy/(k=1... K /=1 ... L) and ng, the
sample size to get the summary statistics, as well as Z, an estimate of the variance-
covariance matrix of the SNPs, and Z, Z-scores for Y 4 versus null SNPs, we can use the
following procedure to get the coefficients and the variance estimates:

XiXi=) =(sy),

S11 0 0

0 S99 v 0 e
! !
XY= . | Bubie. By
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Note that the calculated (b, by )’ does not depend on the choice of 7, but o/ does. When

there are many non-overlapping subjects, e.g. if I%f}l(”kl)/ H,ﬁ?lx(”kl) is small, we shall obtain
biased estimates of &JZ and other parameters.
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From our experience, the estimate of X; "Xy tends to affect the result. In some cases, it may

[ by
even make some diagonal elements of var < b2 ) negative. To fix this problem, we may use
(35 ) (5 o ()
a modified version of Y5X: Y3Y> )when calculating\ by /and by /.
Inspired by Cichonska et al. (2016), we can use (A + Al)/(A + 1), where 1 is an identity
matrix and A > 0 is a small positive number to be manually selected. In the data analysis
part, we still used the default A = 0 unless specified otherwise.

2.3 Hypothesis Testing

3 Results

Denote (b, by)” and (bAl, bA2)’ by b and b. Since we are able to obtain b and var(b), we can
test any null hypothesis in the form of Cb = | by the Wald test, where C is a rank Q matrix
with (K+ L) columns and Qrows, | is a @ dimensional vector. If Qis greater than 1, the test
is testing multiple hypothesis, otherwise a single hypothesis. The test statistic is

fo() e (2)e] e (8)

Under the null hypothesis, 7approximately follows a chi-squared distribution with Q
degrees of freedom.

3.1 Simulations

To evaluate the effectiveness of our proposed approach, we first compared the performance
of using summary statistics only with that of using individual-level data in a simulation
study with one SNP and two traits. We generated the genotypes of a single SNP from a
binomial distribution with frequency 7. Then we generated Y, using the model Y, = X165 +

. Y1=(X; YY) < ! > +ez
e, and Yy using the model b2 , Where e, follows a standard normal
distribution. To obtain the Z-scores, we generated 500 independent null SNPS with varying
allele frequencies /~U [0.08,0.2] and then estimated their marginal effect sizes and
variances. The sample size was set to /2. We compared our approach using only summary
statistics with the golden standard approach of using individual-level data.

Next, we did simulations to assess the influence of hon-overlapping subjects. After
generating the data for /7 subjects, we only used the first 72 subjects to obtain summary
statistics for Y1, and the last 7, subjects for Y. When building the model based on
individual data, we only used the overlapping subjects. We obtained the means and the
standard deviations using 100 iterations. We also compared the results with marginal
estimates.

In addition, we looked at the performance of the new method for adjusting for multiple traits
and multiple SNPs. A new simulation was conducted based on a dataset from the Genetic
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Investigation of Anthropometric Traits (GIANT) consortium (Randall et al., 2013). The
dataset contains summary statistics for the marginal effects of each single SNPs on each of
the anthropometric traits like body mass index (BMI), hip circumference (HIP), waist
circumference (WC) and weight, etc., stratified by sex.

For this simulation, we only simulated data for males. We chose 8 SNPs that are marginally
significant for the four traits (p-value < 5e-8) but not highly correlated. We generated the
genotypes from a multivariate binomial distribution based on the 8 SNPs’ minor allele
frequencies and their correlations estimated from the reference panel. In this step, we
multiplied the correlation between each pair of SNPs by 0.8 to avoid numerical problems.
We also standardized the genotypes. Then we simulated HIP and WC using the estimated
models for HIP~SNP; + SNP, + SNP3 + SNP4, WC~SNP5 + SNPg + SNP7 + SNPg. Next,
we generated BMI using the estimated model for BMI~HIP + WC + SNP; + SNPy + -+ +
SNPg. The sample size was set to 2000. After that, we conducted the marginal analysis.
Then we did the conditional analysis using the obtained summary statistics.

The results shown in Table 4 indicate that the regression coefficient estimates from the
conditional model tended to be more accurate than those from the marginal models, and that
they had smaller standard errors, suggesting possible power gains from conditional analyses.

3.2 BCX Data

The Blood Cell Consortium (BCX) data (Chami et al., 2016) contains summary statistics for
single SNP effects on red blood cell traits. We applied the method to traits red blood cell
count (RBC) and hematocrit (HCT) for European subjects, denoted by Y and Y. We
examined each SNP that has both significant marginal effects on BCX and HCT. The
number of such SNPs is 25. We used the Z-scores for those 206751 SNPs in the same
chromosome that were not marginally associated with either trait.

Y5 in every case turned out to be highly significant, while only 15 SNPs (e.g. rs218237,
rs172629) remained significant (p-value < 5e-8) after adjusting for Y5 in conditional
analyses. This might suggest that the other SNPs (e.g. rs11611647, rs837763) influence
RBC through HCT. Table 4 shows some examples.

3.3 GIANT Data

We applied the methods to the GIANT data. Before conducting the analysis, for each sex,
we estimated the correlations among the traits using 2723514 SNPs that were not marginally
significant for BMI, HIP, WC and weight (i.e. p-value > 5e-8) for men and 2723477 SNPs
for women. The number of subjects used to obtain the summary statistics varies a lot,
depending on SNPs, traits and genders, as shown in Table 5.

First, we looked at the data for males. We considered those SNPs that were marginally
significant for BMI, HIP, WC and weight (p-value < 5e-8). Only 44 SNPs satisfied this
condition, and they were all mapped to gene FTO on chromosome 16. Since these SNPs
were highly correlated, we chose 8 of them so that the correlation matrix estimated from the
reference panel was not nearly singular. The panel we used was the 381 European subjects
from the 1000 Genomes Project data (The 1000 Genomes Project Consortium, 2015). If the
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absolute value of the correlation between two SNPs was greater than 0.98, we excluded the
second one. We list the effective sample sizes in Table 6. Note that, due to the inclusion of
some family-based studies in the meta-analysis, the effective sample sizes may not be
integers.

We conducted a conditional analysis with a joint (full) model for BMI vs. the other traits
plus the 8 SNPs. We also considered models adjusting for traits only or for SNPs only. The
four types of models can be viewed as BMI~SNP; (marginal), BMI~SNP,;+ HIP + WC +
Weight (adjusted for only the traits), BMI~SNP; + SNP, + -+ + SNPg (adjusted for only the
SNPs) and BMI~HIP + WC + Weight + SNP; + SNP, + --- + SNPg (adjusted for both the
traits and SNPs).

As shown in Figure 1, after adjusting for both SNPs and traits, three marginally significant
SNPs became insignificant, while one became more significant (rs8057044). If we only
adjusted for traits, all 8 SNPs became insignificant. The estimated effects were all very
small. If we only adjusted for SNPs, a few SNPs retained much larger effect sizes. The effect
size of rs8057044 was much larger than those of the other SNPs, yielding p-value 0. Note
that SNP rs11075987 was insignificant in the full model, but highly significant in the partial
model only adjusting for SNPs, which demonstrates the effects of conditional analysis.

Next, we built the joint model with the same SNPs for females. The results are shown in
Figure 2. After adjusting for SNPs and traits, 2 SNPs became insignificant. The most
significant SNP in our analysis for males, rs8057044, was much less significant for females:
the estimated effect sizes were 0.239 and 0.095, with the standard errors 0.013 and 0.011,
respectively. In contrast, in the marginal models, the corresponding effect sizes were 0.072
and 0.058 respectively. The joint analysis seems able to better capture the sex difference for
this SNP.

Furthermore, we considered both marginally significant and insignificant SNPs mapped to
gene FTO. We looked at the 8 significant SNPs from above plus 20 SNPs that are not
marginally significant for BMI in the male data. Again we selected 20 SNPs so that none of
the pairwise correlation was greater than 0.9, while intentionally reserving rs8057044. Then
we built the joint models for men and women respectively.

As shown in Figure 3, some SNPs (e.g. rs9922370, rs12447427, rs12596862) that were not
marginally significant for association with BMI became highly significant in the joint model
for men. However, their estimated effect sizes were not as large in the joint model for
women. Note that the reference panel we used was not stratified by sex.

We also only looked at the 17 marginally insignificant SNPs among the selected SNPs. As
shown in Figure 4, none of them became significant in the joint model, suggesting that their
significant results obtained earlier were due to their correlations with other marginally
significant SNPs.
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4 Discussion

We have presented the conditional analysis adjusting for one or more traits and possibly for
one or more SNPs using only GWAS summary statistics. Our simulation study confirmed
that when an SNP influences one trait through another trait, the conditional analysis is more
reliable than the marginal analysis to detect the mediating effects, thus distinguishing direct
and indirect effects.

We applied our analysis to the BCX data for the subjects of European ancestry. Among the
25 SNPs that were both marginally significant for RBC and HCT, 10 of them became
insignificant for RBC after adjusting for HCT. This may suggest these SNPs affect RBC
through HCT, though it may be also due to reduced power in conditional analysis. We also
applied our analysis to the GIANT data. We found that the joint models could reduce the
number of significant SNPs, and more importantly, possibly better distinguish sex-specific
associations.

We assume that all the traits were collected from the same set of subjects, which may not
hold in practice due to missing values, as often shown in varying samples sizes for trait-
specific summary statistics in GWAS data. If this assumption is violated, we may obtain
estimates with bias, whose degree depends on the proportion of non-overlapping subjects. In
the worst case of no-overlapping subjects among the multiple traits, a conditional analysis
reduces to marginal analysis (because the traits would be estimated to be uncorrelated to
each other).

In addition to conditional analysis of multiple traits to unravel specific pleiotropic effects,
our proposed method can also be applied to conditional analysis of both multiple traits and
multiple SNPs. We expect that our proposed method will be useful in future fine mapping
studies.

The proposed method is implemented as an R function available at https://github.com/
yangq001/conditional.
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Figure 1.
The effect of each SNP on BMI in different models (Men)

The black horizontal lines at —log1gp=7.3 indicate the genome-wide significance cut-off
(p=5e-8).
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Table 2

Estimated coefficients, standard errors and p-values when non-overlapping subjects exist for the two traits

%=0.1, (B, by, b) = (1, 0.8, 1.2), n= 500, /3 = 400, 13, = 500

~ SD R SD

Mean( bl) Mean( bz)
summary 0.82 0.22 1.18 0.09
individual 0.79 0.18 1.21 0.05
marginal 2.07 0.25 2.03 0.23

%=0.1, (B by, b) = (1, 0.8, 1.2), n= 500, /5 = 500, 13, = 400

—~ SD - SD

Mean( b1) Mean( b2)
summary 1.07 0.20 0.94 0.07
individual 0.80 0.18 121 0.05
marginal 2.03 0.23 2.01 0.25

£=0.1, (B by, b) = (1, 0.8, 1.2), 7= 500, 13, = 400, 13, = 400

~ SD - SD

Mean( bl) Mean( b2)
summary 1.16 0.26 0.84 0.10
individual 0.79 0.21 121 0.06
marginal 2.07 0.25 2.01 0.25

As shown in Table 2, the presence of non-overlapping subjects did affect the results of our method. The main reason is due to the poor
approximation cor(Y1, Y2) ~ cor(Z1, Z2) in this case. Table 3 shows the averages of the estimated correlations based on 20 samples for varying

degrees of overlapping subjects. We generated one set of (Y1, Y?2), and then simulated (Z1, Z2) 20 times for each set-up. It is clear that as the
proportion of the non-overlapping subjects increased, the bias of the correlation estimates also increased.
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Table 3

The correlation between Y1, Y, and Z4, Z, under each setting

n =500 n; =500,n, n;=400,n, n;=500,n, ny=400n,
=500 =500 =400 =400

cor(Yy, Yo) 0.77

cor(Zy, Z») 0.77 071 0.69 0.59

Since the estimated correlation between Y1 and Y2 was under-biased, bQ became underestimated. Meanwhile, bl was inflated. Nevertheless, the
estimates from our conditional analysis were still better than those from marginal analysis (i.e. closer to the true parameters in the conditional
model).
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Table 6

Estimated correlation between traits using Z,’s and the range of sample size for each trait (Upper: Men;
Lower: Women)

Correlation BMI (221, HIP (118, WC (118, Weight (113,
58665) 32851) 38313) 58351)
BMI (124, 67959) 1 0.54 0.70 0.84
HIP (120, 40358) 0.63 1 0.68 0.61
WC (120, 47322) 0.72 0.70 1 0.70
Weight (125, 67594) 0.89 0.66 0.72 1
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Effective sample size for each trait-SNP pair (men)

SNP BMI HIP wC Weight
rs10852521 58612.9 32844.1 38299.9 58317.5
rs11075985 58612.1 32843.3 38299.4 58316.7
rs11075987 586159 32846.5 383025 58320.5
rs11075989 58618.1 32848.3 38304.2 58322.7
rs11642841 58604.5 32841.8 38297.5 58309.1
rs12149832 58597.6 32838.7 38294.8 58302.2
rs8057044  58556.0 327915 382475 58260.7
rs9922619  58615.8 32846.2 38302.3 58320.4

Table 7

Page 24

The (effective) sample size did not vary much among these SNPs for a given trait, but it did vary across the traits, suggesting at least about 1/4 of

the subjects were not overlapped, thus cautions are needed with regard to possible biases of the parameter estimates.
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