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Abstract

The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles 

required for a variety of cellular processes. Its vital functions include not only processing and 

sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing 

center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the 

perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the 

cellular state or environmental demands and stress. For instance, its most dramatic change takes 

place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of 

ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be 

detached and positioned at specific cellular locations to gain additional functionalities during 

differentiation, or fragmented to different degrees along disease progression or upon cell death. 

Here, we describe the major morphological alterations of Golgi ribbon disassembly under 

physiological and pathological conditions and discuss the underlying mechanisms that drive these 

changes.

Structure and function of the Golgi apparatus

The Golgi apparatus is a key membrane-bound organelle in the secretory pathway that is 

essential for all eukaryotic cells. The morphology of the Golgi is highly conserved and is 

featured by the densely packed cisternae that are layered on top of each other to form stacks 

[1]. Despite similar appearance, each individual cisterna houses a specific set of enzymes 

and represents a functionally distinct reaction chamber for processing incoming substrates 

[2]. Upon export from the endoplasmic reticulum, the newly synthesized proteins arrive at 

the cis-Golgi network (CGN) and take on their journey through individual cisternae of the 

stacks [3]. On their way from cis to medial to trans cisternae, the cargo proteins undergo 

various types of post-translational modifications including glycosylation, phosphorylation, 
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sulfation, acetylation, methylation and proteolytic cleavage [4]. The molecules then exit the 

stacked cisternae at the trans-Golgi network (TGN), where they are sorted into specific 

vesicles and delivered to their final destinations such as the endosomal-lysosomal 

compartments, the cell surface, or the extracellular space. In this sense, the Golgi serves as a 

processing and sorting station for proteins and lipids in the biosynthetic pathway. This role is 

shared among all eukaryotes and is carried out in most cases by stacked cisternae [5].

Although a single stack or even unstacked cisternae are sufficient to sustain secretion in 

simple protozoa and budding yeast, most organisms contain multiple stacks that are 

distributed throughout the cell [6,7]. Uniquely to mammals, the stacks are further connected 

by tubular membranes into an elongated, twisted, but continuous structure named the Golgi 

ribbon. The interconnection of stacks is not strictly required for the secretory function of the 

Golgi, since disrupting the ribbon into discrete mini-stacks by microtubule depolymerization 

does not prevent cargo trafficking to the cell surface. However, transport kinetics is reduced 

in the initial phase but resumed to normal level at later stages [8], indicating that mini-stacks 

need to be fully dispersed and matured to become transport-competent [9].

Though dispensable for secretion, the ribbon organization greatly expands the functional 

repertoire of the Golgi in mammalian cells. The homotypic connections between adjacent 

cisternae of the stacks enlarge the membrane compartment such that large cargos as collagen 

can be readily accommodated [10,11*]. Similarly, a continuous ribbon allows proper 

packing of the von Willebrand factor into larger Weibel-Palade bodies, which impacts 

platelet aggregation [12**,13]. Furthermore, by laterally linking stacks, the Golgi apparatus 

is consolidated into one single entity that in most cases is asymmetrically positioned in the 

juxtanuclear region and in close proximity to centrosomes, the primary microtubule-

organizing center (MTOC) in proliferating cells [6]. This confined pericentriolar localization 

of the ribbon plays an important role in establishing and maintaining cell polarity. The 

orientation of the ribbon guides membrane traffic towards a particular area of the plasma 

membrane, which lays the cornerstones for many polarization events in mammalian cells, 

such as neurite outgrowth [14], epithelial polarization [15] and directional cell migration 

[16–18]. In addition to these secretory and polarity functions, the Golgi has emerged as a 

versatile platform that supports a broad range of cellular processes. The Golgi can actively 

modulate the microtubule network [19,20], forms a hub for a variety of signaling pathways 

[21–24] and participates in the regulation of calcium and pH homeostasis [25], stress 

response [26,27], apoptosis [28] and autophagy [29,30**].

Golgi ribbon and the microtubule network

In proliferating cells, the structural integrity and the perinuclear positioning of the Golgi 

ribbon are tightly coordinated with the microtubule cytoskeleton and depend on the minus 

end-directed motor dynein. Disruption of the microtubule network with nocodazole or 

inhibition of dynein function at the Golgi disperses the ribbon into mini-stacks that are 

scattered throughout the cytoplasm [31–33]. Upon removal of nocodazole, microtubules 

regrow from Golgi membranes in addition to the centrosomes, exemplifying the function of 

the Golgi as an MTOC [34–36]. Two distinct microtubule networks originating from the 

centrosomes and the Golgi contribute to build a pericentriolar ribbon in cycling interphase 
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cells [37]. In support of microtubule growth from the Golgi, the core component and 

modulators of the microtubule-nucleating y-tubulin ring complexes (γ-TuRCs), including γ-

tubulin, AKAP450, Cdk5Rap2 and myomegalin, have been found localized to Golgi 

membranes where they collaborate to initiate microtubule nucleation [38–40,20]. Moreover, 

microtubule-associated proteins (MAPs), such as the minus-end binding protein CAMSAP2 

and the plus-end tracking proteins CLASPs that recruits the microtubule-crosslinking protein 

MTCL1 to the Golgi, also help anchor and stabilize Golgi-derived microtubules and thus 

contribute to Golgi organization and function [36,41,42*].

The unique architecture and organization of the Golgi ribbon best exemplifies the 

hierarchical assembly of the cellular organelles [5]. Interestingly, this also implies that 

distinct mechanisms must be in place to disintegrate a larger structure such as the Golgi 

ribbon into its simpler units (stacks, cisternae, vesicles). These steps can occur 

simultaneously or independently, thus giving rise to different degrees of disassembly or 

fragmentation phenotypes. In many cases, disintegration of the Golgi ribbon also 

accompanies the rearrangement of the microtubule network. Below we describe the major 

morphological transformations during physiological processes including ribbon disassembly 

in mitosis and structural variations upon differentiation, as well as fragmentation under 

pathological conditions.

Mitotic disassembly of the Golgi ribbon

Best characterized among the fragmentation processes are the mechanisms that drive the 

disassembly of the Golgi during mitosis when it is most extensive and complete [43–45]. 

Interestingly, mitotic Golgi disassembly is not common to all organisms [6]. In plants and 

yeast, the stacked cisternae stay intact and are fully functional in secretion throughout the 

entire cell cycle [46,47]. The reason why the Golgi is disassembled in animal mitosis has 

long been an open question [48]. The fact that Golgi stacks are interconnected into a 

continuous ribbon poses a challenge for mammalian cells to equally partition the organelle. 

Disassembly of the ribbon into vesicles thus helps to segregate the Golgi membranes into the 

daughter cells. Furthermore, the disassembly of the ribbon also controls mitotic progression 

and spindle dynamics [49,50*,51*]. This mutual regulation of Golgi inheritance and cell 

division ensures the propagation of a functional Golgi ribbon through successive generations 

[52].

Once committed to mitotic entry, mammalian cells rapidly remodel their cellular structures 

to prepare for division [53]. To this end, the continuous Golgi ribbon swiftly disassembles 

into a collection of tubular-vesicular membranes, which are then partitioned with the help of 

the spindle into the daughter cells where they reassemble into a Golgi ribbon [54–56] 

(Figure 1a). The morphological changes of the Golgi in early mitosis are referred to as 

mitotic Golgi disassembly or mitotic Golgi fragmentation and both terms are often used 

interchangeably. Here we use the term mitotic Golgi disassembly because Golgi 

fragmentation is also used for irreversible processes such as apoptosis or necrosis [57,26]. 

Mitotic Golgi disassembly constitutes a series of highly orchestrated actions that are 

coordinated with the reorganization of other cellular contents (Figure 1a). More specifically, 

it is a multi-step process achieved through a combination of ribbon unlinking, cisternal 
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unstacking, as well as tubulation and vesiculation of the Golgi membranes (Figure 1b) [43]. 

All these distinct mechanisms contribute to the rapid and drastic remodeling of mitotic Golgi 

membranes, though the extent of their interdependency and redundancy are not completely 

defined yet.

Lateral unlinking: from the ribbon to stacks

Ribbon unlinking initiates Golgi disassembly in late G2 phase before cells commit to 

mitosis. At this step, the lateral connections between cisternae are severed and individual 

stacks are released [58]. Scission of the interconnecting tubules requires the membrane 

fission protein CtBP/BARS. Blocking its activity by microinjection of inhibitory antibodies 

or dominant negative mutant proteins interferes with G2/M transition, indicating that ribbon 

unlinking is an important first step in mitotic Golgi disassembly [59,60]. In parallel, mitotic 

entry is delayed when blocking the Golgi proteins GRASP65 and GRASP55 [61–64], which 

function as lateral tethers of adjacent stacks during ribbon formation [65]. Ribbon unlinking 

further depends on JNK2 to phosphorylate GRASP65 at Ser277 [66], the same site that is 

also phosphorylated by ERK in interphase and by Cdk1 during mitosis [62,64,16]. These 

results have led to a proposed Golgi-based G2/M checkpoint [61,60], although the precise 

surveillance cascade that halts mitotic entry remains to be determined. Recent studies have 

begun to shed light on the key players in this pathway. Failure in ribbon unlinking in G2 

prevents activation of the Src kinase at the TGN. Consequently, the Aurora-A kinase fails to 

be recruited to the centrosomes and remains inactive. As active Aurora A is a prerequisite of 

centrosome maturation and spindle formation, mitotic entry is thus forfeited [67,68*].

Surprisingly, severing of the stacks in late G2 is also monitored in Drosophila S2 cells where 

the Golgi stacks are present in pairs but not interconnected into a centralized ribbon. 

Analogous to ribbon unlinking in mammalian cells, pairs of fly Golgi become separated in 

late G2, which is also required for the transition into mitosis [69]. Despite their resemblance, 

the two processes are driven by very distinct mechanisms. While stack separation in flies is 

caused by actin depolymerization, ribbon unlinking in mammals is mediated through 

GRASP65/55 and/or BARS [70].

In late G2 phase, the unlinked stacks remain concentrated in the perinuclear region of the 

mammalian cells [60]. Upon mitotic entry, when the interphase microtubules are rapidly 

dismantled and remodeled to form a bipolar spindle, the stacks begin to scatter. Proper 

dispersal of the Golgi requires the dissociation of the microtubule motor cytoplasmic dynein 

from its Golgi receptor golgin160 [33]. Concomitant with the dispersal, the cisternae further 

unstack and vesiculate, leading to the complete disassembly of the Golgi apparatus.

Unstacking: from stacks to cisternae

Unstacking of cisternae in early mitosis is mediated through phosphorylation of GRASP65 

and GRASP55, which were first identified as stacking factors that align cisternae into stacks 

[71,72]. Both GRASPs are homodimers that are attached via lipid modifications to the 

cytoplasmic face of the Golgi cisternae. During interphase, GRASP proteins assemble into 

antiparallel homo-tetramers in trans, which link apposing cisternae into stacks as well as 

laterally tether stacks within the ribbon [73,74]. Upon phosphorylation in early mitosis, 
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trans-oligomerization of GRASP proteins is reversed, causing cisternal unstacking [74,75]. 

GRASP65 is phosphorylated by Cdk1/cyclin B and Plk1 at multiple sites [76], while 

GRASP55 is a mitotic target of the MAP kinase ERK2 [74,77].

Vesiculation: from cisternae to vesicles and tubules

Coinciding with unstacking, the membranes further disassemble into vesicles. Unstacking 

not only physically releases the cisternae, but also significantly speeds up vesiculation. The 

unstacked cisternae expose a larger surface area that becomes more accessible to recruit the 

components required for vesicle budding [78]. During interphase, budding and fusion of 

COPI transport vesicles at the Golgi are delicately balanced to maintain its function and 

morphology [79]. Upon entry into mitosis, phosphorylation of GM130 by Cdk1 prevents the 

vesicle tethering factor p115 from binding and thus blocks vesicle docking [80].

Furthermore, membrane fusion is also suppressed in mitosis [81]. Heterotypic fusion of 

vesicles with Golgi cisternae is inhibited via the ubiquitin E3 ligase HACE1 that 

monoubiquitinates the SNARE protein syntaxin 5 and thus prevents SNARE complex 

formation [82**]. In addition, homotypic fusion of Golgi membranes mediated by the AAA-

ATPase p97 is also blocked upon mitotic phosphorylation of its adaptor proteins p47/

VCIP135 and p37 [83–85]. In sum, vesicles continue to bud but fail to dock and fuse with 

cisternae, which quickly drives the equilibrium towards vesiculation [86].

Together, Golgi disassembly upon mitotic entry is facilitated through several processes that 

are driven by mechanistically distinct pathways to disassemble different parts of the Golgi 

[5]. Employing multiple mechanisms to drive disassembly makes this process extremely 

robust and efficient. In support of this notion, cells can still progress through mitosis when 

each individual process is blocked. These have been demonstrated by manipulating 

GRASP65 [62,74], p47 [85], BARS [60], syntaxin 5 ubiquitination [82**] or COPI vesicle 

budding [87].

The consequence of challenging such robustness in mitotic disassembly has been recently 

revealed. By filling the Golgi lumen with a unbreakable polymer that physically prevents its 

remodeling before progression into mitosis, cells could progress into M-phase with an intact 

Golgi, but strikingly centrosome separation is blocked [51*]. Accordingly, the cells fail to 

set up a bipolar spindle and become arrested with monoasters by an active spindle assembly 

checkpoint (SAC). This demonstrates that mitotic Golgi disassembly, just like spindle 

formation, is closely monitored by a signaling pathway that cross-talks with the SAC. 

Furthermore, upon disassembly the vesiculated Golgi membranes further participate in 

spindle formation. This is achieved by GM130 that binds and recruits importin α to the 

Golgi membranes [50*]. Sequestration of importin α relieves its inhibition on the spindle 

assembly factor TPX2, which in turn triggers microtubule nucleation in the vicinity of Golgi 

membranes. GM130 then captures the nascent microtubules and thus couples the Golgi 

membranes to the forming spindle. Collectively, mitotic Golgi disassembly not only 

passively serves a means to divide the organelle per se but also proactively mediates mitotic 

progression and spindle assembly.

Wei and Seemann Page 5

Curr Opin Cell Biol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Morphological variations of the Golgi ribbon during differentiation

In contrast to extensive disassembly during cell division, the ribbon possesses relatively 

minor morphological variations upon differentiation. These structural alterations enable the 

Golgi to fulfill specialized functions in post-mitotic differentiated cells (Figure 2). In 

neurons, for example, Golgi stacks can be detached from the somatic ribbon and are 

frequently found in dendrites [88]. These dendritic Golgi outposts function as local secretion 

units for synaptic receptors as well as sites for microtubule nucleation, thus regulating 

dendritic outgrowth and branching (Figure 2b) [14,89,90]. Golgi outposts are not locally 

established by de novo formation within major dendrites. Instead, they are generated through 

deployment and fission of tubules that originate from the somatic Golgi ribbon. This process 

is regulated by a RhoA-ROCK signaling pathway that activates two Golgi-localized kinases, 

protein kinase D1 (PKD1) and LIM domain kinase 1 (LIMK1), to promote tubule fission 

[91*]. In addition to outposts, dendrites further contain Golgi satellites, which represent 

simplified secretory micro-compartments that, in contrast to Golgi outposts, are seemingly 

deprived of essential Golgi proteins functioning in sorting and structural organization [92]. 

Whether these secretory units are indeed Golgi elements derived from the somatic ribbon, 

their exact ultrastructure and how they relate to Golgi outposts await further clarification.

Golgi ribbon fragmentation under pathological conditions

A fragmented Golgi ribbon is commonly associated with many stress and pathological 

conditions, including apoptosis [26,93], pathogen infection [94], amyotrophic lateral 

sclerosis (ALS) [95,96], Alzheimer’s disease [97,98], Parkinson’s disease [99,100] and 

various forms of cancer [101–103]. Despite similar phenotypic characteristics among these 

diseases, the mechanisms that cause Golgi fragmentation and dysfunction can range from 

imbalanced membrane flux, altered microtubule dynamics, to post-translational 

modifications or irreversible proteolytic cleavage of Golgi structural proteins. It is not clear 

whether the mechanisms that drive Golgi ribbon disassembly in mitosis or differentiation are 

also underpinning Golgi fragmentation during disease progression. In fact, the correlation 

between the observed morphological alterations and dysfunction of the Golgi is often 

unclear, as the fragmentation may directly cause, partially contribute to, or merely be the 

outcome of pathology.

In an effort to determine the contributions of Golgi fragmentation to neurodegenerative 

diseases, a recent study showed that gene deletion of the golgin GM130 in mice causes 

severe trafficking defects, concomitant with disruption and aberrant positioning of the Golgi, 

resulting in the death of Purkinje neurons and ataxia [104**]. Likewise, down-regulation of 

GM130 in zebrafish leads to microcephaly and muscle defects, which were also observed in 

a human patient with GM130 mutations who developed microcephaly and neuromuscular 

disorders [105]. Furthermore, GM130 knock out mice showed reduced body size and male 

infertility due to abnormal spermatogenesis caused by defects in sorting Golgi-derived 

vesicles [106]. These findings suggest that Golgi disruption and secretion dysfunction might 

be sufficient to cause severe phenotypes associated with neurodegenerative and other 

diseases.
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On the other hand, the microtubule network also plays an important part in Golgi 

fragmentation during pathogenesis that share some morphological similarities with those 

during cell division and differentiation [107]. During differentiation of many cell types, 

including keratinocytes, hippocampal neurons, skeletal muscle and pancreatic cells [108–

111], the microtubule nucleation activity of centrosomes is attenuated, leaving the Golgi as 

the key organelle to nucleate microtubules [112,88]. In pancreatic beta cells, for instance, 

microtubules predominantly grow from Golgi membranes instead of centrosomes [113*]. 

Furthermore, Golgi outposts in neurons can promote dendrite branching by generating non-

centrosomal microtubules [90,114], although additional nucleation sites persist after 

experimentally removing Golgi outposts from dendrites [115]. Intriguingly, suppression of 

microtubule dynamics at Golgi outposts reduces terminal but not initial branching of 

dendrites in flies. This was observed upon deletion of the fly homologue of AKAP450, a γ-

TuRC binding protein that is targeted to the Golgi by GM130 [116] and is indispensable for 

microtubule nucleation [42*]. A comparable phenotype is seen in Purkinje neurons of 

GM130 knockout mice where only terminal branching and arborization but not initial 

formation of dendrites is affected. Deletion of GM130 coincides with the loss of AKAP450 

from the Golgi [104**], suggesting that defective dendrite branching may be partially 

attributable to the impaired microtubule nucleation from the Golgi. However, since the 

extensive dendrite branching of Purkinje cells depends on a functional secretory pathway, it 

is likely that the severe secretory perturbation further aggravates the phenotype [104**].

Reduced microtubule nucleation in combination with defective Golgi transport has also been 

linked to ALS, where loss of the Golgi-localized tubulin-binding cofactor E (TBCE) disrupts 

Golgi-derived microtubules and fragments the ribbon in motor neurons [95,117]. Similarly, a 

mouse model with impaired dynein/dynactin function exhibited a fragmented Golgi and 

developed ALS-like phenotypes [118,119], corroborating that Golgi ribbon disruption 

induced by cytoskeletal alterations are associated with various neurodegenerative disorders 

[120].

During differentiation and fusion of myoblasts (Figure 2c), the Golgi ribbon becomes 

dispersed and the microtubule network is reorganized while centrosomes lose their 

microtubule nucleation activity [121,111]. In skeletal muscle, microtubules are nucleated 

from the Golgi and nuclear membranes [112]. Dysregulation of these membrane-associated 

microtubules may lead to defective organization and thus alter the muscle function as found 

in Duchenne muscular dystrophy [111].

Concluding remarks

The Golgi ribbon represents a higher level of structural organization that correlates with 

more complex and advanced functions. Building on this new module, mammalian cells can 

expand its functionality by refining or disabling it at specific time and place. Recent 

progresses in studying differentiated cell types have suggested that ribbon disassembly could 

benefit the organism as a whole by meeting the needs for local secretion in specialized cells. 

On the other hand, accumulating evidence revealed that ribbon disassembly could also be 

the backstage driving force and/or the outcome of several notorious diseases. Stemming 

from our current understanding of Golgi disassembly in normal conditions, we have just 
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begun to decipher the complexity of these processes, which may or may not share unifying 

mechanisms that underlie these morphological changes. More importantly, it is especially 

challenging but definitely important to dissect whether the structure-function relationship is 

actually causal or merely correlative, as this could completely change the strategy for 

diagnosis, drug development and treatment of the related diseases.
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Highlights

Golgi disassembles in mitosis via ribbon unlinking, unstacking and vesiculation

Golgi ribbon disassembly is required for mitotic progression and spindle assembly

Golgi ribbon disassembly often accompanies with microtubule remodeling

During differentiation the Golgi ribbon disassembles to gain additional functions

Fragmentation and dysfunction of the Golgi ribbon are linked to several diseases
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Figure 1. 
Golgi ribbon disassembly in mitosis. (a) During interphase, the Golgi stacks are 

interconnected into a ribbon that is localized close to the centrosomes. In late G2, the lateral 

connections between stacks are severed, which unlinks the ribbon and allows progression 

into mitosis. The cisternae then further unstack and vesiculate. Upon partitioning with the 

aid of the spindle, the mitotic Golgi membranes reassemble a ribbon in both daughter cells. 

(b) Stages and main players in mitotic Golgi disassembly. Ribbon unlinking in late G2 

requires the membrane fission protein BARS and the phosphorylation of GRASP65 and 

GRASP55. Once the cells entered mitosis, further phosphorylation of GRASP 65 and 

GRASP55 induces cisternal unstacking. Simultaneously the cisternae vesiculate due to 

inhibition of both vesicle tethering (mediated by phosphorylation of GM130) and 

heterotypic fusion (mediated by ubiquitination of the t-SNARE syntaxin 5). Meanwhile, 

homotypic fusion of Golgi membranes is also blocked by phosphorylation of the p97 

adaptors p37 and p47 and the co-factor VCIP135.
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Figure 2. 
Golgi stacks in proliferating and differentiated mammalian cells. (a) Golgi ribbon in 

fibroblasts. The stacks are laterally linked together into a continuous ribbon that localizes in 

the perinuclear and pericentriolar region of the cell. (b) Golgi outposts in neurons. During 

neuronal differentiation, some stacks detach from the somatic ribbon and relocated to 

dendrites. These Golgi outpost function as sites for local secretion and microtubule 

nucleation to regulate dendrite outgrowth. (c) Golgi stacks in muscle fibers. In skeletal 

muscle fibers, the ribbon is broken up into stacks. Microtubules originating from the nuclear 

membrane and from Golgi stacks form a grid-like network.
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