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Abstract

Background—Gleason scoring represents the standard for diagnosis of prostate cancer (PCa) 

and assessment of prognosis following radical prostatectomy (RP), but it does not account for 

patterns in neighboring normal-appearing benign fields that may be predictive of disease 

recurrence.

Objective—To investigate (1) whether computer-extracted image features within tumor-adjacent 

benign regions on digital pathology images could predict recurrence in PCa patients after surgery 

and (2) whether a tumor plus adjacent benign signature (TABS) could better predict recurrence 

compared with Gleason score or features from benign or cancerous regions alone.

Design, setting, and participants—We studied 140 tissue microarray cores (0.6 mm each) 

from 70 PCa patients following surgery between 2000 and 2004 with up to 14 yr of follow-up. 

Overall, 22 patients experienced recurrence (biochemical [prostate-specific antigen], local, or 
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distant recurrence and cancer death) and 48 did not. Intervention: RP was performed in all 

patients.

Outcome measurements and statistical analysis—The top 10 features identified as most 

predictive of recurrence within both the benign and cancerous regions were combined into a 10-

feature signature (TABS). Computer-extracted nuclear shape and architectural features from 

cancerous regions, adjacent benign fields, and TABS were evaluated via random forest 

classification accuracy and Kaplan-Meier survival analysis.

Results and limitations—Tumor-adjacent benign field features were predictive of recurrence 

(area under the receiver operating characteristic curve [AUC]: 0.72). Tumor-field nuclear shape 

descriptors and benign-field local nuclear arrangement were the predominant features found for 

TABS (AUC: 0.77). Combining TABS with Gleason sum further improved identification of 

recurrence (AUC: 0.81). All experiments were performed using threefold cross-validation without 

independent test set validation.

Conclusions—Computer-extracted nuclear features within cancerous and benign regions predict 

recurrence following RP. Furthermore, TABS was shown to provide added value to common 

predictors including Gleason sum and Kattan and Stephenson nomograms.

Patient summary—Future studies may benefit from evaluation of benign regions proximal to 

the tumor on surgically excised prostate cancer tissue for assessing risk of disease recurrence.
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1. Introduction

Each year, nearly 75 000 radical prostatectomies (RPs) are performed in the United States 

for the purpose of curing prostate cancer (PCa) [1]. Despite the effectiveness of RP, 20–40% 

of men will experience recurrence following surgery, manifested as biochemical, local, or 

distant cancer recurrence or cancer death [2–4]. There is an urgent need for improved 

methods of accurately predicting which men with PCa will have recurrence following 

surgery. Early identification of PCa patients at elevated risk for recurrence after surgery and 

prior to prostate-specific antigen (PSA) rising could help improve treatment management 

and monitoring.

Although high Gleason scores (ie, PCa with a Gleason score of 8–10) are typically 

associated with more aggressive disease and thus a higher risk of recurrence, its diagnosis is 

made solely based on the visual appearance of the morphology within the cancerous foci. 

There has been evidence to suggest that the microenvironment surrounding the prostate 

tumor may play a role in cancer progression [5,6], a phenomena known as the field effect. 
Epigenetic changes within the benign regions surrounding the tumor have been shown to be 

capable of initiating PCa [5]. This begs the question of whether morphometric attributes 

within tumor-adjacent benign regions can provide additional complementary features to 

Gleason scoring for better prediction of disease risk and recurrence.
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There has been significant recent interest in investigating histomorphometric features of 

benign regions adjacent to the tumor and evaluating the association of these features with 

disease aggressiveness and outcome. Veltri et al [7] and Gann et al [6] showed that there are 

quantifiable morphometric attributes within tumor-adjacent benign regions that can provide 

additional information related to disease outcome. These studies, however, have been limited 

to the correlation of outcome and nuclear shape parameters alone. Although there has been 

substantial interest in computer-based evaluation of nuclear architecture in the context of 

developing better methods for automated Gleason scoring, there has been little to no work 

looking at the association with disease aggressiveness and outcomes.

Computer-based analysis of digital pathology images has allowed for extraction of image-

based features from histologic tissue that have been shown to be able to predict biochemical 

recurrence following RP.

Graph-based algorithms allow for capturing the spatial architecture of nodes via connected 

edges. There has been recent interest in developing quantitative histomorphometry 

algorithms that use these graph-based approaches for assessing nuclear architecture. 

Quantitative measurements that can be extracted from these nuclear graphs include Voronoi 

and Delaunay tessellation graphs [8] and local cell cluster graphs [9]. These features 

summarize distance statistics between nuclei and have been shown to be useful in 

discriminating between different Gleason grades of PCa histopathology [10]. However, these 

features thus far have been evaluated within the tumor epithelium alone, whereas features 

from the tumor-adjacent benign regions have never been explicitly interrogated in the 

context of association with disease recurrence and outcome.

The primary objectives of this study were to identify (1) whether histomorphometric features 

relating to the nuclear architecture within the tumor-adjacent benign regions can predict 

recurrence following RP and (2) whether a combination of nuclear shape and architectural 

features from within the cancer and from adjacent benign regions can better predict disease 

progression compared with Gleason score.

In this work, we developed a tumor plus adjacent benign signature (TABS) for 

differentiating PCa patients who will develop recurrence from those who will not. The 

reported results represent a preliminary study in lieu of independent validation of TABS.

2. Materials and methods

2.1. Study population

Two tissue microarrays (TMAs; TMA681 and TMA682) were recruited for this study, each 

prepared using a Beecher MT1 manual arrayer (Beecher Instruments, Silver Spring, MD, 

USA) under the supervision of the Prostate Cancer Biorepository Network. The patients 

included in this TMA were selected independently of this work and based on an Early 

Detection Research Network grant to recruit a Gleason grade–stratified PCa cohort to study 

quantitative histomorphometry and molecular biomarkers.
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Each TMA was composed of hematoxylin and eosin (H&E)–stained 0.6-mm samples of 

tumor, adjacent benign, and control regions. The formalin-fixed, paraffin-embedded RP PCa 

tissues and normal (benign) cancer-adjacent controls to be included in the two TMAs were 

selected and reviewed by a pathologist at Johns Hopkins University School of Medicine 

(J.I.E.). H&E-stained slides from all selected cases were reviewed by the pathologist: The 

tumor-adjacent normal-appearing regions along with staged and/or graded index tumor areas 

were identified and marked on the H&E slide for each case. Benign region selection was 

confined to that of normal-appearing prostatic glands and did not include any atypical 

benign pathology such as atrophy, basal cell hyperplasia, or high-grade prostate epithelial 

neoplasia.

The two TMAs included 80 unique PCa patients. Among the 80 patients, 5 from TMA681 

and 5 from TMA682 were removed from this study due to lack of follow-up data following 

RP. This resulted in 70 patients remaining for this study identifying relationships between 

recurrence and features extracted from tumor-adjacent benign tissue.

All patients from this cohort underwent RP between 2000 and 2004 and were followed for 

PSA updates for up to 14 yr. Average time to biochemical recurrence after surgery was 6.6 

yr. Moreover, 22 patients displayed recurrence (in the form of biochemical, local, or distant 

recurrence or cancer death), whereas 48 did not. Demographic information for the study 

cohort is summarized in Table 1.

The TMA samples were scanned at ×20 magnification with a resolution of 0.5 µm per pixel 

using an Aperio whole-slide scanner (Leica, Wetzlar, Germany). The scanning resulted in a 

1670 × 1670-pixel RGB color image for each TMA core, similar to the one shown in Figure 

1a. For this study, a single randomly selected core was chosen from each of the tumor and 

benign sets to represent each patient.

In total, we identified 140 fields of view from the surgically excised histopathology 

specimens of 70 PCa patients, corresponding to regions extracted from within tumor and 

benign regions on the surgical specimens. Characteristics of nuclear shape and global and 

local nuclear arrangement via Voronoi and Delaunay graphs, nuclear subgraph, and nuclear 

texture were extracted to quantify the tumor and benign field images.

2.2. Nuclear detection and segmentation

Prior to extracting nuclear shape features, the individual nuclei had to be automatically 

identified and segmented. Toward this end, we used a shape-based active-contour 

segmentation scheme [11,12] to detect and segment nuclei. Color deconvolution was used 

for preprocessing the RGB image and isolating the nuclear stain. A watershed segmentation 

method was used to initialize nuclear boundaries, and the centroids of these regions were 

used as seed points for the active contour. Both luminal and basal cells were identified in the 

segmentation process and considered equally.

2.3. Feature extraction

For our analysis, we extracted 199 features (Table 2) to quantify the cancerous and benign 

fields within the prostate pathology slide images. These features were grouped into six 
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categories or feature types: nuclear shape, Voronoi diagram, Delaunay triangulation, nuclear 

density, nuclear subgraphs, and nuclear texture.

Using the nuclear boundaries obtained via the automated nuclear segmentation (Fig. 1b, 1e, 

1h, and 1k), a set of 100 shape features [13] were calculated from statistics of features such 

as nuclear area and smoothness. From within the segmented nuclei, 26 nuclear texture 

features were computed, as described by Doyle et al [13], to measure subvisual image 

intensity co-occurrence information. Graph tesselations of nuclei were used to describe the 

spatial organization of nuclei in prostate tissue. Global graph features (12 Voronoi and 8 

Delaunay) were extracted to quantify the arrangement of cells present in the prostate section. 

This process involved identifying the centroids of the automatically identified nuclei as 

nodes in a graph. The individual nodes were then connected via a different set of rules 

(Voronoi, Delaunay) to create different graphic arrangements. Statistics of the Voronoi 

polygon area and Delaunay edge length were extracted from the resulting graphs.

A total of 27 nuclear density features were also incorporated to describe the clustering of 

nuclei in the image [14]. These features described the number of nuclei present within 

various distances from each other and are shown in Table 2.

Analysis of local subgraphs [15] allowed for the quantification of interactions within 

localized neighborhoods by creating edge connections between nearby nuclear centroids. 

Edges were created between these nuclei to generate sparse graphs from which 26 subgraph 

features were used to characterize local cell organization, including eccentricity and 

connected component size. These local graphs are shown in Figure 1c, 1f, 1i, and 1l.

2.4. Experimental design

2.4.1. Experiment 1: Univariable and multivariable methods for predicting 
recurrence—To establish a baseline for our cohort, we investigated the most common 

univariable (Gleason sum, primary tumor stage, surgical margin, PSA) and multivariable 

models (nomograms developed by Kattan et al [16] and Stephenson et al [17]) for predicting 

recurrence of postsurgical PCa.

2.4.2. Experiment 2: Adjacent benign field features for predicting recurrence—
We identified specific features from specific regions of interest for predicting recurrence 

using a univariable Cox regression model [18], demonstrating separation of nonrecurrence 

and recurrence cases for each feature. This results in feature sets CT, extracted from the 

tumor, CAB for adjacent benign regions, and a joint feature set called CTABS. This process is 

described in detail below.

2.4.2.1. CT: Extraction of tumor field features: To evaluate tumor field features, we 

extracted 199 features from the tumor field core images for each TMA (Table 2). A 

univariable Cox regression model was used to select the top 10 most predictive features for 

recurrence (Supplementary Table 1a). The top 10 features for CT identified by the 

univariable Cox regression model were used to train a classifier for predicting recurrence.
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2.4.2.2. CAB: Extraction of adjacent benign field features: To evaluate adjacent benign 

field features, we extracted 199 features from the adjacent benign field core images for each 

TMA (Table 2). A univariable Cox regression model was used to select the top 10 most 

predictive features for recurrence (Supplementary Table 1a). The top 10 features for CAB 

identified by the univariable Cox regression model were used to train a classifier for 

predicting recurrence.

2.4.2.3. CTABS: Extraction of tumor plus adjacent benign signature: To evaluate TABS, 

a univariable Cox regression model was used to select the top 10 most predictive features for 

recurrence (Supplementary Table 1a) from the combination of CT and CAB. The top 10 

features for CTABS identified by the univariable Cox regression model were used to train a 

classifier for predicting recurrence.

2.4.3. Experiment 3: Tumor plus adjacent benign signature for predicting 
recurrence—To evaluate TABS for predicting recurrence, each patient was characterized 

by the 199 features (Table 2) extracted from the tumor core and the 199 features extracted 

from the adjacent benign core. Each feature set (CT, CAB, CTABS) was used to train a 

random forest classifier [19], a powerful methodology utilizing a combination of decision 

tree models. Random forests were shown to be most likely to provide the highest 

classification accuracy in a study of 121 public data sets [20].

We performed threefold cross-validation for 100 trials, selecting a random two-thirds of the 

data set for training and one-third for testing. The area under the receiver operating 

characteristic curve (AUC) [21] values and 95% confidence intervals associated with each 

feature set were calculated.

Kaplan-Meier analysis was used to compare recurrence-free survival time between positive 

and negative control groups following RP. In this study, the two predicted groups (recurrence 

and nonrecurrence) were determined by the prediction of 100 runs of random forests on each 

patient. The quantitative difference between the survival outcome was determined by the 

log-rank test, in which lower p values denoted greater significance between the survival 

distributions.

The CT, CAB, and CTABS feature sets can be compared using AUC and Kaplan-Meier 

analysis, as described in section 3.2. Similarly, the Gleason sum feature set (CGS) and 

feature combinations with Gleason sum are also demonstrated.

3. Results

3.1. Experiment 1: Univariable and multivariable methods for predicting recurrence

Table 3 provides a baseline measure of the performance of univariable methods for 

predicting recurrence in postsurgical PCa patients. Table 3 illustrates the predictive value of 

Gleason sum compared with quantitative histomorpho-metric features automatically 

extracted from cancerous and cancer-adjacent benign fields, respectively. Table 3 also 

provides the baseline of multivariable predictors (Kattan and Stephenson nomograms) for 
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predicting recurrence. Supplementary Table 2 shows the Spearman correlation between each 

univariable and multivariable predictor with the TABS feature set.

3.2. Experiment 2: Adjacent benign field features for predicting recurrence

Figure 2 shows box plots for features extracted from the benign field and the resulting 

difference in the feature distribution in recurrent and nonrecurrent patients. Supplementary 

Table 1a shows the representation of feature types described in Table 2 for the CT, CAB, and 

CTABS feature sets. Supplementary Table 1b shows the top features identified from CTABS 

sorted by univariable Cox regression model p values for discriminating between recurrent 

and nonrecurrent patients.

3.3. Experiment 3: Tumor plus adjacent benign signature for predicting recurrence

Table 3 displays the classification AUC for classifiers built from features CT, CAB, and 

CTABS as well as the AUC by combining those respective features with Gleason sum (CGS).

The Spearman correlation was calculated between each clinical variable (gland weight, 

Gleason sum, tumor stage, and PSA) with TABS probability scores compared across the 70 

patients studied. The probability scores were generated from the predicted probability of the 

CTABS-based classifier.

4. Discussion

Current methods of predicting recurrence risk after surgery rely heavily on the Gleason 

scoring system, which describes only the tumor region, and elevated PSA ≥0.2 ng/mL and 

have shown only a 71% classification rate in predicting biochemical recurrence [22,23]. The 

Kattan [16] and Stephenson [17,24] nomograms, Cancer of the Prostate Risk Assessment 

(CAPRA) risk scores [25], and genomic predictors [26] are among the many solutions for 

predicting recurrence following RP, but none of these measures explicitly extracts 

information from the adjacent benign regions. We provided head-to-head comparisons as 

possible (lack of biopsy data and genomic information available provided limitations for 

analysis) to demonstrate the value added by TABS.

4.1. Experiment 1: Univariable and multivariable methods for predicting recurrence

Table 3 suggests that Gleason sum is arguably the strongest single predictor for predicting 

biochemical recurrence. However, it can be seen in Table 3 that the TABS feature set 

outperformed each individual univariable predictor, most notably Gleason sum. Along with 

the low correlations between TABS and any individual predictor shown in Supplementary 

Table 2, these tables demonstrate the value added by investigating tumor and benign field 

features.

We also demonstrated in comparison with the multivarate models that adding TABS resulted 

in a better AUC (Table 3) and greater stratification in recurrence-free survival outcomes 

(Fig. 3). This may to be due to low correlations between TABS and current models (shown 

in Supplementary Table 2), owing to the use of an independent source of data—benign field 

features—that was not previously considered. For comparison, Gleason sum showed a 
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Spearman correlation of r = 0.59 with the Kattan score and r = 0.62 with the Stephenson 

score. Respectively, Kattan and Stephenson scores yielded r = 0.75 and r = 0.68, 

respectively, with Primary Tumor Stage; r = 0.76 and r = 0.69, respectively, with surgical 

margins; and r = 0.32 and r = 0.21, respectively, with PSA. These results appear to suggest 

that TABS provides information that is largely independent (r < 0.35) of the factors used in 

extant prognostic models. In addition, our results appear to suggest that TABS can 

potentially improve the ability to predict recurrence in PCa patients over current 

multivariable nomogram models alone.

4.2. Experiment 2: Adjacent benign field features for predicting recurrence

A univariable Cox regression model of the nuclear subgraph and nuclear shape feature set 

(Supplementary Table 1a) revealed the most important features for extracting prognostic 

information from each tissue cohort. In benign tissue, nuclear subgraph features were found 

to be the most representative, as 4 of the 10 selected features in CTABS were nuclear 

subgraph features. This suggests a that nuclear architecture in adjacent benign fields can be 

used to predict recurrence.

Figure 2a describes the distribution of nuclear subgraph diameter, suggesting that in PCa 

patients with recurrence, there exist larger nuclear graphs compared with nonrecurrent 

tissue. This difference may be related to the presence of benign glands being fused in the 

case of tissue from recurrent patients, resulting in graphs that span multiple benign glands.

Figure 2b and 2c may illustrate more local nuclear architectural differences between 

recurrent and nonrecurrent benign field tissue. These differences are probably manifest by 

shorter internuclear distance in the benign tissue of nonrecurrent PCa patients, manifesting 

as thicker layers of tightly packed epithelial cells. In contrast, larger internuclear distances in 

the benign tissue of recurrent patients could be a reflection of the more sparse distribution of 

nuclei, resulting in thinner epithelial tissue layers.

The univariable Cox regression model of the nuclear subgraph and nuclear shape feature set 

(Supplementary Table 1a) revealed the most important features for TABS. Nuclear shape 

was found to be the most informative, making up 8 of the 10 informative features, and 

supporting previous work on the shape of cancerous nuclei [7,27].

The feature types represented in TABS illustrate that it is the combination of features 

extracted from both the tumor region and the benign region together that contribute to better 

prediction. It can be seen in Supplementary Table 1b that the features extracted from the 

benign areas make up 8 of the 10 most important features in TABS. The remaining two 

features are from the tumor region. We can surmise that local nuclear architecture appears to 

be important in the adjacent benign regions and is captured by the nuclear subgraph features. 

Nuclear shape of cancerous cells appears to be able to distinguish between recurrent and 

nonrecurrent patients (p = 0.0119) with the low Fourier descriptor, which describes the 

complexity of the nuclear boundary.

In Table 3 and Supplementary Table 2, we demonstrated the predictive value of adjacent 

benign field features, showing a mean AUC of 0.72 in predicting recurrence cases. In 
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summary, we found (1) that both tumor and benign regions contain features that are capable 

of distinguishing recurrent from nonrecurrent patients, (2) that the arrangement of nuclei in 

the benign regions provides a majority of the contribution in CAB, and (3) that the size and 

shape of nuclei in tumor regions are primary components of CT.

The subgraph features identified describe long graphic constructs stemming from the 

individual nuclei. This is suggestive of a high degree of nuclear clustering in the image. This 

pattern may manifest in two biologically informed patterns: central zone morphology and 

prostate intraepithelial neoplasia (PIN)–like morphology.

In central zone tumors, glands are arranged in a more compact manner with less stroma 

between them. In contrast, additional stromal content in the peripheral zone separating the 

epithelial regions should lead to shorter nuclear subgraph lengths. Furthermore, central zone 

tumors have been shown to have higher rates of biochemical recurrence compared with 

peripheral or transition zone tumors [28], results that are consistent with our findings 

associated with these patterns.

The morphology of tumor-adjacent benign prostate tissue could suggest a path for disease 

progression or metastasis. Malignant disease requires cancer cells to invade, and the 

morphology of adjacent tissue surrounding the tumor may provide clues about the potential 

invasion. Longer nuclear subgraph edges suggest a clustering of glands, particularly those 

with thick epithelial walls. This clustering of glands could be associated with cribriform 

patterns, which are known to be associated with more malignant and aggressive disease. 

These PIN-like patterns displayed features similar to PIN including thick epithelial layers 

containing large clusters of nuclei; however, the tissue patterns lacked enlarged nuclei and 

prominent nucleoli, which tend to be typical of high-grade PIN.

A contextual pattern such as central zone gland morphology or PIN-like morphology 

typically will not be present in tumor morphology but can manifest in features of tumor-

adjacent benign tissue. These contextual clues may be important for identifying those PCa 

patients at risk of recurrence; however, we note and reiterate that the cohort size has 

limitations with regard to the statistical power of the study. Consequently, these results 

represent preliminary work.

4.3. Experiment 3: Tumor plus adjacent benign signature for predicting recurrence

In the first row of Table 3, classification AUC associated with CT, CAB, and CTABS illustrate 

the improvement afforded by combining the top features of CT and CAB, as shown in 

Supplementary Table 1b. Although investigation of CT showed a predictive AUC of 0.68, 

adding features from CAB improved AUC to 0.73.

Similarly, a Kaplan-Meier analysis demonstrated greater separation using the joint benign 

and cancer feature set CTABS (p = 0.052) compared with cancer features alone (CT; p = 

0.094). These results support the use of TABS to improve current methods of quantitative 

histomorphometry for predicting recurrence.

The results of the second row of Table 3 point to the following conclusions. First, both CT- 

and CAB-derived classifiers show performance improvement by incorporating Gleason sum. 
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In fact, combining all features improved the predictive AUC of CTABS from 0.77 to 0.81, a 

statistically significant improvement over Gleason sum alone (AUC: 0.72), supporting the 

utility of combining CTABS and Gleason sum. Kaplan-Meier analysis in Figure 3c shows 

similar findings, illustrating the predictive value of combining Gleason sum with CTABS to 

yield a p value of 3.16 × 10−6, which is superior to CGS, CT, and CTABS. Furthermore, we 

found TABS to show statistically significantly better AUC performance (p < 0.001) 

compared with any individual marker in Table 3. Second, combining TABS with Kattan and 

Stephenson scores yielded statistically significant (p < 0.001) improvements in classification 

AUC (Supplementary Table 2) compared with the nomograms without TABS.

The value added by TABS can also be demonstrated by the potential reclassification caused 

by incorporating TABS. We found, using the Cox regression model, that TABS reclassified 

24 patients differently compared with Gleason sum alone but provided no net benefit alone; 

however, by combining TABS with Gleason sum, 22 patients in the cohort were reclassified 

compared with Gleason sum alone. Overall, 12 additional patients were correctly classified 

compared with Gleason sum alone. Moreover, by combining TABS and the Kattan and 

Stephenson nomograms, we found that six additional patients were correctly classified 

compared with the Kattan or Stephenson nomogram alone.

We acknowledge the limitations of this preliminary study, which did not include an 

independent validation set. In future work, we plan to recruit additional cases to create an 

independent validation set to allow for the evaluation of the reproducibility of the results 

generated. Furthermore, the current study did not aim to evaluate specific end points such as 

biochemical recurrence, metastasis, or PCa-specific mortality individually but rather opted 

to predict poor outcomes associated with RP. In this study, the most common poor outcome 

was biochemical recurrence.

5. Conclusions

In this study, we aimed to investigate (1) the role of benign field features in predicting 

recurrence in RP cases and (2) the predictive value of TABS for predicting recurrence. We 

found that nuclear subgraphs appear to have predictive value in predicting recurrence from 

benign tissue fields. Furthermore, the CTABS feature set performed better than features 

derived from the cancerous field and benign fields individually while improving the 

classification AUC for the best clinical predictors in Gleason sum (AUC: 0.72) and Kattan 

(AUC: 0.84) and Stephenson (AUC: 0.80) nomograms to AUCs of 0.81, 0.90, and 0.89, 

respectively. We acknowledge that our findings represent preliminary work, and we plan to 

identify an independent validation cohort to evaluate TABS in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding/Support and role of the sponsor: Research reported in this publication was supported by the National 
Cancer Institute of the National Institutes of Health under award numbers K01ES026841, R01CA136535-01, 
R01CA140772-01, R21CA167811-01, R21CA179327-01; the National Institute of Diabetes and Digestive and 

Lee et al. Page 10

Eur Urol Focus. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kidney Diseases under award number R01DK098503-02, the DOD Prostate Cancer Synergistic Idea Development 
Award (PC120857); the DOD Lung Cancer Idea Development New Investigator Award (LC130463), the Ohio 
Third Frontier Technology development Grant, the CTSC Coulter Annual Pilot Grant, and the Wallace H. Coulter 
Foundation Program in the Department of Biomedical Engineering at Case Western Reserve University. The 
content is solely the responsibility of the authors and does not necessarily represent the official views of the 
National Institutes of Health.

References

1. Tyson MD 2nd, Andrews PE, Ferrigni RF, Humphreys MR, Parker AS, Castle EP. Radical 
prostatectomy trends in the United States: 1998 to 2011. Mayo Clin Proc. 2016; 91:10–16. 
[PubMed: 26763510] 

2. Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local 
therapy: evolving standards of care and new directions. Clin Adv Hematol Oncol. 2013; 11:14–23. 
[PubMed: 23416859] 

3. Boorjian SA, Thompson RH, Tollefson MK, et al. Long-term risk of clinical progression after 
biochemical recurrence following radical prostatectomy: the impact of time from surgery to 
recurrence. Eur Urol. 2011; 59:893–899. [PubMed: 21388736] 

4. Trock BJ, Han M, Freedland SJ, et al. Prostate cancer–specific survival following salvage 
radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA. 
2008; 299:2760–2769. [PubMed: 18560003] 

5. Zong Y, Huang J, Sankarasharma D, et al. Stromal epigenetic dysregulation is sufficient to initiate 
mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci U S A. 2012; 109:E3395–
E3404. [PubMed: 23184966] 

6. Gann PH, Deaton R, Amatya A, et al. Development of a nuclear morphometric signature for prostate 
cancer risk in negative biopsies. PLoS One. 2013; 8:e69457. [PubMed: 23922715] 

7. Veltri RW, Khan MA, Miller MC, et al. Ability to predict metastasis based on pathology findings 
and alterations in nuclear structure of normal-appearing and cancer peripheral zone epithelium in 
the prostate. Clin Cancer Res. 2004; 10:3465–3473. [PubMed: 15161703] 

8. Christens-Barry W, Partin A. Quantitative grading of tissue and nuclei in prostate cancer for 
prognosis prediction. Johns Hopkins Apl Tech Digest. 1997; 18:226–233.

9. Ali S, Veltri R, Epstein JI, Christudass C, Madabhushi A. Cell cluster graph for prediction of 
biochemical recurrence in prostate cancer patients from tissue microarrays [abstract]. Proc SPIE. 
2013; 8676:86760H.

10. Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., Tomaszeweski, J. Automated 
grading of prostate cancer using architectural and textural image features. Presented at: IEEE 
International Symposium on Biomedical Imaging; Arlington, VA. April 12–15; 2007. 

11. Ali S, Madabhushi A. An integrated region-, boundary-, shape-based active contour for multiple 
object overlap resolution in histological imagery. IEEE Trans Med Imaging. 2012; 31:1448–1460. 
[PubMed: 22498689] 

12. Lee, G., Ali, S., Veltri, R., Epstein, JI., Christudass, C., Madabhushi, A. Cell orientation entropy 
(core): predicting biochemical recurrence from prostate cancer tissue microarrays. In: Mori, 
K.Sakuma, I.Sato, Y.Barillot, C., Navab, N., editors. Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2013. New York, NY: Springer; 2013. p. 396-403.

13. Doyle S, Feldman MD, Shih N, Tomaszewski J, Madabhushi A. Cascaded discrimination of 
normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. 
BMC Bioinformatics. 2012; 13:282. [PubMed: 23110677] 

14. Lee G, Singanamalli A, Wang H, et al. Supervised multi-view canonical correlation analysis 
(sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer. 
IEEE Trans Med Imaging. 2015; 34:284–297. [PubMed: 25203987] 

15. Bilgin C, Demir C, Nagi C, Yener B. Cell-graph mining for breast tissue modeling and 
classification. Conf Proc IEEE Eng Med Biol Soc. 2007:5311–5314. [PubMed: 18003206] 

16. Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after 
radical prostatectomy for prostate cancer. J Clin Oncol. 1999; 17:1499. [PubMed: 10334537] 

Lee et al. Page 11

Eur Urol Focus. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Stephenson AJ, Scardino PT, Eastham JA, et al. Postoperative nomogram predicting the 10-year 
probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol. 2005; 23:7005–
7012. [PubMed: 16192588] 

18. Tibshirani RJ. Univariate shrinkage in the Cox model for high dimensional data. Stat Appl Genet 
Mol Biol. 2009; 8:1–18.

19. Breiman L. Random forests. Machine Learning. 2001; 45:5–32.

20. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to 
solve real world classification problems? J Machine Learning Res. 2014; 15:3133–3181.

21. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation 
tool in clinical medicine. Clin Chem. 1993; 39:561–577. [PubMed: 8472349] 

22. Cordon-Cardo C, Kotsianti A, Verbel DA, et al. Improved prediction of prostate cancer recurrence 
through systems pathology. J Clin Invest. 2007; 117:1876–1883. [PubMed: 17557117] 

23. Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer 
predictive tools. Cancer. 2008; 113:3075–3099. [PubMed: 18823041] 

24. Stephenson AJ, Kattan MW, Eastham JA, et al. Prostate cancer-specific mortality after radical 
prostatectomy for patients treated in the prostate-specific antigen era. J Clin Oncol. 2009; 
27:4300–4305. [PubMed: 19636023] 

25. Cooperberg MR, Freedland SJ, Pasta DJ, et al. Multiinstitutional validation of the UCSF cancer of 
the prostate risk assessment for prediction of recurrence after radical prostatectomy. Cancer. 2006; 
107:2384–2391. [PubMed: 17039503] 

26. Lalonde E, Ishkanian AS, Sykes J, et al. Tumour genomic and microenvironmental heterogeneity 
for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective 
cohort study. Lancet Oncol. 2014; 15:1521–1532. [PubMed: 25456371] 

27. Veltri RW, Isharwal S, Miller MC, Epstein JI, Partin AW. Nuclear roundness variance predicts 
prostate cancer progression, metastasis, and death: a prospective evaluation with up to 25 years of 
follow-up after radical prostatectomy. Prostate. 2010; 70:1333–1339. [PubMed: 20623633] 

28. Cohen RJ, Shannon BA, Phillips M, Moorin RE, Wheeler TM, Garrett KL. Central zone carcinoma 
of the prostate gland: a distinct tumor type with poor prognostic features. J Urol. 2008; 179:1762–
1767. [PubMed: 18343454] 

Lee et al. Page 12

Eur Urol Focus. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Prostate tissue microarray cores (a, d, g, j) corresponding to patients who experienced (a–f) 

recurrence and (g–l) no recurrence. Automated segmentation defines nuclear boundaries and 

locations from tumor and benign field tissue cores, characterizing (b, e, h, k) nuclear shape 

and (c, f, i, l) nuclear subgraphs describing local nuclear architecture.
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Fig. 2. 
Box plots of nuclear subgraph features in benign fields of view show the separation in 

prostate cancer patients with recurrence versus nonrecurrence following radical 

prostatectomy. The p values were obtained using the Wilcoxon rank sum test between cases 

of recurrence and nonrecurrence.
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Fig. 3. 
Kaplan-Meier curves for (a) Gleason sum, (b) tumor plus adjacent benign signature (TABS), 

(c) TABS plus Gleason sum, (d) Kattan score, (e) Stephenson score, and (f) combination of 

Kattan and TABS demonstrate the ability of each feature set to stratify patients with 

different recurrence-free survival times in radical prostatectomy cases.

TABS = tumor plus adjacent benign signature.
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Table1

Summary of clinicopathological features of the studied prostate cancer cohort at the time of diagnosis, patient 

demographics of the studied prostate cancer cohort, and cases with recurrence and no recurrence within the 

studied prostate cancer cohort

Clinicopathological cohort, n (%)

Recurrence Nonrecurrence Total

No. of patients 22 (31.4) 48 (68.6) 70

Gleason score

  6 1 (11.1) 8 (88.9) 9 (12.9)

  7 (3 + 4) 3 (17.7) 14 (82.3) 17 (24.3)

  7 (4 + 3) 3 (16.7) 15 (83.3) 18 (25.7)

  8 8 (47.1) 9 (52.9) 17 (24.3)

  9 7 (77.8) 2 (22.2) 9 (12.9)

Primary tumor stage

  pT2 2 (6.9) 27 (93.1) 29 (41.4)

  pT3a 15 (48.4) 16 (51.6) 31 (44.3)

  pT3b 5 (62.5) 3 (37.5) 8 (11.4)

  Unknown 0 (0) 2 (100) 2 (2.9)

Lymph node

  Positive 0 (0) 1 (100) 1 (1.4)

  Negative 22 (31.9) 47 (68.1) 69 (98.6)

Surgical margin

  Positive 20 (51.3) 19 (48.7) 39 (55.7)

  Negative 2 (6.4) 29 (93.5) 31 (44.3)

Presurgical PSA, ng/mL

  0–10 12 (25.0) 36 (75.0) 48 (68.6)

  10–20 6 (37.5) 10 (62.5) 16 (22.9)

  20–30 2 (66.7) 1 (33.3) 3 (4.3)

  30–40 2 (66.7) 1 (33.3) 3 (4.3)

Patient demographics, mean ± SD

Variable Recurrence Nonrecurrence

Age, yr 59.04 ± 6.57 58.82 ± 5.80

Gland weight, g 51.94 ± 14.90 56.19 ± 21.38

PSA, ng/ml 8.29 ± 5.29 13.17 ± 10.15

PSAD, ng/ml/g 0.17 ± 0.11 0.25 ± 0.20

Time to event, yr 5.06 ± 4.50 3.82 ± 2.36

Outcomes for recurrence and no recurrence, n

Recurrence 22

  Died from prostate cancer 2

  Died from another cause with recurrence 1
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Clinicopathological cohort, n (%)

Recurrence Nonrecurrence Total

  Distant metastasis 1

  Increase in PSA (>0.2 ng/ml) 14

  Local recurrence 1

  Local recurrence and distant metastasis 3

No recurrence 48

  Died from noncancer cause 1

  No recurrence 47

PSA = prostate-specific antigen; PSAD = prostate-specific antigen density; SD = standard deviation.
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Table 2

Summary of 199 quantitative histomorphometric features extracted from both the tumor fields and adjacent 

benign fields

Feature type No. Description

Nuclear shape 100 Area ratio, distance ratio, SD of distance, variance of distance, distance ratio, perimeter ratio, smoothness, 
invariant moment 1–7, fractal dimension, Fourier descriptor 1–10: mean, SD, median, minimum/maximum of 
each

Voronoi diagram 12 Polygon area, perimeter, chord length: mean, SD, minimum/maximum ratio, disorder

Delaunay triangulation 8 Triangle side length, area: mean, SD, minimum/maximum ratio, disorder

Nuclear density 27 Density of nuclear centroids, distance to nearest nuclear centroid

Nuclear subgraphs 26 Eccentricity; clustering coefficients C, D, and E; largest connected component: mean, SD

Nuclear texture 26 Entropy, energy, intensity contrast: mean, SD

SD = standard deviation.
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Table 3

Mean area under the curve values show the ability of univariable predictors, comparisons of computer-

extracted features with Gleason sum, and multivariable Kattan and Stephenson nomograms with TABS for 

predicting recurrence in prostate cancer patients following radical prostatectomy for 100 runs of threefold 

random forest classification

Gleason sum Tumor stage Surgical margin PSA

0.72 (0.68–0.76) 0.68 (0.68–0.69) 0.71 (0.70–0.72) 0.63 (0.59–0.67)

Tumor QH Benign QH TABS

Without Gleason sum 0.68 (0.61–0.75) 0.72 (0.64–0.80) 0.77 (0.69–0.85)

With Gleason sum 0.73 (0.65–0.80) 0.78 (0.67–0.84) 0.81 (0.72–0.87)

Kattan Stephenson

Without TABS 0.84 (0.77–0.89) 0.80 (0.71–0.85)

With TABS 0.90 (0.83–0.94) 0.89 (0.84–0.92)

PSA = prostate-specific antigen; QH = quantitative histomorphometry; TABS = tumor plus adjacent benign signature.

Data are shown as mean area under the curve (95% confidence interval). Best classification performance metrics are highlighted in bold.
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