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Abstract

Joint replacement is a commonly performed, highly successful orthopaedic procedure, for which 

surgeons have a large choice of different materials and implant designs. The materials used for 

joint replacement must be both biologically acceptable to minimize adverse local tissue reactions, 

and robust enough to support weight bearing during common activities of daily living. Modern 

joint replacements are made from metals and their alloys, polymers, ceramics, and composites. 

This review focuses on the biological response to the different biomaterials used for joint 

replacement. In general, modern materials for joint replacement are well tolerated by the body as 

long as they are in bulk (rather than in particulate or ionic) form, are mechanically stable and 

noninfected. If the latter conditions are not met, the prosthesis will be associated with an acute/

chronic inflammatory reaction, peri-prosthetic osteolysis, loosening and failure. This article (Part 1 

of 2) is dedicated to the use of metallic devices in orthopaedic surgery including the associated 

biological response to metallic byproducts is a review of the basic science literature regarding this 

topic.
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INTRODUCTION

The use of implanted devices in surgery has increased dramatically; when considering the 

field of orthopaedic surgery alone, the underlying industry is expected to grow to $41.1 

billion by 2016.1 Briefly, the goals of total joint replacement (TJR) implants are to relieve 

pain and restore function, with limited impact on the surrounding tissues. Studies focusing 

on long-term outcomes of total knee replacement have shown survivorship after 15 years 

ranging from 81.7 to 98.14%.2–4 Similarly, studies for total hip replacement showed 
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survivorship after 15 years ranging above 90%.5,6 Several materials are currently available 

for the surgeons and bioengineers when designing a TJR. As a support for artificial joints, 

metal implants are widely used in orthopaedic surgery. Metal implants can be monobloc 

(one piece), modular (different pieces put together) or articulate to each other. As implanted 

in a living body, metal implants may have adverse effect. Metal alloys are mainly used to 

replace the bone (e.g., femoral stem and acetabular shell), metal alloys or ceramics replace 

the articular surface on the femoral side, and polyethylene (PE) or ceramics replace the 

articular surface on the acetabular side. Polymethylmethacrylate (PMMA) can be used to 

cement the implants within the bone.

Historically, the use of metal alloys started in 1923 when Smith-Peterson introduced the 

cobalt–chromium alloy (Vitallium, Howmedica). Stainless steel was introduced in 1942 and 

titanium alloy in 1951. Animal experiments conducted in the early 1960s by Laing et al.7 

showed that the tissue reaction to various metallic implants can be classified according to the 

degree of severity of the reaction. In general, the degree of tissue reaction was proportionate 

to the amounts of constituent elements released by corrosion of a pure metal or an alloy. 

Discussing the electrochemical fundamentals of implant metal performance, Pourbaix8 later 

pointed out that both electrochemical thermodynamics (determining corrosion tendencies) 

and electrochemical kinetics (determining corrosion rates) are important to consider in order 

to better understand and predict the corrosion behavior of metals and alloys in the presence 

of body fluids. This article identified 13 metals that may theoretically be considered for use 

as surgical implants and dental alloys. 8 of them (Au, Ir. Pt Rh. Ru, Pd, Ag, and Os) are 

noble metals, which keep a pure metallic surface. The remaining 5 (Ti, Ta, Nb, Zr, and Cr) 

are passive metals, which are covered by a layer of protective oxide. Subsequent 

electrochemical tests by Zitter and Plenk9 demonstrated that the use of passive metals is 

more preferable for surgical implants because of their protective surface layers of semi- or 

nonconductive oxides that prevent any exchange of electrons and thus any redox reaction at 

the surface. The electrochemical “inertness” ranking of the metal surfaces tested was 

increasing in the order of gold, stainless steel, the cobalt-based alloy, and the TiAlV alloy, 

with the pure metals Ti, Nb, and Ta being the most favorable. The authors concluded that 

this rating of metallic implant materials based on in vitro measurements of current densities 

was in good accordance with their biocompatibility rating reported from in vivo experiences. 

These electrochemical studies in the mid-1980s also pointed out that “more basic work 

remains to be done for studying thoroughly the conditions of crevice corrosion and fretting 

corrosion of metallic surgical implant materials”8 and that “the effect of a redox reaction 

taking place without corrosion is same as that of a corrosion reaction: in both cases the most 

significant chemical changes are an increase in the pH value at the cathode and a decrease in 

this value at the anode.”9 All these considerations became even more important in the 

following years when the use of modular implant devices increased significantly. 10–12 

Therefore, the selection of metal to be used in a TJR is highly important for bioengineers 

who design the implant. The goal being to provide the patient a harmless long lasting 

implant.

This review of the basic science literature will focus on the mechanisms of metal ion and 

particle generation during TJR (e.g., modular junction corrosion and metal wear), most 

frequent use metals in TJR, as well as the effect of these metals on the surrounding cells and 
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tissues. Polymers, ceramics, and composites will be the subject of a second review (see Part 

II).

MODULAR JUNCTION CORROSION IN TJRs

Corrosion of orthopaedic implants was first reported in 1956 after discovering that metal 

ions had harmful effects on the soft tissues.13 Five different modes of corrosion are 

described: galvanic, fretting, crevice, pitting, and intergranular.14–18 In an oxygen rich 

environment, the surface of metal implants is covered in a thin layer of a metal oxide that 

protects the underlying metal from further oxidative damage. This oxidized protective layer 

is the by-product of passivation (Figure 1). If this oxide layer is damaged, the surface of the 

metal implant re-oxidizes (re-passivates) to recreate the protective oxide layer. When the re-

passivation process is disrupted, corrosion can occur.19 Corrosion and subsequent production 

of metal ions or even implant fracture is seen at all modular junctions utilized in TJR: head–

neck junction (i.e., trunnion), neck–stem junction (i.e., dual modular implants), and 

metaphyseal–diaphyseal junction. Studies show that modularity can lead to increased 

corrosion of all metal implants in a highly design-dependent fashion (Figure 2).20–24 The 

emergence of mechanically assisted corrosion as a failure mechanism for the trunnion and 

dual modular junctions has forced manufacturers to re-evaluate their existing designs.

All modular junctions are susceptible to crevice corrosion. At modular junctions machined 

with tight tolerances, such as the head–neck junction, the space between the two surfaces is 

partially shielded from the aqueous chemical environment of the body fluid. This 

microisolation of the tiny gaps (or crevices) between the two surfaces of the implant is the 

source of crevice corrosion.25 The imbalance of oxygen between the cathode (the surface of 

the implant outside the crevice) and the anode (inside the crevice) creates a current even if 

each part of the modular junction is made from the same metal (Figure 3). At the anode, 

oxygen is low, while the concentration of metal, hydrogen, and chloride ions are high. In this 

oxygen-poor environment, the surface of the implant cannot repassivate.26–28 If the metal 

ion released is chromium, it reacts with phosphate to form a black or green, tarry, or glassy 

precipitate (i.e., chromium III phosphate and/or other metal oxides) near the crevice and on 

the surface of the implant.29–31 Hence, the serum chromium level remains normal or only 

slightly elevated in patients with corrosion at modular junctions, whereas the serum cobalt 

level rises due to its increased solubility. 20,29,30 This fact can be used to distinguish a failed 

metal-on-metal articulation, which in general will have an equivalent rise in serum cobalt 

and chromium levels, from a failed modular junction, which in general will have a 

differential elevation of the serum cobalt level several fold above that of the serum 

chromium level.32,33

Modular junctions are susceptible to fretting corrosion. During fretting corrosion, surface 

pressure between contacting surfaces at modular articulations cause friction. Surface 

pressure is often initiated by micromotion at the interfaces during mechanical loading. This 

micromotion can physically disrupt the passivation layer, leading to metal particle release 

and facilitation of crevice corrosion.34 Micromotion is not a result of a loose implant. 

Rather, when the joint is loaded, the various components of the modular implant flex (slip 

region) while remaining together (stick region, Figure 4).
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METAL WEAR DURING TJR

There are different modes for wear, including adhesive, abrasive, third body, fatigue, and 

corrosion. Metal wear occurs between metal-on-metal articulation and between metal-on-

polymer (MOP) articulation as well. In the case of a metal-on-metal articulation, adhesive 

wear predominates, suboptimal implant positioning leads to additional wear.35 After the 

initial placement of a metal-on-metal articulation (Figure 5), “bedding-in” occurs with high 

wear conditions and metal particle production. During this time one metal component wears 

into another until an “optimal contact area” develops and the wear rate is reduced, contact 

stress is decreased, and lubrication conditions improve (Figure 6).36 The bedding-in period 

is followed by a much lower steady-state wear rate that continues for the life of the metal-

on-metal articulation.37 The transition from the bedding-in period to the steady-state phase 

represents a change in the mode of lubrication from high friction boundary lubrication to 

low friction fluid-film lubrication.38

Corrosion and wear act synergistically leading to even greater metal breakdown in the 

presence of proteinaceous solutions.27 Tribocorrosion involves similar corrosive modes 

present in modular junction corrosion.39 Tribocorrosion occurs during fluid film lubrication 

even when the metal components are not in contact. Tribocorrosion is the irreversible 

transformation of a material due to the simultaneous action of corrosion and wear taking 

place in a sliding tribological contact area.40 In the case of metal-on-metal articulations, the 

two metal surfaces along with the synovial fluid react to form what is known as a 

tribomaterial. This material has an acidic nanocrystalline structure and consists of metallic 

and organic constituents, which are liberated within the surrounding soft tissues.41 In the 

case of metal-on-polymer articulations, metal wear and tribocorrosion occur as well. Using 

hip stimulators, De Villiers et al.42 showed an increased cobalt release in MOP arthroplasty 

with large femoral head, which was even worse with third body abrasives. Moreover, 

Savarino et al.43 showed a significant increase of Co and Cr in serum of patients with MOP 

arthroplasty compared to subjects with no implant.

METALS UTILIZED DURING TJR

The most common metal alloys used in TJR are cobalt–chromium–molybdenum (CoCr or 

CoCrMo) and titanium-6 aluminum- 4 vanadium (Ti6Al4V). Other metals or alloys include 

iron–chromium–nickel (stainless steel, AISI 316 L), commercially pure titanium (cpTi), 

titanium–aluminum–niobium (Ti6Al7Nb), and tantalum (Ta). The above alloys are generally 

named by the most representative elements forming their composition and as the percentage 

of the remaining elements (aluminum, vanadium, niobium, and so forth). These alloys exist 

in different compositions and structures. Currently, the chemical, mechanical, and 

metallurgical requirements for implant quality stainless steel are documented in F138-13a. 

Similarly, there are two representatives of CoCr based alloys: cast CoCrMo and the wrought 

MP35N, the main difference being the percentage of Cr and how the alloys are processed. 

Ti6Al4V alloy (ASTM F136) is the most common alloy of titanium in medical implants.44 

Furthermore, as shown by Rae et al.45,46 there are differences in the biological responses to 

bulk and particulate metal, so each will be discussed separately.
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Titanium and titanium alloys

Bulk—The biological response to bulk cpTi, Ti6Al4V, and Ti6Al7Nb involves transient 

inflammation but little cytotoxicity. A cylinder of bulk cpTi placed in bone demonstrated 

hypocellular fibrous tissue surrounding the implant with little inflammation.47 MC3T3-E1 

preosteoblast cells do not exhibit cytotoxicity when cultured on cpTi unless a cathodic 

voltage is applied.48–50 As bulk, the advantage of Ti-alloy as a stem is lower modulus of 

elasticity, and its disadvantage as a head is poor wear resistance.51,52 Moreover, as shown by 

Tengvall et al.53 the Fenton reaction (decomposition of H2O2 by metal surfaces or metal ions 

leading to the production of harmful hydroxyl radicals) is diminished at a titanium surface 

making this metal highly biocompatible. Goldberg et al.54 investigated, the issue of 

corrosion and self-passivation of Ti6Al4V alloy and CoCrMo alloy. They concluded that 

Ti6Al4V re-passivation takes slightly longer to occur and more electrons are released during 

this process. However, Ti6Al4V appears to be more resistant to corrosion if the oxide on the 

surface is not mechanically disturbed.

Particulate titanium alloy

Particulate cpTi, Ti6Al4V, and Ti6Al4Nb stimulate inflammation and bone resorption. 

Clinically relevant particles of cpTi placed in bone were phagocytized by macrophages 

without an acute inflammatory response (i.e., no polymorphonuclear leukocytes (PMNs) or 

lymphocytes), fibrosis, or granuloma.55 However, with increased concentration of Ti6Al4V 

particles, the cortical endosteal surfaces showed evidence of scalloping and resorption.56 

The macrophages responded to cpTi particles with increased release of prostaglandin E2 

(PGE2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-

α).57,58 The release of the cytokines was associated with an increase in tyrosine 

phosphorylation and mitogen-activated protein kinase (MAPK) activation.59 Interestingly, 

inhibition of phagocytosis with antibodies to CD11b/CD18 receptors did not decrease the 

release of IL-6 and TNF-α indicating a phagocytosis-independent mechanism of 

macrophage activation by cpTi particles. This was also supported by data from co-culture of 

macrophages and lymphocytes, which demonstrated a dose-dependent release of IL-6 and 

TNF-α.59,60 Osteoblasts exposed to cpTi particles respond with acute increase in nuclear 

factor (nuclear factor IL-6 (NF-IL-6) and nuclear factor-kappa B (NFκB)) translocation, 

IL-6 release, and type-1 collagen expression.61–63 The addition of cpTi particles was not 

associated with increased cell death, nitric oxide production, and alkaline phosphatase 

(ALP) or osteocalcin production expression.62 Fibroblasts cultured with cpTi particles 

release monocyte chemoattractant protein 1 (MCP-1) and increased expression of bone-

resorbing metal-loproteinase in a dose- and time-dependent manner, which coincided with 

the release of IL-6.64–66 However, exposure of fibroblasts to cpTi particles did not induce 

MCP-2, monocyte inflammatory protein 1 alpha (MIP-1α), or RANTES (regulated on 

activation, normal T cell expressed and secreted, also known as CCL5). A murine model 

using a cpTi intramedullary femoral rod demonstrated that addition of cpTi particles resulted 

in release of MCP-1, macrophage colony stimulating factor (M-CSF), and IL-6 without 

evidence of cell necrosis.67 However, cpTi particles downregulate the expression of toll-like 

receptor (TLR) proteins and decrease the number of TLR immunoreactive cells.68 This 

unexpected result is possibly due to a positive feedback loop to inhibit excessive 

Gibon et al. Page 5

J Biomed Mater Res B Appl Biomater. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammation. Titanium particles appear to induce pro-inflammatory cytokine production, 

including IL-6, TNF-α, and MCP-1, and induce a minor inflammatory reaction. This 

reaction is distinctly different from that seen with cobalt chrome based alloys in particulate 

form, which are associated with significant cell necrosis. Blocking titanium-induced 

osteoclastogenesis and titaniuminduced release of TNF-α could potentially mitigate the 

adverse effects of titanium particles.69–71

Cobalt–chromium alloy

Bulk—The biological response to bulk CoCr involves cytotoxicity and inflammation. Bulk 

CoCr placed in bone evoked a discontinuous fibrous tissue layer mainly composed of 

collagen fibers with decreased cellularity.47 Bulk CoCr in different fluids (e.g., human 

serum, fetal bovine serum, synovial fluid, and water) showed that the thickest calcium 

deposit was obtained with human serum, but metal ions were trapped as hydroxides and 

phosphates.72 Corrosion of bulk CoCr affects osteoprogenitor viability and adhesion at the 

cathodic edge of voltage through a time-lapse study.73,74 The presence of CoCr corrosion 

contributes to increased local tissue inflammation.75 Interestingly, Willert et al.76 have 

shown that CoCr particles as well as bulk material undergo corrosion and repassivation, 

releasing metal ions. The same group also demonstrated that hypersensitivity reactions to 

metal ions “start immediately after implantation, accelerate or at least facilitate sensitization 

and the consequent immunological response.”77

Particulates and ions—Co and Cr are specifically toxic at high concentrations, and can 

affect tissue that is both local to the modular implant and remotely. Metal ions can travel via 

lymph and blood to various sites throughout the body including bone marrow, lymph nodes, 

spleen, liver, and heart.78–80 Chromium ions have varying effects on the body depending on 

ionic valence. Hexavalent chromium is classified as a group 1 carcinogen and can cause 

pulmonary epithelial cancer, while trivalent chromium is less harmful.81 Merritt and 

Brown82 discovered that hexavalent chromium is the principal chromium ion that is released 

during the corrosion of stainless steel and CoCr implants. However, hexavalent chromium is 

quickly reduced to trivalent chromium in red blood cells, and thus the trivalent chromium 

ion is often detected in the cells surrounding TJR.83 Co ions from MOM implants inhibit 

osteoblast function,84 alter lymphocyte function and chemokine secretion,85,86 as well as 

cause neurological, thyroid, and cardiac dysfunction.87,88 CoCr implants pose three main 

threats to human cells: genotoxicity, cytotoxicity, and hypersensitivity.

Genotoxicity—Co and Cr are genotoxic, which means they can damage the genetic 

makeup of a cell and thus cause cancer, and there is some concern that this is possible even 

at concentrations that are considered “subtoxic.”89,90 Co and Cr damage tissues and DNA by 

oxidative stress.91 Cr specifically can release free radicals, which can cause breakage in 

DNA strands.92 Both Co and Cr ions inhibit DNA repair pathways, which results in 

defective gene expression.93 Co also inhibits topoisomerase II, which aids in DNA 

replication. 94 Some basic science studies suggest metal-on-metal articulations may put 

individuals at risk for developing cancer or other genetic defects. One study, found a 

decrease in DNA synthesis when cells were exposed to Co and Cr.95 A similar study by 

Dunstan et al. found that individuals with modular THA implants had a greater number of 
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chromosomal aberrations compared to individuals who did not have implants.96 In addition, 

individuals with implants exhibited a 2.5-fold greater risk of aneuploidy when compared to 

individuals without implants, as well as a 3.5-fold greater risk of chromosomal 

translocations.97

Lewis et al.98 challenged primary human fibroblasts with CoCr particles that had been 

previously incubated with either human serum or minimal essential media. When particles 

were preincubated with human serum, they were phagocytozed less readily. They also found 

a significant increase in DNA damage when cells were exposed to CoCr particles compared 

to untreated cells. The size of the particles also plays a role on the damage to the 

surrounding cells. Papageorgiou et al. investigated the effect of CoCr particles on human 

fibroblasts of different ages.99 They found that the level of DNA damage was similar in both 

groups but older cells experienced a greater loss of viability and demonstrated more complex 

aneuploidy. This was confirmed by Raghunathan et al.100 and Behl et al.101 who also found 

an increase in reactive oxygen species (ROS) production which was dose-dependent after 24 

h of exposure. Finally, Posada et al.102 found significantly higher cellular uptake of Co than 

Cr regardless of the concentration. They also showed an increase apoptosis after 48 h of 

exposure.

Despite the above reports, it is still unknown if genotoxicity from modular hip implants is a 

serious threat clinically. One study analyzed over 80 published papers to determine if there 

is a relationship between CoCr implants and an increase in cancer. They found that the Co 

and Cr ion concentration in the bodies of those with meal-on-metal articulations were far too 

small to substantially increase the risk of developing systemic cancer.103 In vitro and in vivo 
assays showed that DNA defects would be very unlikely to occur due to the increase in Co 

or Cr ion concentration as a result of a MOM articulation.103 Moreover, in 40 tumor 

bioassays where Co and Cr ion concentrations were significantly higher than those in hip 

implants, none reported a significant increase in systemic cancer.103 A Finnish study also 

looked at 2,000 patients roughly 15 years after a first generation MOM articulation and 

found that there was no increase in the incidence of cancer. The authors concluded that 

factors other than the TJR surgery are responsible for the development of cancer in hip 

implant patients.104 Similarly, studies of patients with more modern metal-on-metal 

articulations failed to suggest an increased risk of cancer.105 Lastly, DNA damage as a result 

of modular implants is not necessarily predictive of cancer risk. Christian et al.103 noted that 

DNA damage has been seen in patients with implants that were made of materials other than 

Co and Cr. They concluded that effects on DNA in the blood surrounding metal-on-metal 

articulations is not due to the metal ions that are released, but is instead due to local effects, 

such as inflammation, that are unrelated to the implant material.103 Although there is 

concern that Co and Cr ions could cause cancer, thus far no definite conclusions can be 

drawn.

Cytotoxicity—Co and Cr ions are very cytotoxic, with the former being more toxic than 

the latter. Co ions, even at smaller concentrations, can result in greater macrophage and 

lymphocyte death than Cr ions.36,106,107 Both ions stimulate TNF-α secretion and 

macrophage apoptosis.108 Several in vitro studies suggest that Co and Cr ions lead to 

macrophage apoptosis even after being incubated for both 24 and 48 h. DNA laddering 
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indicates that DNA fragmentation declines after 48 h, which could be a sign of 

necrosis. 36,107,108 Co and Cr particles reduced the viability of histiocytes by 97% and 

fibroblasts by 95%.109 CoCr alloy was shown to be much less toxic than Co or Ni alone in 

primary fibroblasts.110 CoCr alloy particle injection within the knee joint resulted in large 

zones of necrosis with infiltrating macrophages and lymphocytes.111 Haynes et al.112 

studied the effect of age of CoCr particles under physiological conditions with human 

monocytes. Their results showed that (1) Co particles were more significantly released than 

Cr particles, (2) this release decreased with time, (3) aged particles were less toxic than 

freshly produced particles, and (4) aged particles stimulated the release of IL-6 and PGE2. 

Kaufman et al.113 demonstrated that CoCr particles were “mildly stimulatory” for cytokine 

release: when challenged with CoCr particles, macrophages released two- to five fold greater 

levels of IL-1a, IL-6, IL-10, and granulocyte–macrophage CSF (GM-CSF) compared to 

unchallenged cells. Papageorgiou et al.114 used nano- and microparticles in an in vitro study 

with human fibroblasts. Nanoparticles were found to release significantly more free radicals 

and to induce more DNA damage than the microparticles. Unexpectedly, exposure to CoCr 

particles did not increase the release of IL-6, IL-10, TNF-α, or FGF-23, possibly due to cell 

death.

Hypersensitivity—Hypersensitivity refers to the immune system overreacting to an 

allergen and producing an undesired reaction. Metal allergies (or hypersensitivities) are 

characterized by contact allergies to Cr, Co, or Ni, and are found in roughly 10–15% of the 

general population.115,116 Metal allergy can develop from extended exposure to items, such 

as jewelry, cell phones, and clothing fasteners.116–123 This is of concern to orthopaedic 

surgeons because if a patient has a metal allergy, implanting a metal hip could potentially 

have negative consequences, such as hives, eczema, redness, and itching (in <1% joint 

replacement patients).124 Ni is often found in the CoCr alloys that are used in orthopaedic 

implants, and has been shown to be the strongest immunological sensitizing metal when 

compared with Co and Cr. Metal ions cannot initiate an immune response by themselves. 

Instead, they bind to proteins and form haptens. It is the metal-bound denatured protein, 

such as albumin, that is large enough to elicit an immune response.125 CoCr particles also 

have an effect on T-cells. As shown by Hallab et al.126 metalloprotein complexes made from 

CoCr degradation byproducts are capable of inducing a lymphocyte proliferative response. 

This response was greatest with high molecular weight protein (180–250 kDa); a possible 

trigger of the response is a crosslinking reaction with lymphocyte receptors (BV17 or CDR1 

T-cell receptor).

When individuals with a metal allergy are exposed to immunoreactive haptens that are made 

from Ni, Co, or Cr particles, a hypersensitivity reaction occurs. This is characterized by the 

activation of T-cell mediated delayed-type hypersensitivity lymphocytes by antigens, which 

leads to cytokine release and the activation of macrophages. A hypersensitivity reaction can 

either be an immediate humoral response or a delayed cell-mediated response, but 

hypersensitivity reactions as a result of orthopaedic implants are usually a cell-mediated 

type-IV delayed hypersensitivity response.127 A hypersensitivity reaction is initiated when 

haptenic antigens activate T-cell mediated delayed-type hypersensitivity lymphocytes, which 

are a subtype of CD4+ helper T-cell lymphocytes. These lymphocytes are presented with a 
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hapten, and interact with a major histocompatibility complex (MHC) class II molecule to 

release interferon-gamma. Interferon-gamma activates macrophages to secrete various 

cytokines, such as granulocyte–macrophage colony stimulating factors, tumor necrosis 

factors, monocyte chemotactic factors, and migration inhibitory factors. These cytokines 

recruit cytotoxic T-cells that are involved in the cell-mediated type IV-hypersensitivity 

reaction. The macrophages are also able to activate T-cell mediated delayed-type 

hypersensitivity lymphocytes, which will then activate more macrophages, and a vicious 

cycle develops. Thus, an immunologic overreaction occurs.128,129 Patients who are sensitive 

to Ni often exhibit crossreactivity with Co and Cr.130 This is because when patients react to 

a hapten, they actually are reacting to the denatured carrier. Ni, Co, and Cr all have similar 

mechanisms by which they denature carrier proteins, and thus cross-reactivity occurs.131,132

Stainless Steel

Bulk—Stainless steel is mainly used in polished tapered cemented femoral stems.133 The 

main components of stainless steel are iron (Fe), chromium (Cr), nickel (Ni), and Copper 

(Cu). The biological response to bulk stainless steel involves transient inflammation and 

lacks cytotoxicity. Macrophages demonstrated increased IL-1β release and late apoptosis 

when exposed to ingots of stainless steel.134 Interestingly, Hierholzer et al.135 have shown 

that the inflammatory reaction associated with infection causes an increased dissolution of 

the metal ions from stainless steel implants. Karov et al.28 investigated corrosion and self-

passivation under physiological conditions. Their results showed that self-passivation can 

take up to 10 s and continue to evolve thereafter. The authors stated that a fast repassivation 

rate is an important biocompatibility requirement for alloys used to manufacture dental and 

orthopaedic devices.

Particulates and ions—The rate of stainless steel ion release depends on several factors 

including alloy composition and surface finish. The ions release by stainless steel alloy and 

its pure constituents after immersion in a synthetic biological medium to mimic the reaction 

within the human body show Ni release in the first hour followed by Fe and Cr which 

increase for four hours prior to assuming a steady state concentration (with Fe being the 

highest).136 When the surface was abraded the rate of ion release was 3- to 5-fold higher.

Stainless steel corrosion products affect osteoblast survival and stimulate macrophages-

depended inflammation. Osteoblasts exposed to stainless steel corrosion products have lower 

DNA content, decreased ALP activity, and failure to mineralize. The effect of 316 L 

stainless steel and nitro-genated stainless steel (NSS) alloys (both in particles and bulk 

shapes) found that 316 L stainless steel particles were more toxic than NSS particles to 

macrophages. However, both of the alloys induced significant increase in IL-1β and TNF-α 
expression.134 Stainless steel particles cultured with osteoclasts increased IL-1β, IL-6, and 

TNF-α expression.137 Osteoclasts induced the corrosion of stainless steel particles and led 

to a significant release of Cr, Ni, and Mn ions into the supernatant.138 With regards to 

corrosion, Woodman et al.139 have shown that the predominant form of the corrosion 

product of these metals is an organometallic complex with serum proteins.
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ADVERSE LOCAL TISSUE

Adverse local tissue reaction (ALTR) refers to untoward histological reactions (often 

associated with clinical manifestations) that occur when metal implants corrode to produce 

metallic byproducts including particles, complexes, and ions. ALTR is a contributing factor 

to TJA failure.140 It is unknown what the relationship is between ALTR and genotoxicity, 

cytotoxicity, and metal hypersensitivity, but ALTR is often associated with pain in the groin, 

hip, thigh, and buttock. 141 There are three major types of ALTR: aseptic lymphocyte-

dominated vasculitis-associated lesions (ALVaL), pseudotumors, and osteolysis.

ALVaL describes a periprosthetic inflammatory reaction that is similar to a type IV 

hypersensitivity response in the soft tissue surrounding metal-on-metal implants.142,143 It is 

characterized by soft tissue necrosis, lymphocytic infiltration, and abnormal joint fluid. In 

TJR patients who needed revision surgery due to symptoms of implant failure, tissue 

samples showed perivascular infiltrates of T-cell and B-cell lymphocytes, as well as an 

accumulation of plasma cells and macrophages (Figure 7).144

Pseudotumors are large, cystic masses that are often seen in patients with ALTR (Figure 8). 

Pseudotumors result in symptoms similar to ALVaL, but the lymphocyte infiltration and 

necrosis is much broader and more extensive. Pseudotumors may be characterized by pain, 

nerve palsy, palpable mass, and spontaneous dislocation. Various studies have attempted to 

determine the prevalence of pseudotumors amongst hip implant patients, and thus far the 

results have varied widely. Pandit et al.145 estimated that 1% of patients with metal-on-metal 

implants develop a pseudotumor within 5 years, while a study by Hart et al.146 found that 

roughly 60% of patients with metal-on-metal implants develop a pseudotumor. Van der 

Weegen et al. reported a rate of 37% of asymptomatic pseudotumors in their cohort of metal-

on-metal implants.147

Osteolysis is the destruction of bone, resulting from osteoclast resorption.148 Cystic bone 

lesions and radiolucent regions near the femoral calcar and acetabular components are strong 

signs of osteolysis (Figure 9). Osteolysis can be asymptomatic, but can also be associated 

with pain if the bone loss affects the implant stability.148 It is difficult to determine the 

prevalence of osteolysis, as it exists in many asymptomatic patients. However, in Sweden, 

osteolysis was the cause of revision surgery for 75% of patients with metal-on-metal 

articulation.149,150

CONCLUSIONS

Due to their mechanical strength and durability, metal alloys are widely used in TJR. 

Titanium alloy, cobalt–chromium alloy, and stainless steel in bulk form all induce a mild 

inflammatory response. However, byproducts of these metal alloys can have increased 

harmful effects including various degrees of cytotoxicity, genotoxicity and induce adverse 

local tissue reactions. Future implants, bearing surfaces and modular junctions should be 

designed to minimize the generation of metallic byproducts and the potential resultant 

consequences.
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FIGURE 1. 
The passivation layer is an oxidized metal (black). The passivation layer prevents further 

degradation of the underlying coalloy (Implant, gray). Metal implanted into the body has 

reacted with oxygen and is passivated. However, damage to the passivation layer results in 

exposure of the reactive coalloy surface, which reacts oxygen (O2) and water (H2O) 

resulting in repassivation. Illustration created by Chrisoula Toupadakis Skouritakis, Ph.D.
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FIGURE 2. 
Examples of the types of modular junctions in total hip arthroplasty: (A) S-ROM illustrating 

proximal metaphyseal modularity, (B) dual modular design illustrating neck–stem 

modularity, (C) fluted tapered modular stem illustrating distal diaphyseal modularity, and 

(D) total femoral replacement illustrating modularity at its extreme. Note, examples A–D all 

illustrate head–neck modularity using the trunnion of the stem to accept a modular femoral 

head.
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FIGURE 3. 
The junction between the passivated femoral head and stem trunnion (dark gray) results in 

the microisolation of the corrosive environment that establishes an oxygen gradient between 

the interstitial fluid (“normoxic”) and the crevice fluid (“anoxic”). (A) The lack of oxygen 

inside the crevice leads to the separation of the anodic process (metal dissolution inside the 

crevice) and the cathodic process (oxygen reduction outside the crevice). The excess of 

positive ions in the crevice solution is balanced by an influx of negatively charged ions, 

primarily chloride ions (Cl−). The electrons generated by the anodic process is picked up by 

oxygen at the cathodic sites on the metal surface outside the crevice. (B) The hydrolysis of 

the chromium produces chromium ion (Cr3+) during the anodic process results in hydrogen 

ion (H+) generation inside the crevice, dropping the pH of the microenvironment and 

accelerating metal ion release. (C) As the crevice solution becomes more acidic, the 

hydrolysis of chromium becomes less and less complete, and the rate of acidification 

decreases. (D) As the critical pH is reached, the chromium ions are no longer hydrolyzed 

and crevice corrosion progresses at the rate of metal ion (CO2+, Cr3+, and so forth) 

diffusion. The metal ions then can react with organic and inorganic anions in the vicinity of 

the crevice opening, and—in the case of chromium ions—form insoluble precipitates 

containing chromium oxide (Cr2O3) and chromium phosphate (CrPO4) on the metal surface. 

Illustration created by Chrisoula Toupadakis Skouritakis, Ph.D.
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FIGURE 4. 
When a modular junction is loaded, the implant flexes (slip region) while remaining together 

(stick region). This micromotion can physically disrupt the passivation layer, leading to 

metal wear or implant fracture. Micromotion does not equate to loosening. Illustration 

created by Chrisoula Toupadakis Skouritakis, Ph.D.
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FIGURE 5. 
(A) Hip resurfacing arthroplasty and (B) total hip arthroplasty with a metal head and metal 

acetabular liner are types of metal-on-metal articulations in total joint arthroplasty.
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FIGURE 6. 
A polar bearing prosthesis leads to proper bedding-in and low steady-state wear as well as 

fluidfilm lubrication assuming proper implant positioning. Illustration created by Chrisoula 

Toupadakis Skouritakis, Ph.D.
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FIGURE 7. 
4× magnification of the diffuse perivascular infiltrates of T-and B-lymphocytes along with 

plasma cells as well as macrophages with or without metal debris that is characteristic of 

aseptic lymphocyte dominated vasculitis-associated lesions (ALVAL).
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FIGURE 8. 
T1-weighted coronal section from a metal artifact reduction sequence (MARS) MRI 

demonstrating large pseudotumors involving the gluteus maximus muscle and lateral left 

hip.
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FIGURE 9. 
Severe osteolysis of the calcar and failure of acetabular fixation.
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