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Abstract Quantitative analysis of brain MRI is routine for
many neurological diseases and conditions and relies on
accurate segmentation of structures of interest. Deep
learning-based segmentation approaches for brain MRI are
gaining interest due to their self-learning and generalization
ability over large amounts of data. As the deep learning
architectures are becoming more mature, they gradually
outperform previous state-of-the-art classical machine
learning algorithms. This review aims to provide an over-
view of current deep learning-based segmentation ap-
proaches for quantitative brain MRI. First we review the
current deep learning architectures used for segmentation
of anatomical brain structures and brain lesions. Next, the
performance, speed, and properties of deep learning ap-
proaches are summarized and discussed. Finally, we pro-
vide a critical assessment of the current state and identify
likely future developments and trends.
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Background

Magnetic resonance imaging (MRI) is usually the modality of
choice for structural brain analysis, since it provides images
with high contrast for soft tissues and high spatial resolution
and presents no known health risks. While modalities such as
computed tomography (CT) and positron emission tomogra-
phy (PET) are also used to study the brain, MRI is the most
popular, and we will focus on MRI in this work. Quantitative
analysis of brain MRI has been used extensively for charac-
terization of brain disorders such as Alzheimer’s disease, ep-
ilepsy, schizophrenia, multiple sclerosis (MS), cancer, and in-
fectious and degenerative diseases. For example, tissue atro-
phy is one of the common biomarkers used in diagnosis and
therapy assessment in Alzheimer’s disease, epilepsy, schizo-
phrenia, MS, and many other neurological diseases and disor-
ders. To quantify tissue atrophy, segmentation and corre-
sponding measurements of brain tissues are needed.
Similarly, quantification of change in brain structures requires
segmentation of the MRI obtained at different time points. In
addition, detection and precise localization of the abnormal
tissue and surrounding healthy structures are crucial for diag-
nosis, surgical planning, postoperative analysis, and chemo/
radiotherapy planning. Quantitative and qualitative character-
ization of normal and pathological structures, both in space
and time, are often part of clinical trials, in which the effects of
treatment are studied on a cohort of patients and normal
controls.

Quantitative analysis of brain MR images is routine for
many neurological diseases and conditions. Segmentation,
i.e., labeling of pixels in 2D (voxels in 3D), is a critical com-
ponent of quantitative analysis. Manual segmentation is the
gold standard for in vivo images. However, this requires
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outlining structures slice-by-slice, and is not only expensive
and tedious, but also inaccurate due to human error. Therefore,
there is a need for automated segmentation methods to provide
accuracy close to that of expert raters’” with a high consistency.

As 3D and 4D imaging are becoming routine, and with
physiological and functional imaging increasing, medical im-
aging data is increasing in size and complexity. Therefore, it is
essential to develop tools that can assist in extracting informa-
tion from these large datasets. Machine learning is a set of
algorithmic techniques that allow computer systems to make
data-driven predictions from large data. These techniques
have a variety of applications that can be tailored to the med-
ical field.

There has been a significant effort in developing classical
machine learning algorithms for segmentation of normal (e.g.,
white matter and gray matter) and abnormal brain tissues (e.g.,
brain tumors) in MRI. However, creation of the imaging fea-
tures that enable such segmentation requires careful engineer-
ing and specific expertise. Furthermore, traditional machine
learning algorithms do not generalize well. Despite a signifi-
cant effort from the medical imaging research community,
automated segmentation of the brain structures and detection
of the abnormalities remain an unsolved problem due to nor-
mal anatomical variations in brain morphology, variations in
acquisition settings and MRI scanners, image acquisition im-
perfections, and variations in the appearance of pathology.

An emerging machine learning technique referred to as
deep learning [1], can help avoid limitations of classical ma-
chine learning algorithms, and its self-learning of features may
enable identification of new useful imaging features for quan-
titative analysis of brain MRI. Deep learning techniques are
gaining popularity in many areas of medical image analysis
[2], such as computer-aided detection of breast lesions [3],
computer-aided diagnosis of breast lesions and pulmonary
nodules [4], and in histopathological diagnosis [5]. In this
survey, we provide an overview of state-of-the-art deep learn-
ing techniques in the field of brain MR segmentation and
discuss remaining gaps that have a potential to be fulfilled
by the use of deep learning techniques.

Deep Learning

Deep learning refers to neural networks with many layers
(usually more than five) that extract a hierarchy of features
from raw input images. It is a new and popular type of ma-
chine learning techniques that extract a complex hierarchy of
features from images due to their self-learning ability as op-
posed to the hand-crafted feature extraction in classical ma-
chine learning algorithms. They achieve impressive results
and generalizability by training on large amount of data. The
rapid increase in GPU processing power has enabled the de-
velopment of state-of-the-art deep learning algorithms. This
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allowed training of deep learning algorithms with millions of
images and provided robustness to variations in images.

There are several types of deep learning approaches that
have been developed for different purposes, such as object
detection and segmentation in images, speech recognition,
and genotype/phenotype detection and classification of dis-
eases. Some of the known deep learning algorithms are
stacked auto-encoders, deep Boltzmann machines, deep neu-
ral networks, and convolutional neural networks (CNNSs).
CNNss are the most commonly applied to image segmentation
and classification.

CNNs were first introduced in 1989 [6], but gained great
interest after deep CNNs achieved spectacular results in
ImageNet [7, 8] competition in 2012 [9]. Applied on a dataset
of about a million images that included 1000 different classes,
CNNs nearly halved the error rates of the previously best
computing approaches [9].

CNN architectures are increasingly complex, with some sys-
tems having more than 100 layers, which means millions of
weights and billions of connections between neurons. A typical
CNN architecture contains subsequent layers of convolution,
pooling, activation, and classification (fully connected).
Convolutional layer produces feature maps by convolving a ker-
nel across the input image. Pooling layer is used to downsample
the output of preceding convolutional layers by using the maxi-
mum or average of the defined neighborhood as the value passed
to the next layer. Rectified Linear Unit (ReLU) and its modifi-
cations such as Leaky ReLU are among the most commonly
used activation functions. ReLU nonlinearly transforms data
by clipping any negative input values to zero while positive
input values are passed as output [10]. To perform a prediction
of an input data, the output scores of the final CNN layer are
connected to loss function (e.g., cross-entropy loss that normal-
izes scores into multinomial distribution over labels). Finally,
parameters of the network are found by minimizing a loss
function between prediction and ground truth labels with reg-
ularization constraints, and the network weights are updated at
each iteration (e.g., using stochastic gradient descent — SGD)
using backpropagation until convergence (see Fig. 1).

Review

We performed a thorough analysis of the literature using the
Google Scholar and NLM Pubmed search engines. We includ-
ed all found peer reviewed journal publications and confer-
ence proceedings that describe applying deep learning to brain
MRI segmentation. Since a large fraction of deep learning
works are submitted to Arxiv (http:/arxiv.org) first, we also
included relevant Arxiv preprints. Conference proceedings
that had a follow-up journal publication were included only
in their final publication form. We divided papers into two
groups: works on normal structures and on brain lesions. In
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Fig. 1 A schematic representation of a convolutional neural network
(CNN) training process

both groups, different deep learning architectures have been
introduced to address domain-specific challenges. We further
subdivided them based on their architecture style such as
patch-wise, semantic-wise, or cascaded architectures. In the
following subsections, we present evaluation and validation
methods, preprocessing methods used in current deep learning
approaches, current deep learning architecture styles, and per-
formance of deep learning algorithms for quantification of
brain structures and lesions.

Training, Validation and Evaluation

In the machine learning field, data are divided into training,
validation, and test sets for learning from examples, establish-
ing the soundness of learning results, and evaluating the gen-
eralization ability of a developed algorithm on unseen data,
respectively. When there are limited data, cross validation
methods (e.g., one-leave out, fivefold, or tenfold validations)
are preferred. In a k-fold cross-validation, the data are random-
ly partitioned into k equal sized parts. One of the k parts is
retained as the validation data for testing the algorithm, and
the remaining k — 1 parts are used as training data. Training is
typically done with a supervised approach which requires
ground truth for the task. Ground truth is usually obtained with
manual delineations of brain lesions or structures by experts
for segmentation tasks. Even though this is the gold standard
for the learning and evaluation, it is a tedious and laborious
task and contains subjectivity. In their work, Mazzara et al.
[11] reported intra-expert variabilities of 20 + 15% and inter-
experts variabilities of 28 + 12% for manual segmentations of
brain tumor images. To alleviate this variability, multiple ex-
pert segmentations are combined in an optimal way by using
label fusion algorithms such as STAPLE [12, 13]. For classi-
fication tasks of brain lesions, the ground truth is obtained
with biopsy and pathological tests.

To evaluate performance of a newly developed deep learning
approach on a task, it is essential to compare its performance
against available state of the art methods. In general, most of the
algorithms are evaluated on different sets of data and reported

different similarity metrics. This makes it hard to compare the
performance of different algorithms against each other. Over the
last decade, the brain imaging community has become more
aware of this and created publicly available datasets with ground
truth for evaluating the performance of algorithms against each
other in an unbiased way. One of the first such datasets was
released in the framework of an MS lesion segmentation chal-
lenge, which was held in conjunction with MICCALI 2008. The
dataset is maintained as an online challenge dataset (https://
WWwWw.nitrc.org/projects/msseg), meaning the training data is
released with the ground truth to the public, while the test
dataset is released without the ground truth and thus can be
evaluated only by the organizers. The latter helps avoid
overfitting of the methods and makes comparison more
objective. Following the same paradigm, many other datasets
have been released since then. Some of the other well-known
publicly available datasets for brain MRI are Brain Tumor
Segmentation (BRATS), Ischemic Stroke Lesion Segmentation
(ISLES), Mild Traumatic Brain Injury Outcome Prediction
(mTOP), Multiple Sclerosis Segmentation (MSSEG), Neonatal
Brain Segmentation (NeoBrainS12), and MR Brain Image
Segmentation (MRBrainS).

Brats This brain tumor image segmentation challenge in con-
junction with the MICCALI conference has been held annually
since 2012 in order to evaluate the current state-of-the-art in
automated brain tumor segmentation and compare between
different methods. For this purpose, a large dataset of brain
tumor MR scans and ground truth (five labels: healthy brain
tissue, necrosis, edema, non-enhanced, and enhanced regions
of tumors) are made publicly available. The training data has
increased over the years. Currently (Brats 2015-2016), the
training set comprises 220 subjects with high grade and 54
subjects with low-grade, and the test set comprises 53 subjects
with mixed grades. All datasets have been aligned to the same
anatomical template and interpolated to 1 mm® voxel resolu-
tion. Each dataset has pre-contrast T1, post contrast T1, T2,
and T2 FLAIR MRI volumes. The co-registered, skull-
stripped, and annotated training dataset and evaluation results
of algorithms are available via the Virtual Skeleton Database
(https://www.virtualskeleton.ch/).

Isles This challenge is organized to evaluate stroke lesion/
clinical outcome prediction from acute MRI scans. Acute
MRI scans of a large number of acute stroke cases and asso-
ciated clinical parameters are provided. The associated ground
truth is the final lesion volume (Task I) as manually segmented
in 3 to 9-month follow-up scans, and the clinical mRM score
(Task IT) denoting the degree of disability. For ISLES 2016, 35
training and 40 testing cases made publicly available via
SMIR platform (https://www.smir.ch/ISLES/Start2016). The
performance of the winner algorithm on this dataset for
subacute ischemic stroke lesion segmentation currently is 0.
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59+0.31 (Dice similarity coefficient, DSC) and 37.88 =30.06
(Hausdorff Distance, HD).

mTOP This challenge calls for methods that focus on finding
differences between healthy subjects and Traumatic Brain
Injury (TBI) patients and sort the given data in distinct catego-
ries in an unsupervised manner. Publicly available MRI data can
be downloaded from https:/tbichallenge.wordpress.com/data.

MSSEG The goals of this challenge are evaluating state-of-
the-art and advanced segmentation methods from the partici-
pants on MS data. For this, they evaluate both lesion detection
(how many lesions are detected) and lesion segmentation
(how precisely the lesions are delineated) on a multicenter
database (38 patients from four different centers, imaged on
1.5 or 3T scanners, each patient being manually annotated by
seven experts). In addition to this classical evaluation, they
provide a common infrastructure to evaluate the algorithms
such as running time comparison and the degree of automa-
tion. The data can be obtained from https://portal.fli-iam.irisa.
fr/msseg-challenge/data.

NeoBrainS12 The aim of the NeoBrainS12 challenge is to
compare algorithms for segmentation of neonatal brain tissues
and measurement of corresponding volumes using T1 and T2
MRI scans of the brain. The comparison is performed for the
following structures: cortical and central gray matter, non-
myelinated and myelinated white matter, brainstem and cere-
bellum, and cerebrospinal fluid in the ventricles and in the
extracerebral space. Training set includes T1 and T2 MR im-
ages of two infants at 30 and 40 weeks ages. Test set includes
T1 and T2 MRI of five infants. The data and evaluation results
of algorithms that has been submitted to the challenge can be
downloaded from http://neobrains12.isi.uu.nl/.

MRBrainS The aim of the MRBrainS evaluation framework
is to compare algorithms for segmentation of gray matter,
white matter, and cerebrospinal fluid on multi-sequence (T1-
weighted, T1-weighted-inversion recovery, and FLAIR) 3
Tesla MRI scans of the brain. Five brain MRI scans with
manual segmentations are provided for training and 15 only
MRI scans are provided for testing. The data can be
downloaded from http://mrbrains13.isi.uu.nl. The
performance (DSC) of the current winner algorithm on this
dataset is 86.15% for gray matter, 89.46% for white matter,
and 84.25% for cerebrospinal fluid segmentation.

The most common quantitative measures used for evalua-
tion brain MRI segmentation methods are listed below and
shown in Table 1. Typically, the methods for normal structure
or tumor segmentation include voxel-wise metrics, such as
DSC, true positive rate (TPR), positive predictive value
(PPV), and lesion surface metrics, such as HD and average
symmetric surface distance (ASSD). On the other hand,
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methods for multifocal brain lesions often also include
lesion-wise metrics, such as lesion-wise true positive rate
(LTPR) and lesion-wise positive predictive value (LPPV).
Measures such as accuracy and specificity tend to be avoided
in the lesion segmentation context since these measures do not
discriminate between different segmentation outputs when the
object (lesion) is considerably smaller than the background
(normal-appearing brain tissue). In addition, measures of clin-
ical relevance are also commonly incorporated. These include
such measures as correlation analysis of total lesion load or
count as detected by automated and manual segmentation and
volume or volume change correlation. Significance tests com-
monly accompany contributions that build on or compare to
other methods, most often nonparametric tests such as
Wilcoxon’s signed rank of Wilcoxon’s rank sum tests are
preferred.

Image Preprocessing

Automated analysis of MR images is challenging due to in-
tensity inhomogeneity, variability of the intensity ranges and
contrast, and noise. Therefore, prior to automated analysis,
certain steps are required to make the images appear more
similar, and these steps are commonly referred to as prepro-
cessing. Typical preprocessing steps for structural brain MRI
include the following key steps.

Registration Registration is spatial alignment of the images to
a common anatomical space [14]. Interpatient image registra-
tion aids in standardizing the MR images onto a standard
stereotaxic space, commonly MNI or ICBM. Intrapatient reg-
istration aims to align the images of different sequences, e.g.,
T1 and T2, to obtain a multi-channel representation for each
location within the brain.

Skull Stripping Skull stripping is the process of removing the
skull from images to focus on intracranial tissues. The most
common methods used for this purpose have been BET [15],
Robex [16], and SPM [16, 17].

Bias Field Correction Bias Field Correciton is the correction
of the image contrast variations due to magnetic field inhomo-
geneity [18]. The most commonly adopted approach is N4
bias field correction.

Intensity Normalization Intensity Normalization is the pro-
cess of mapping intensities of all images into a standard or
reference scale, e.g., between 0 and 4095. The algorithm by
Nyul et al. [19], which uses piecewise linear mapping of im-
age intensities into a reference scale, is one of the most popular
normalization techniques. In the context of deep learning
frameworks, computing z-scores, where one subtracts the
mean image intensity from all pixels in an image and divides
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Table 1 A summary of popular

quantitative measures of brain Metric of segmentation quality

Mathematical description

MRI segmentation quality and
their mathematical formulation
with respect to the number of false
positives (FP), true positives (TP),
and false negatives (FN) at voxel
level and lesion level (FPL, TPL,
and FNL, respectively). 0S and
OR are the sets of lesion border
pixels/voxels for the tested and
the reference segmentations, and
dm(v, V) is the minimum of the
Euclidean distances between a
voxel v and voxels in a set V.

True positive rate, TPR
Positive predictive rate, PPV
Dice similarity coefficient, DSC
Volume difference rate, VDR

Hausdorff distance

Lesion-wise true positive rate, LTPR

Lesion-wise positive predictive value, LPPV

Average symmetric surface distance, ASSD

TPR = b
PPV = it
DSC = sr5 it
VDR = [P

HD =max {sup; c srdm(s, 1), Sup; e ssdm(®; 8)}

SD = Yscosdm (8,0R)+¥ o dm (r,0S)

[6S|+[eR]
_ __TPL
LTPR = 1pripnr
_ __TPL
LPPV = o ror

pixels by the standard deviation of intensities, is another pop-
ular normalization technique.

Noise Reduction Noise reduction is the reduction of the
locally-variant Rician noise observed in MR images [20].

With advent of deep learning techniques, some of the pre-
processing steps became less critical for the final segmentation
performance. For instance, bias correction and quantile-based
intensity normalization are often successfully replaced by the
z-score computation alone [2, 21]; however, another work
shows improvement when applying normalization prior to
deep learning based segmentation procedure [22]. At the same
time, the new methods for these preprocessing routines are
also arising, including deep learning based registration [23],
skull stripping [24], and noise reduction [25].

Current CNN Architecture Styles

Patch-Wise CNN Architecture This is a simple approach to
train a CNN algorithm for segmentation. An NxN patch
around each pixel is extracted from a given image, and the
model is trained on these patches and given class labels to
correctly identify classes such as normal brain and tumor.
The designed networks contain multiple convolutional, acti-
vation, pooling, and fully connected layers sequentially. Most
of the current popular architectures [21, 22, 26, 27] use this
approach. To improve the performance of patch-wise architec-
tures, multiscale CNNs [28, 29] use multiple pathways, where
each uses a patch of different size around the same pixel. The
output of these pathways are combined by a neural network
and the model trained to correctly identify the given class
labels (Figs. 2, 3, and 4).

Semantic-Wise CNN Architecture This type of architecture
makes predictions for each pixel of the whole input image like

semantic segmentation [30, 31]. Similar to autoencoders, they
include encoder part that extracts features and decoder part that
upsamples or deconvolves the higher level features from the
encoder part and combines lower level features from the encod-
er part to classify pixels. The input image is mapped to the
segmentation labels in a way that minimizes a loss function.

Cascaded CNN Architecture This type of architecture com-
bines two CNN architectures [32]. The output of the first CNN
is used as an input to the second CNN to obtain classification
results. The first CNN is used to train the model with initial
prediction of class labels while second CNN is used to further
tune the results of the first CNN.

Segmentation of Normal Brain Structure

Accurate automated segmentation of brain structures, e.g.,
white matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF), in MRI is important for studying early brain develop-
ments in infants and quantitative assessment of the brain tissue
and intracranial volume in large scale studies. Atlas-based ap-
proaches [33-36], which match intensity information between
an atlas and target images and pattern recognition approaches
[37-39], which classify tissues based on a set of local intensity
features, are the classical approaches that have been used for
brain tissue segmentation. In recent years, CNNs have been
adopted for segmentation of brain tissues, which avoid the ex-
plicit definition of spatial and intensity features and provide
better performance than classical approaches, as we describe
next (see Table 2 for the list of studies).

Zhang et al. [27] presented a 2D (input patch size 13 x 13
pixels) patch-wise CNN approach to segment WM, GM, and
CSF from multimodal (i.e., T1, T2, and fractional anisotropy)
MR images of infants. They showed that their CNN approach
outperforms prior methods and classical machine learning
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Fig. 2 Schematic illustration of a
patch-wise CNN architecture for MRI
brain tumor segmentation task

Segmentation

Patch-wise CNN

oo ﬁ,

algorithms using support vector machine (SVM) and random
forest (RF) classifiers (overall DSC performance
85.03% F 2.27% (CNN) vs. 76.95% F 3.55% (SVM),
83.15% F 2.52% (RF)). Nie et al. [30] presented a semantic-
wise fully convolutional networks (FCNs) to segment infant
brain images from the same dataset that Zhang et al. [27] used
in their study. They obtained improved results compared to [27].
Their overall DSC were 85.5% (CSF), 87.3% (GM), and 88.7%
(WM) vs. 83.5% (CSF), 85.2 (GM), and 86.4 (WM) by [27]. De
Brebisson et al. [40] presented a 2D (I = 292) and 3D (I = 133)
patch-wise CNN approach to segment human brain to
anatomical regions. They achieved competitive results
(DSC =72.5% F 16.3%) in MICCALI 2012 challenge on multi-
atlas labeling as the first CNN approach applied to the task.
Moeskops et al. [28] presented a multi-scale (25%,51%,75% pixels)
patch-wise CNN approach to segment brain images of infants
and young adults. They obtained overall DSC = 73.53% vs.
72.5% by [40] in MICCALI challenge on multi-atlas labeling.
Bao et al. [41] also presented a multi-scale patch-wise CNN
together with dynamic random walker with decay region of in-
terest to obtain smooth segmentation of subcortical structures in
IBSR (developed by the Centre for Morphometric Analysis at
Massachusetts General Hospital-available at https://www.nitrc.
org/projects/ibsr to download) and LPBA40 [42] datasets. They
reported overall DSC of 82.2 and 85% for IBSR and LPBA40,
respectively. CNN-based deep learning approaches have shown
the top performances on NeoBrainS12 and MRBrainS (see
Table 3) challenges. Their computation time at testing phase
was also much less than classical machine learning algorithms.

Segmentation of Brain Lesions

Quantitative analysis of brain lesions include measurement of
established imaging biomarkers such as the largest diameter,

Fig. 3 Schematic illustration of a
semantic-wise CNN architecture
for brain tumor segmentation task

MRI

Input M convolutional / Fully Connected
M Activation

[ | Pooling [ | Output

volume, count, and progression, to quantify treatment response
of the associated diseases, such as brain cancer, MS, and stroke.
Reliable extraction of these biomarkers depends on prior accu-
rate segmentation. Despite the significant effort in brain lesion
segmentation and advanced imaging techniques, accurate seg-
mentation of brain lesions remains a challenge. Many automat-
ed methods have been proposed for lesion segmentation prob-
lem, including unsupervised modeling methods that aim to au-
tomatically adapt to new image data [43—45] supervised ma-
chine learning methods that, given a representative dataset,
learn the textural and appearance properties of lesions [46],
and atlas-based methods that combine both supervised and un-
supervised learning into a unified pipeline by registering la-
beled data or a known cohort data into a common anatomical
space [47-49]. Several review papers provide overview of clas-
sical methods for brain tumor segmentation [50], and MS lesion
segmentation [51, 52]. For more information and detail on the
classical approaches, we refer the reader to those studies.
Several deep learning studies have shown superior perfor-
mances to the classical state-of-art methods (see Table 4).
Havaei et al. [26] presented a 2D (33 x 33 pixels) patch-
wise architecture using local and global CNN pathways,
which exploits local and global contextual features around a
pixel to segment brain tumors. The local pathway includes
two convolutional layers with kernel sizes of 7 x 7 and
5 x5, respectively, while the global pathway includes one
convolutional layer with kernel size of 11 % 11. To tackle the
difficulties raised by imbalance of tumor vs. normal brain
labels, where the fraction of latter is above 90% of total sam-
ples, they introduced two phase training which included train-
ing first with data that had equal class probability and then
training only the output layer with the unbalanced data (i.e.,
keeping the weights of all the other layers unchanged). They
also explored cascaded architectures in their study. They

Semantic-wise CNN Segmentation
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Fig. 4 Schematic illustration of a
cascaded CNN architecture for MRI
brain tumor segmentation task,
where the output of the first
network (CNN 1) is used in
addition to image data for a
refined input to the second
network (CNN 2), which provides
final segmentation

reported that their CNN approach outperformed and was
much faster at testing phase (3 vs. 100 min) than the winner
of BRATS 2013 competition.

In another study, Havaei et al. [56] presented an overview
of brain tumor segmentation with deep learning, which also
described the use of cascaded architecture. Pereira et al. [22]
presented a 2D patch-wise architecture, but compared to
Havaei et al., they used small 3 X 3 convolutional kernels
which allowed deeper architectures, patch intensity normali-
zation, and data augmentation by rotation of patches. They
also designed two separate models for each grade—high-
grade (HG) and low-grade (LG) tumors. The model for HG
tumors included six convolutional layers and three fully con-
nected layers while the model for LG included four
convolutional layers and three fully connected layers. They
also used leaky ReLU for activation function, which allowed
gradient flow in contrast to rectified linear units that impose
constant zero to negative values. Their method showed the
best performance on the Brats 2013 data — DSC values of
0.88, 083, 0.77 for complete, core, and enhancing regions,
respectively. They were also ranked as second place in Brats
2015 data. Zhao and Jia [53] also used a patch-wise CNN
architecture using triplanar (axial, sagittal, coronal) 2D slices
to segment brain tumors. They have obtained comparable re-
sults to state-of-art machine learning algorithms on Brats 2013
data. Kamnitsas et al. [21] presented a 3D dense-inference
patch-wise and multi-scale CNN architecture that uses 3D
(3 x 3 x 3 pixels) convolutional kernels and two pathway
learning similar to [26]. They also used a 3D fully connected
conditional random field to effectively remove false positives,
which is an important post-processing step that was not de-
scribed in previous studies. They reported the top ranking
performance on Brats 2015. Dvorak et al. [54] presented a

Table 2 Deep learning approaches for brain structure segmentation

Candidate map Segmentation

¢

2D patch-wise CNN approach that mapped input patches to
n groups of structured local predictions that took into account
the labels of the neighboring pixels. They reported results on
Brats 2014 data that were comparable to those of state-of-art
approaches. Most of these studies have also been presented in
last two MICCALI conference as part of the BRATS challenge.
We refer the reader to BRATS proceedings 2015-2016 [57]
for further details such as performance comparison and
ranking.

CNN-based deep learning architectures have also been
used for segmentation of stroke and MS lesions, detection of
cerebral microbleeds, and prediction of therapy response.
Brosch et al. [31] presented a 3D semantic-wise CNN to seg-
ment MS lesions from MRI. They evaluated their method on
two publicly available datasets, MICCAI 2008 and ISBI 2015
challenges, and compared their method to freely available and
widely used segmentation methods. They reported perfor-
mance comparable to the state of the art methods and superior
to the publicly available MS segmentation methods. Dou et al.
[32] presented a cascaded framework that included 3D
semantic-wise CNN and a 3D patch-wise CNN to detect ce-
rebral microbleeds (CM) from MRI. They reported their meth-
od outperformed previous studies with low level descriptors
and provided a high sensitivity of 93.2% for detecting CM.
Maier et al. [55] presented a comparison study that evaluated
and compared nine classification methods (e.g., naive Bayes,
random forest, and CNN) for ischemic stroke lesion segmen-
tation. Their results showed that cascaded CNN and random
decision forest approaches outperforms all other methods.
Akkus et al. [29] presented prediction of 1p19q chromosomal
co-deletion, which is associated with positive response to
treatment in low grade gliomas from MRI using a 2D patch-
wise and multi-scale CNN. The performance of their CNN

Authors CNN Style Dim Accuracy Data

Zhang et al. 2015 [27] Patch-wise 2D DSC 83.5% (CSF), 85.2% (GM), 86.4% (WM)  Private data (10 healthy infants)
Nie et al. 2016 [30] Semantic-wise 2D DSC 85.5% (CSF), 87.3% (GM), 88.7% (WM)  Private data (10 healthy infants)
de Brebisson et al. 2015 [40]  Patch-wise 2D/3D  Overall DSC 72.5% ¥ 16.3% MICCAI 2012-multi-atlas labeling
Moeskops et al. 2016 [28] Patch-wise 2D/3D  Overall DSC 73.53% MICCAI 2012-multi-atlas labeling
Bao et al. 2016 [41] Patch-wise 2D DSC 82.2%/85% IBSR/LPBA40
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Table 3  Top ten ranking of algorithms in MRBrainS challenge (Complete list is available at: http://mrbrains13.isi.uu.nl/results.php)

Rank Team name Submission name Sequence used Speed
1 CU_DL 3D Deep learning; voxnetl T1; Tl IR; FLAIR ~2 min
2 CU DL2 3D Deep learning; voxnet2 T1; Tl _IR; FLAIR ~2 min
3 MDGRU Multi-dimensional gated Recurrent units T1; T1_IR; FLAIR ~2 min
4 PyraMiD-LSTM2 NOCC with rounds T1; T1-IR; FLAIR ~2 min
5 FBI/LMB Freiburg U-Net (3D) T1; T1-IR; F ~2 min
6 IDSIA PyraMiD-LSTM T1; T1_IR; FLAIR ~2 min
7 STH Hybrid ANN-based Auto-context method T1; T1-IR; FLAIR ~5 min
8 ISI-Neonatology Multi-stage voxel classification T1 ~1.5h
9 UNC-IDEA LINKS: Learning-based multi-source integration T1; T1_IR; FLAIR ~3 min
10 MNAB2 Random forests T1; T1 _IR; FLAIR ~25 min

approach on an unseen test set was 93.3% (sensitivity) and
82.22% (specificity) for detection of 1p19q status from MRI.

Discussion

The recent advances reported in literature indicate significant
potential for deep learning techniques in the field of quantita-
tive brain MR image analysis. Even though deep learning
approaches have been applied to brain MRI only recently, they
tend to outperform previous state of the art classical machine
learning algorithms and are becoming more mature. Brain
image analysis has been a great challenge to computer-aided
techniques due to complex brain anatomy and variability of its
appearance, non-standardized MR scales due to variability in
imaging protocols, image acquisition imperfection, and pres-
ence of pathology. Therefore, there is a need for more generic

Table 4 Deep learning approaches for quantification of brain lesions

techniques such as deep learning that would handle these
variabilities.

Despite a significant breakthrough, the potential of deep
learning is limited because the medical imaging datasets are
relatively small, and this limits the ability of the methods to
manifest their full power, compared to what they have dem-
onstrated on large-scale datasets (e.g., millions of images)
such as ImageNet. While some authors report that their super-
vised frameworks require only one training sample [28], most
researchers report that their results were consistently improv-
ing with an increase in size of training datasets [58, 59]. There
is high demand for large-scale datasets for effective applica-
tion of deep learning methods. Alternatively, the size of the
dataset can be effectively increased by applying random trans-
formations to the original data such as flipping, rotation, trans-
lation, and deformation. This is commonly used in machine
learning and known as data augmentation. Data augmentation

Authors Aim CNN Style Dim  Accuracy Dataset

Havaei et al. 2016 [26] Tumor segmentation Patch-wise 2D DSC 0.88 (complete), 0.79 BRATS-2013
(core), 0.73 (enhancing)

S. Pereira et al. 2016 [22]  Tumor segmentation Patch-wise 2D DSC 0.88 (complete), 0.83 BRATS-2013
(core), 0.77 (enhancing)

Zhao and Jia 2015 [53] Tumor segmentation Patch-wise 2D Overall accuracy 0.81 BRATS-2013

Kamnitsas et al. 2016 [21] Tumor segmentation Patch-wise 3D DSC 0.9 (complete), 0.75 BRATS-2015
(core), 0.73 (enhancing)

Dvorak et al. 2015 [54] Tumor segmentation Patch-wise 2D DSC 0.83 (complete), 0.75 BRATS-2014
(core), 0.77 (enhancing)

Brosch et al. 2016 [31] MS segmentation Semantic-wise 3D DSC 0.68 (ISBI); DSC 0.84 MICCAI

Dou et al. 2016 [32] Cerebral microbleed Cascaded

detection
Maier et al. 2015 [55] Ischemic stroke detection Patch-wise
Akkus et al. 2016 [29] Tumor genomic prediction  Patch-wise

(semantic/patch-wise)

2008-ISBI 2015

Private data
(320 subjects)
Private data
(37 subjects)

Private data
(159 subjects)

(MICCAI)
3D Sensitivity 98.29%

2D DSC 0.67 +0.18; HD 29.64
+24.6

2D 0.93 (sensitivity), 0.82
(specificity), and 0.88
(accuracy)
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helps increase the size of training examples and reduce
overfitting by introducing random variations to the original
data. Multiple studies have reported the data augmentation
to be very useful in their studies [9, 22, 29].

Several steps are crucial to improve the learning with deep
learning approaches, including data preprocessing, data post-
processing, network weight initialization, and strategies to
prevent overfitting. Image preprocessing plays a key role in
learning. Multiple preprocessing steps have been applied in
current studies to improve learning process, as presented in
Sections 2.5 and 2.6. For example, it is important to have
intensities of input brain MR images in a reference scale and
normalized for each modality. This avoids suppression of true
patterns of structures by any modality and intensity differ-
ences in the output of the model. Post-processing of the output
of model is also an important step to refine the segmentation
results. The goal of any learning method is to have a perfect
classification, but there are always regions in images that over-
lap between classes, known as partial volume effect, which
unavoidably leads to false positives or negatives. These re-
gions require additional processing for accurate quantifica-
tion. Another important step is proper network parameter ini-
tialization in the neural network to maintain the gradient flow
through network and to achieve convergence. Otherwise, the
activations and gradient flow can vanish and result in no con-
vergence and learning. Random weight initialization has been
used in most of the current studies. Lastly, preventing
overfitting is critical to learn the true information in images,
and avoiding overfitting to specific training examples provid-
ed. Deep networks are particularly susceptible to overfitting
because several thousands or millions of parameters are used
in the networks and limited training data is available. Several
strategies have been used to prevent overfitting such as data
augmentation that introduces random variations to input data
[9, 22, 29], using dropout that randomly removes nodes from
network during training [22, 32, 54], and L1/L2 regularization
that introduces weight penalties [26]. In current deep learning
architectures, one or more of these strategies are used to pre-
vent overfitting.

Semantic-wise architectures take inputs of any size and
produce a classification map while patch-wise CNN architec-
tures take fixed-sized inputs and produce non-spatial outputs.
Therefore, semantic-wise architectures produce results for
each pixel/voxel of an image much faster than patch-wise
architectures. As presented in [60], it takes 22 ms to produce
10 x 10 grid of output from 500 x 500 input image for
semantic-wise FCN while it takes 1.2 ms for patch-wise
AlexNet [9] to infer a single value classification output of a
227 x 227 image, which is more than five times improvement
in computation speed (22 vs. 120 ms). On the other hand,
random sampling of patches over a dataset potentially results
in faster convergence (LeCun et al. 1998) compared to full
image training in semantic-wise architectures. Semantic-wise

architectures also are more susceptible to class imbalance but
this can be solved by weighting the classes in the loss function
[31]. Cascaded architectures such as a patch-wise architecture
following a semantic architecture as used in [32] would re-
solve the issues raised by each approach and refine the output
results.

Developing a generic deep learning approach that will
work on datasets from different machines and institutions is
challenging due to limited training and ground truth data, var-
iations and image acquisition protocols, imperfections of each
MRI scanner, and variations in appearance of healthy and
pathological brain tissue. So far, currently available methods
were randomly initialized and trained on a limited data. To
improve the generalization of deep learning architectures,
one can adapt a well performing deep learning network trained
on a large dataset and fine-tune that network on a smaller
dataset specific to the problem, which is called transfer learn-
ing. It has been shown that transferring the weights (network
parameters) from a pre-trained generic network to train on a
specific dataset is better than random weight initialization of
the network [61]. The usefulness and success of transfer learn-
ing depends on similarity between datasets. For instance,
using pre-trained models from ImageNet, which is trained
on a large RGB image database, might not perform well on
medical images without further training. Shin et al. [62] re-
ported that they obtained best performance with transfer learn-
ing from pre-trained model on ImageNet dataset and fine-
tuning on lymph node and interstitial lung disease rather than
training from scratch. On the other hand, the nature of the
ImageNet dataset is much different than medical image dataset
and therefore transfer learning from ImageNet might not the
best choice for medical images as shown in [63].

Summary

Despite the significant impact of deep learning techniques in
quantitative brain MRI, it is still challenging to have a generic
method that will be robust to all variations in brain MR images
from different institutions and MRI scanners. The perfor-
mance of the deep learning methods depends highly on sev-
eral key steps such as preprocessing, initialization, and post-
processing. Also, training datasets are relatively small com-
pared to large-scale ImageNet dataset (e.g., millions of im-
ages) to achieve generalization across datasets. Moreover, cur-
rent deep learning architectures are based on supervised learn-
ing and require generation of manual ground truth labels,
which is tedious work on a large-scale data. Therefore, deep
learning models that are highly robust to variations in brain
MRI or have unsupervised learning capability with less re-
quirement on ground truth labels are needed. In addition, data
augmentation approaches that realistically mimic variations in
brain MRI data could alleviate the need of large amount of
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data. Transfer learning could be used to share well-performing
deep learning models, which are trained on normal and path-
ological brain MRI data, among brain imaging research com-
munity and improve the generalization ability of these models
across datasets with less effort than learning from scratch.
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