Skip to main content
. 2017 Jun 2;30(4):449–459. doi: 10.1007/s10278-017-9983-4

Table 4.

Deep learning approaches for quantification of brain lesions

Authors Aim CNN Style Dim Accuracy Dataset
Havaei et al. 2016 [26] Tumor segmentation Patch-wise 2D DSC 0.88 (complete), 0.79 (core), 0.73 (enhancing) BRATS-2013
S. Pereira et al. 2016 [22] Tumor segmentation Patch-wise 2D DSC 0.88 (complete), 0.83 (core), 0.77 (enhancing) BRATS-2013
Zhao and Jia 2015 [53] Tumor segmentation Patch-wise 2D Overall accuracy 0.81 BRATS-2013
Kamnitsas et al. 2016 [21] Tumor segmentation Patch-wise 3D DSC 0.9 (complete), 0.75 (core), 0.73 (enhancing) BRATS-2015
Dvorak et al. 2015 [54] Tumor segmentation Patch-wise 2D DSC 0.83 (complete), 0.75 (core), 0.77 (enhancing) BRATS-2014
Brosch et al. 2016 [31] MS segmentation Semantic-wise 3D DSC 0.68 (ISBI); DSC 0.84 (MICCAI) MICCAI 2008-ISBI 2015
Dou et al. 2016 [32] Cerebral microbleed detection Cascaded (semantic/patch-wise) 3D Sensitivity 98.29% Private data (320 subjects)
Maier et al. 2015 [55] Ischemic stroke detection Patch-wise 2D DSC 0.67 ± 0.18; HD 29.64 ± 24.6 Private data (37 subjects)
Akkus et al. 2016 [29] Tumor genomic prediction Patch-wise 2D 0.93 (sensitivity), 0.82 (specificity), and 0.88 (accuracy) Private data (159 subjects)