
Page 1 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2017;5(14):294atm.amegroups.com

Review Article

Lung imaging: how to get better look inside the lung
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Abstract: In the last years, imaging has played a key role in the diagnosis and monitoring and critical 
illness, including acute respiratory distress syndrome (ARDS). Chest X-ray (CXR) and computed 
tomography (CT) are the conventional techniques most performed in the critically ill patients, the latter 
being the gold standard to assess lung aeration in ARDS patients. In addition, two bedside techniques are 
now gaining popularity alongside the conventional ones: lung ultrasound (LUS) and electrical impedance 
tomography (EIT). These techniques do not involve the use of ionizing radiations, are non-invasive and 
relatively easy to use, and are under extensive investigation as a complement, and for some application 
a substitution of conventional techniques. At last, positron emission tomography (PET) and magnetic 
resonance imaging (MRI) can provide functional information on the lung and respiratory function, and are 
increasingly used in research to improve the understanding of the pathophysiological mechanisms underlying 
ARDS. The purpose of this review is to give an up-to-date overview of the conventional and emerging 
imaging techniques available the diagnosis and management of patients with ARDS.
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Introduction

Acute respiratory distress syndrome (ARDS) is a complex 
clinical entity, and since its first definition imaging had a 
key role in identifying its hallmark: bilateral lung infiltrates. 
In the last decades, several definitions of ARDS were 
proposed until the current Berlin definition (1), all of them 
comprising imaging as a diagnostic criterion. Nonetheless, 
both conventional and emerging imaging techniques had a 
dramatic technological improvement and were extensively 
studied in ARDS patients both for diagnosis and for 
monitoring the effects of therapy or the clinical evolution. 
A recent large observational trial reported an incidence of 
ARDS around 10%, with a relevant proportion not correctly 

identified as such: this suggest that an improvement of the 
diagnostic process, including imaging, is still warranted (2).

The purpose of this review is to provide a comprehensive 
overview of the role of different imaging techniques in the 
diagnosis and management of ARDS patients.

Conventional imaging techniques

Two techniques have a predominant role in the current 
clinical practice, for their ease of use, widespread availability 
and on which most of the evidence concerning ARDS have 
been built: chest X-ray (CXR) and computed tomography 
(CT), either evaluated clinically or quantitatively, based on 
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the computer-based analysis of the acquired images. This 
paragraph illustrates the role of these two conventional 
techniques.

CXR 

When heart failure is excluded or at least not fully 
explanatory of the respiratory failure, the presence of 
bilateral, homogenous or inhomogeneous and diffuse 
infiltrates observed on the frontal CXR is evocative of 
fluid accumulation around the alveolar barrier (3). This 
characteristic imaging pattern corresponds to one of the 
typical anatomopathological signs of ARDS, that together 
with hyaline membrane constitutes the diffuse alveolar 
damage (4). Usually, three or more lung lobes are involved 
in this inflammatory process, therefore the low specificity of 
CXR results in a laborious differential diagnosis with other, 
often overlapped, pulmonary conditions such as pneumonia, 
atelectasis and pleural effusion. In fact, the Berlin definition 
underlines the low sensitivity and specificity of CXR 
to evaluate the amount of non-cardiogenic interstitial  
oedema (1). The course of ARDS is divided in three phases, 
that could have corresponding CXR findings, even if the 
distinction between them is not always simple (5): acute, 
intermediate and late (6).

During the acute phase, within 48 h from onset, CXR 
could not show any pathological sign, after then a rapid 
worsening occurs, and diffuse bilateral opacities appear 
as ‘white lung’ image (Figure 1A); moreover, alveolar 
bronchograms and atelectasis are a frequent finding. In 
this phase, lung volumes are dramatically reduced and start 
posing a serious challenge for mechanical ventilation. For a 
specific radiologic diagnosis, the CXR should not show sign 
of heart failure such as heart shape enlargement, septal lines 
and pleural effusion: a comprehensive clinical evaluation is 
mandatory to perform an accurate differential diagnosis. In 
the intermediate or proliferative phase, occurring within 
1–2 weeks from ARDS onset, the CXR aspect stabilizes 
presenting usual asymmetric consolidation and persistent 
diffuse infiltrates. At this stage, the lung tissue is prone to 
initiate a fibrotic degeneration process. The late or fibrotic 
phase is the most variable phase, influenced by intra- and 
inter-patient factors that can heavily affect the clinical 
outcome. In a widely variable interval of time, radiologic 
findings tend to improve, and the complete lung damage 
resolution depends on the severity of the ARDS, along 
with the patient’s response, underlying condition and 

comorbidities. The lung matrix is characterized by fibroblast 
proliferation as reaction to persistent inflammation, CXR 
may show a focal or a diffuse reticular pattern that usually 
corresponds to an increased physiological dead space. 
ARDS can resolve completely or progress to irreversible 
fibrosis: CXR will either show a restitutio ad integrum or a 
typical fibrotic pattern (Figure 1B). 

Despite this formal classification, the correct interpretation 
of CXR in ARDS patients remains challenging. In 
fact, there is no univocal, reproducible and reliable 
method to recognize and define ARDS severity with 
CXR only. Researchers tried to validate against CT 
different scores to quantify interstitial lung oedema at the  
CXR (7), but their use in the current clinical practice is 
limited, as the reproducibility of these scores has been 
questioned, especially in case of focal loss of aeration (8). 
Nonetheless, bedside CXR is almost daily performed in 
ICU also nowadays, for other purposes than monitoring 
ARDS evolution, as it is inexpensive, widely available 
and undoubtedly useful for the detection of secondary 
complications such as pneumothorax and displacement of 
devices (9). Nevertheless, sensitivity and specificity power of 
CXR is lower compared to CT: for instance, when used to 
determine level of recruitment at different levels of PEEP, 
it has a major issue: the antero-posterior regions of the lung 
are merged, devices and technical images acquisition can 
limit the correct recruitment evaluation (10). 

In conclusion, CXR is a still widely performed, fast, 
non-invasive and bed-side technique particularly useful to 
detect unpredictable acute conditions and device-related 
complications. Nonetheless, if used as a monitoring tool 
frequent exposure to ionizing radiations can be a concern, 
without guaranteeing high sensitivity and specificity, 
especially in the earlier stages (11).

CT

CT has profoundly changed the understanding of the 
pathophysiological processes underlying ARDS (12), and 
contributed to a better description of the topographic 
distribution of the loss of aeration. 

CT can both be assessed visually, as typically done by 
radiologists, or quantitatively with computer-based analysis. 
In fact, CT creates an image in which each volume element 
(voxel) is attributed a value corresponding to its ability to 
attenuate X-rays, and it is normalized to a standard scale 
[Hounsfield units (HU)], in which −1,000 and 0 correspond 
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to air and water attenuation, respectively. Attenuation 
mainly depends on the atomic number of chemical 
elements composing the biological tissue, therefore, given 
a specific organ in which the elemental composition is 
substantially stable, such as occurs in lungs, HU can provide 
a reliable estimate of tissue density, expressed as grams per  
millilitre (13). Lung in ARDS is studied with a two-
compartments model, assuming voxel density as the 
weighted average between tissue density (0 HU) and 
gas density (−1,000 HU). Lung weight can be estimated 
multiplying density and volume, and arbitrary thresholds 
have been defined to distinguish hyper-, normally-, poorly- 
and non-aerated lung tissue.

One of the first fields of application of CT was the 
assessment of PEEP effects in terms of lung recruitment, 
namely the amount of lung tissue that is re-aerated due to 
an increase in airway pressures (14). Nowadays, CT remains 
the gold standard imaging technique to evaluate aeration in 
ARDS patients and it is used to validate emerging imaging 
techniques (15). CT gave a major contribution to the 
development of the ‘baby lung’ concept: this functional 
entity, whose size is related to ARDS severity, is the portion 
of the lung parenchyma still physiologically aerated without 
collapsed or hyperinflated areas, therefore the smaller 
the ‘baby lung’, the lower the lung compliance (16). This 
concept provided a pathophysiological rationale for the use 
of low tidal volume ventilation (17), and PEEP to maintain 
the patency of respiratory units (18). 

The most common CT finding in ARDS is the presence 
of large infiltrates and loss of aeration especially in the 
dorsal dependent regions (Figure 2). Compared to CXR, 
CT allows a more precise assessment of the morphology 
and distribution of the lesions, nonetheless ARDS has a 

broad spectrum of radiological manifestations, therefore 
differential diagnosis with other lung conditions can still 
be complex. In the late phase, CT detects precisely the 
possible evolution of lung damage: patients who survived 
after severe ARDS can show a honeycomb-like pattern, 
indicating an irreversible fibrosis with restrictive syndrome. 
Concerning ARDS ventilatory management, CT can be 
useful to assess the degree of recruitment potential, namely 
the responsiveness to higher PEEP levels (19), the concept 
of ventilation titration based on imaging has been then 
proposed (20). Several studies assessed the responsiveness 
to recruiting by performing two or more CT scans during 
breath-hold at different PEEP levels, e.g., 5 vs. 45 cmH2O 
(19,21). However, it has still to be demonstrated that 
setting PEEP according to imaging can improve the clinical 
outcome.

However, higher PEEP levels could keep open the 
dependent lung areas but also cause hyperinflation 
and consequently barotrauma in the aerated ones. In a 
recent paper, opening pressures were higher than what 
is commonly considered safe especially in moderate and 
severe ARDS (22): the clinician must therefore balance 
between the risk of lung de-recruitment and atelectrauma 
and that of volutrauma (23). Moreover, CT acquisition 
parameters can affect the quantitative analysis, especially for 
the quantification of the hyper-aerated lung tissue (24).

CT has important pitfalls, mainly the difficulties of 
the transport of critically ill patients from the ICU to the 
radiology facility, the exposure to a high dose of ionizing 
radiations and the long post-processing time required to 
perform quantitative analysis (15). The following section 
illustrates several experimental protocols that were proposed 
to overcome the latter two issues. 

A B

Figure 1 Chest X-ray of two patients with ARDS. (A) Patient with a severe ARDS in early phase, during non-invasive ventilation; (B) 
patient with a late fibrotic pattern in the context of a severe ARDS. ARDS, acute respiratory distress syndrome.
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Experimental CT acquisition protocols

For the purpose to reduce the workload to estimate lung 
aeration two methods have been proposed: extrapolation 
of a sub-set of ten sl ices from a whole-chest CT  
scan (25), and visual instead of computer-based image  
assessment (21). Concerning dose exposure reduction, low-
dose spiral CT protocols with a reduced tube current have 
been tested (26), while more recently a protocol tried to 
combine low current tube with prospective acquisition of 
a reduced number of thin slices (27). All these strategies 
showed good concordance with the aeration assessment 
performed with conventional whole-chest CT scan, and 
could be useful to widen the clinical and research application 
of CT, especially when multiple scans are required, as is the 
case when recruitment is assessed performing the CT scan 
at two levels of PEEP. Table 1 (21,22,25-30) compares the 
main characteristics of these experimental protocols.

In conclusion, CT has still nowadays an unreplaceable 
role in the study and clinical management of ARDS. 
Techno logy  advances  in  new emerg ing  beds ide 
techniques could make it avoidable in the future. The 
availability of low-dose scanning protocols could be a 
compromise to increase the clinical applicability of CT 
and quantitative CT. 

Emerging imaging techniques at the bedside 

In addition to CXR and CT, that have gained a consolidated 
role in the diagnostic and management of ARDS patients, 
two other techniques are emerging for their ability to 
assess lung aeration at the bedside without using ionizing 

radiation: the lung ultrasound (LUS) and electrical 
impedance tomography (EIT).

LUS

The use of transthoracic ultrasound has been confined 
for many years to the study of cardiovascular structures: 
the combination between air acoustic impedance and the 
intense ultrasound reflection, arising from the bone-lung 
parenchymal interface, produces massive reverberations 
effects, making the anatomical visualization of healthy 
lung impossible (31). The presence of exudate, transudate, 
collagen and blood changes the lung tissue’s density 
through a reduction of the air content, decreasing the 
acoustic mismatch with the surrounding tissues. As a 
consequence, the ultrasound beam can be partly reflected 
at deeper regions in injured lungs (32). The comprehension 
of the typical artefactual signs of lung sonographic imaging 
and the recurrence of specific patterns have contributed 
to a growing interest about LUS. We now witness the 
constitution of a more coherent body of evidence on this 
technique and international guidelines (ICC-LUS) have 
been developed concerning the use and limitations of LUS 
in the clinical practice (33).

With LUS, clinicians can recognize ribs, pleural 
movement as the sliding of two regular lines corresponding 
to the pleural sheets, pulse determined by the transmission 
of heartbeat to the pleura and parenchymal reverberation 
artifacts or consolidated parenchyma. Lung aeration 
status can be summarized in four different echo patterns 
(Table 2). The extension of B-pattern images in the chest 

Figure 2 Computed tomography of two patients with ARDS. (A) Patient with a severe ARDS in early phase, showing diffuse bilateral 
infiltrates and small dorsal consolidated areas; (B) patient with a fibrotic pattern developed in the late phase of an ARDS, showing diffuse 
infiltrates with areas of ‘honeycomb’ pattern and left pleural effusion. The scans were obtained on the same patients and same day as in 
Figure 1. ARDS, acute respiratory distress syndrome.

BA
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Table 1 Protocols proposed for the reduction of either dose exposure or operator workload for quantitative or semi-quantitative lung aeration 
assessment in ARDS

Method Description
Irradiated portion 
of the chest

Number of slices 
used in the analysis

Validation
Estimated dose 
reduction

Limitations

Retrospective 
extrapolation of slices 
(25)

Extrapolation of 
10 equally spaced 
slices

Whole chest 10 Retrospective (157 
critically ill patients, 
41 ponies, 23 pigs, 
11 sheep)

NA No dose 
reduction

Low dose spiral CT (26) Spiral scans at 60 
and 30 mAs

Whole chest 30–40, 5 mm-slices Prospective (45 
patients with ARDS 
at two PEEP levels, 
14 sheep)

−70% with 30 
mAs

No 
reduction 
of number 
of slices

Visual assessment (21) Visual estimation 
of recruited lung 
tissue at two PEEP 
levels

Whole chest 30–40, 5 mm-slices Retrospective (50 
patients with ARDS, 
scans performed at 
two PEEP levels)

NA No dose 
reduction

Ultra-low dose 
sequential CT (27)

Thin-slice 
sequential scan 
performed with 180 
and 50 mAs

1 mm portions 
interleaved by 
20 mm of non-
irradiated chest

10–12, 1 mm-slices Prospective (12 pigs), 
retrospective (32 
critically ill patients)

−97% with  
50 mAs

Longer 
acquisition 
time

ARDS, acute respiratory distress syndrome; PEEP, positive end-expiratory pressure; CT, computed tomography; NA, not applicable.

Table 2 Lung ultrasound patterns and corresponding clinical interpretation

Pattern Image Findings Interpretation

A Reverberation artefacts parallel to the 
pleural line (A-lines)

Expression of a physiologically aerated lung when 
accompanied by the sliding sign of the pleural layers, but 
could also be present in hyper-inflated regions—normal 
lung aeration

B1 Multiple vertical artefacts (B-lines) Correlated to extra vascular lung water content, absent 
in normal lung, hallmark of the alveolo-interstitial 
syndrome—moderate loss of aeration

B2 Multiple, coalescent B-lines Further progression of the B1 pattern—severe loss of 
aeration

C Real image, not artefact with tissue-like 
echogenicity, or shred sign (typical of 
alveolar consolidation)

Visible when consolidations are extended to the pleura—
collapsed or consolidated lung tissue
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correlates with the presence of interstitial syndrome as 
detected by CT scan (34), and also with the amount of 
extravascular lung water measured with transpulmonary  
thermodilution (35). 

LUS can help the clinician in the diagnosis of ARDS, 
but, the mere presence of B-pattern images bilaterally is not 
specific as it cannot distinguish between ARDS and other 
diseases characterized by a sonographic image of interstitial 
syndrome as cardiogenic pulmonary oedema. Nonetheless, 
the ICC-LUS agrees that the presence of diffuse and 
inhomogeneous distribution of B lines, characterized by 
preserved and affected areas with different degrees of 
severity, associated with pleural line abnormalities and the 
reduction or absence of pleural sliding, accompanied by 
sub-pleural and/or pulmonary consolidations especially 
in frontal areas, is strongly indicative for ARDS (33,36). 
Nonetheless, a recent observational study proposed a 
modification of the Berlin criteria replacing arterial blood 
gas analysis and conventional imaging with pulse oximetry 
plus LUS, which could be of particular interest in low-
resource settings (37).

A concomitant echocardiographic examination can be 
of help in the differential diagnosis, providing important 
information about the cardiac function, pulmonary 
hypertension, diameter of cava vein and diastolic 
dysfunction, improving the identification of the best 
ventilator settings, minimizing detrimental hemodynamic 
effects secondary to the use of elevated PEEP levels (38). 
Studies on animal models suggest that LUS can be useful 
in early diagnosis of ARDS, as B-patterns can be seen also 
during the exudative phase of ARDS, likely initial expression 
of extravascular lung water accumulation, when CXR 
has particularly low sensitivity (39). A strong correlation 
between quantitative LUS grayscale analysis and EVLW 
density in isolated bovine lungs (40). This could improve 
early diagnosis of ARDS, potentially promoting a prompter 
implementation of protective ventilatory strategies. 

Another potential role of LUS is the monitoring of 
ARDS progression and the effects of ventilation settings. 
The loss of aeration and its regional distribution can be 
estimated with LUS (33,41) through the attribution of 
numeric values at each LUS pattern. Thereafter, various 
algorithms have been created to use LUS as a tool for 
the respiratory monitoring and diagnostic of critically 
ill patients (42). Score-based LUS can assess aeration 
or changes in aeration semi-quantitatively in different 
thoracic districts, allowing a better understanding of the 
lung morphology and the distribution of focal or diffuse 

aeration loss in the early phases of ARDS (41). A score 
based on the examination of predefined chest regions use 
was studied, validated and applied in different aspects of 
the management of the ARDS patient, including PEEP 
titration (43), response to recruitment manoeuvres (44), 
prone positioning (45) and during the weaning phase (46). 

In conclusion, LUS is non-invasive, available at the 
bedside, reproducible, inexpensive, and does not require 
ionizing radiation. However, it cannot identify lung 
overinflation, it is difficult to use in obese patients, in 
subjects with alterations of the rib cage subcutaneous 
emphysema or surgical dressings, due to non-optimal 
acoustic windows. In addition, this is an operator-dependent 
technique, although characterized by a steep learning curve 
and a good intra and inter-observer agreement (41).

EIT

Lung EIT is a non-invasive, radiation-free technique that 
quantifies relative changes in lung tissue aeration during 
breathing and reconstructs images based on the distribution 
of ventilation at the bedside (47). It is based on the physical 
principle that changes in lung gas content modify its 
impedance: lung resistivity depends on anatomy, gas and air 
content, amount of intracellular and extracellular fluids and 
blood content. Therefore, during mechanical ventilation, 
lung impedance depends strictly on the degree of inflation. 
Non-ventilated parenchyma yields no signal in EIT scans, 
as its electrical impedance does not vary throughout the 
respiratory cycle. Commercially available EIT scanners have 
a low spatial resolution on the axial plane, and images are 
representative of the impedance changes in a thorax cross-
section of about 5 to 10 cm (48). EIT has been validated as 
a tool to estimate several respiratory parameters, such as 
the end-expiratory lung volume versus nitrogen washout 
test and plethysmography (49), and the distribution of 
lung volumes compared to CT (50). EIT can also provide 
indirect quantification of lung perfusion, either measuring 
the signal pulsatility due to the blood flow, or temporarily 
increasing the conductance of perfused lung areas with an 
injection of hypertonic saline in a central venous line (51).

In ARDS patients, EIT can visualize directly and 
non-invasively the effects of mechanical ventilation at 
the bedside, potentially helping the clinician to titrate 
ventilation parameters (52,53). In ARDS, interstitial 
oedema increases the effects of gravity dependent lung 
regions, and EIT can detect such loss of aeration along with 
compensatory increases in ventilation of ventral regions 
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(49,50,53). In mechanically ventilated patients, EIT can 
detect differences in regional ventilation reflecting the 
extension of lung injury and the effects of ventilation, 
including the application of PEEP (52-54) and recruitment 
manoeuvres (55) and tidal volume. Moreover, EIT can be 
used to calculate regional compliance during titration of 
PEEP and to distinguish non-recruited lung tissue from 
the recruited one (50). In mechanically ventilated ARDS 
patients, hyperdistention mainly occurs in ventral regions, 
and results in an elevated impedance that can be detected 
by EIT. However, since the signal does not vary throughout 
the respiratory cycle, the EIT monitor shows a silent area, 
as occurs in non-aerated regions. The distinction between 
the two entities is based on a topographic evaluation. 
Nonetheless, recent studies tried to use EIT to map local 
pressure/volume curves to detect tidal recruitment and 
overdistension (56). Several EIT-based protocols have been 
proposed to guide the setting of PEEP during mechanical 
ventilation in ARDS, including patients receiving 
extracorporeal membrane lung oxygenation (57). However, 
the impact of these approaches on clinical outcome is not 
yet demonstrated.

In conclusion, EIT is a new and developing technique, 
still affected by several technical pitfalls, including low 
spatial resolution, susceptibility to interferences from 
other medical devices used in the ICU, and the need for 
assuming a standard chest shape to reconstruct images in  
real-time (58). It is likely that this technique will be further 
developed in the next years, possibly providing additional 
tools to optimise the management of ARDS patients.

Techniques under development

This section will briefly address two techniques that have 
been proposed, so far mainly in the research context, to 
provide additional information on the respiratory function 
in ARDS patients. It is the case of positron emission 
tomography (PET) and magnetic resonance imaging (MRI).

PET

PET is a functional imaging technique based on the 
detection of a radioactive tracer on a biologically active 
molecule administered to patients, and has recently been 
used both in clinical and experimental studies to investigate 
ARDS (43). It can quantify regional perfusion, ventilation, 
aeration, oedema, lung vascular permeability, metabolic 
activity of inflammatory cells, enzyme activity and 

pulmonary gene expression (59,60). 
Differently from morphological imaging, PET gives 

additional functional information about the injured lung. 
Despite the well-known presence of a ventro-dorsal 
aeration gradient in ARDS, PET clarified that the increase 
in vascular permeability is homogeneously distributed in 
the whole lung (61), namely showing that also regions 
that had normal density at the CT were interested by the 
pathological process. Furthermore, PET measurements 
of regional perfusion in ARDS revealed that patients 
with similar extension of lung opacities can have different 
PaO2/FiO2 ratios and disease severity (62), according to 
the redistribution of the perfusion away from non-aerated 
regions resulting in different shunt fractions. PET-based 
perfusion measurements also clarified the mechanism 
underlying the paradoxical decrease in oxygenation 
sometimes seen after performing recruitment manoeuvres: 
in addition to recruitment, perfusion can be diverted 
from regions towards the de-recruited lung, worsening 
the ventilation/perfusion matching (63). Another study  
using 68Ga-marked albumin aggregates suggested also that, 
in the early stages of lung injury, perfusion is redistributed 
towards healthier regions due to hypoxic vasoconstriction 
or direct compression of vessels by oedema (64). 

PET performed with [18F]fluoro-2-deoxy-D-glucose 
(FDG) has been extensively used in research to quantify 
regional lung inflammation in ARDS (60): activated 
neutrophils have a higher glucose metabolism compared 
with other inflammatory cells in lung because their 
metabolism is mostly based on anaerobic glycolysis. Many 
studies highlighted an enhanced metabolic activity in the 
ARDS lung, either in the consolidated areas or normal 
density areas, and the metabolic activity of inflammatory 
cells in normal parenchyma may be consequent to the 
effects of mechanical ventilation, mainly exerted on aerated 
regions. The [18F]-FDG uptake is directly proportional to 
the regional tidal volume normalized by end-expiratory lung 
volume and increases after administration of plateau airway 
pressures higher than 27 cmH2O (65). Other studies showed 
a linear correlation between regional lung volumetric 
strain, respiratory gating of inhaled 13N2 PET scans and the 
velocity of phosphorylation of 18[F]-FDG, that has been 
correlated to the increase of pro-inflammatory cytokines 
as IL-1β, IL-8 and IL-10 in experimental ARDS (66). In 
a study on a porcine model of ARDS, PET compared the 
inflammatory response due to atelectrauma compared 
to volutrauma, with the latter being significantly more  
relevant (23), suggesting extreme caution in applying the 
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elevated PEEP levels required to achieve an open lung 
strategy (22). 

PET is unlikely to become a routine diagnostic tool, due 
to its low availability, high cost and high radiation exposure, 
but it could be useful in selected cases. However, its ability 
to provide functional ad biological information in vivo its 
role in research is hardly replaceable.

MRI

MRI is another functional technique that provides the 
opportunity to study the pathophysiology of pulmonary 
disease. Its application to the lung has been limited due 
to technical restrictions such as the slowness of image 
acquisition limiting the possibility to scan the chest during 
a breath-hold, the low proton density in the lung, about 
1/5th of signal-generating protons compared to other solid 
organs (67) and the fast signal decay due to susceptibility to 
artefacts at air-tissue interfaces (68). Thanks to the recent 
technical advances and the availability of single breath-hold 
fast sequences, lung MRI could become a radiation-free 
alternative to CT.

Air has no protons but lung parenchyma generates 
little MRI signal that can be compared to other signals 
of solid organs or structures present in the mediastinum. 
Proton density per voxel is determined by the lung inflation 
and consequently, by lung aeration status. Within the 
same individual, changes in lung volume will cause equal 
changes in proton density and, accordingly, equal changes 
in MR signal intensity of the lung parenchyma (69). 
Hyperpolarized gas MRI was used to evaluate alveolar 
recruitment and atelectasis-induced overdistension during 
mechanical ventilation in ARDS (70). Helium-3 and 
Xenon-129 (71) can be used as contrast agents due to their 
capacity of diffusing rapidly into airspaces and enabling 
detection of ventilated lung tissue (72). Hyperpolarized 
Xenon-129 follows the same pathway as oxygen, it 
spreads across the alveolocapillary membrane allowing the 
calculation of gas exchange parameters, including alveolar 
surface area, septal thickness and vascular transit time 
(72,73). MRI enables calculation of alveolar size based on 
the MRI apparent diffusion coefficient (73), and this has 
a potential application to determine the consequences 
of atelectasis and recruitment manoeuvres (70). Gases 
with fast spin-rotation relaxation at thermal equilibrium 
polarization have been used to study differences in 
ventilation-perfusion ratio (74) and time constants for fast 
and slow filling lung compartments, giving information 

about ventilation-perfusion heterogeneity, pulmonary end-
capillary diffusion of oxygen and lung microstructure in 
ARDS (75). Visualization of ventilation is also possible 
using oxygen-enhanced MRI (72). MR lung tissue ima-
ging was used to image the elastic properties of lungs 
with ventilator-induced lung injury in rats (76) and to 
study the physiopathology and the progress of lung injury. 
Furthermore, morphological and pathophysiological 
patterns like ‘ground-glass opacification’ and ‘consolidation’ 
in ARDS could be detected by MRI similarly as with  
CT (75). A recent work in rats demonstrated that lung 
MRI can detect small regions of ventilator-induced injury 
earlier than the appearance of alterations in lung mechanics 
in rats, this finding was confirmed with histology and the 
authors also demonstrated the possibility of visualizing 
and quantifying the regression of injury in real-time, after 
adoption of protective mechanical ventilation strategies (77). 

The strength of MRI lies in the absence of radiations, 
the ability to perform functional imaging, estimating 
perfusion and respiratory mechanics. It also has a variety of 
contrast mechanisms that may help to distinguish cellular 
inflammation, atelectasis and oedema. Further clinical 
research is warranted to translate these experimental 
findings in useful tools for the diagnosis and management 
of ARDS.

Conclusions

ARDS still has a high mortality, and is associated with 
elevated morbidity, length of stay and healthcare cost, 
and CT remains the gold standard technique to make 
diagnosis and monitor its evolution. CXR is still commonly 
performed despite its limited specificity, while LUS and 
EIT are emerging bedside tools, playing an important role 
in the ICU setting. PET and MRI are now mainly used for 
research purpose and might have a role in selected cases. 
Despite the important pathophysiological information 
derived from imaging, further research is warranted 
to standardise the role of different techniques in the 
management of ARDS patients.
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