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Abstract
AIM
To evaluate the therapeutic effects of bone marrow-
derived CD11b+CD14+ monocytes in a murine model of 
chronic liver damage. 

METHODS
Chronic l iver damage was induced in C57BL/6 
mice by administration of carbon tetrachloride and 

ethanol for 6 mo. Bone marrow-derived monocytes 
isolated by immunomagnetic separation were used 
for therapy. The cell transplantation effects were 
evaluated by morphometry, biochemical assessment, 
immunohistochemistry and enzyme-linked immuno
sorbent assay. 

RESULTS
CD11b+CD14+ monocyte therapy significantly reduced 
liver fibrosis and increased hepatic glutathione levels. 
Levels of pro-inflammatory cytokines, including 
tumor necrosis factor-α, interleukin (IL)-6 and IL-
1β, in addition to pro-fibrotic factors, such as IL-13, 
transforming growth factor-β1 and tissue inhibitor of 
metalloproteinase-1 also decreased, while IL-10 and 
matrix metalloproteinase-9 increased in the monocyte-
treated group. CD11b+CD14+ monocyte transplantation 
caused significant changes in the hepatic expression of 
α-smooth muscle actin and osteopontin. 

CONCLUSION
Monocyte therapy is capable of bringing about 
improvement of liver fibrosis by reducing oxidative 
stress and inflammation, as well as increasing anti-
fibrogenic factors. 

Key words: Monocytes; Bone marrow mononuclear 
cells; Cell therapy; Macrophages; Glutathione; Liver 
fibrosis

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Chronic inflammation is now recognized as 
a central player in the development of liver fibrosis. 
Studies have shown that activated macrophages 
establish a link between chronic inflammation and 
fibrosis in various organs. The present study evaluated 
the therapeutic effects of bone marrow-derived 

CD11b+CD14+ monocytes in a murine model of liver 
damage. The results show that mice with transplants 
had improvement of liver fibrosis by way of a reduction 
in oxidative stress and inflammation and an increase 
in anti-fibrogenic factors. The study demonstrates the 
beneficial effects of cellular therapy in liver fibrosis and 
also reports on the important modulatory mechanisms 
involved.

de Souza VCA, Pereira TA, Teixeira VW, Carvalho H, de Castro 
MCAB, D’assunção CG, de Barros AF, Carvalho CL, de Lorena 
VMB, Costa VMA, Teixeira AAC, Figueiredo RCBQ, de 
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INTRODUCTION
Abuse of alcohol, infections caused by hepatitis viruses 
B and C, and nonalcoholic steatohepatitis (NASH) 
are the main causes of liver tissue damage[1]. These 
risk factors can lead to focal or diffuse hepatocellular 
degeneration and necrosis. Persistent inflammatory 
stimulus in the liver can induce the formation of 
fibrous tissue, and ultimately lead to the development 
of liver cirrhosis[2]. Hepatic stellate cells (HSCs) play 
an important role in liver fibrogenesis because they 
are the main source of secreted extracellular matrix 
(ECM) components[3]. When severe liver damage 
occurs, HSCs are activated, mainly by the action 
of transforming growth factor-beta (TGF-β), tumor 
necrosis factor-alpha (TNF-α) and reactive oxygen 
species (ROS) produced by damaged hepatocytes or 
liver-resident macrophages[4]. 

The ECM components comprise various types 
of proteins, including osteopontin (OPN)[5], a pro-
inflammatory cytokine that modulates the pro-
fibrogenic phenotype of HSCs and is involved in many 
physiological and pathological processes, including 
inflammation, fibrosis and angiogenesis[5,6]. OPN has 
also been described as a mediator induced by the 
Hedgehog pathway and plays an important role in 
the repair of acute and chronic liver damage, both in 
humans and experimental models[7,8]. 

The remodeling of fibrous tissue is a complex 
mechanism by which multiple cell types, capable of 
producing molecules such as matrix metalloproteinases 
(MMPs) and tissue inhibitors of metalloproteinases 
(TIMPs), play an important role in the synthesis and 
degradation of the ECM[9]. In chronic liver damage, the 
establishment of hepatic fibrosis is directly related to 
MMP/TIMP imbalance[10], thereby showing that MMPs 
and TIMPs may be potent therapeutic targets[11].

Although important advances in the knowledge of 
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chronic liver diseases have been made, the existing 
treatments are still limited. New, more effective and 
less invasive therapeutic strategies are therefore 
needed. In this context, several studies of regenerative 
medicine have demonstrated the potential of cell 
therapy as a promising emerging treatment for liver 
diseases[12] and various cell populations have been 
investigated to this end[12,13]. Bone marrow mono
nuclear cells (BMMCs) have shown promising results 
in both experimental[14] and clinical[15,16] studies. 
Previous studies of experimental models of liver 
injury have demonstrated that cell therapy is able to 
decrease mortality[17] and levels of hepatic fibrosis[14], 
improve biochemical parameters[18], increase MMP-9 
expression[19], and reduce levels of TGF-β1[20] and 
galectin-3 expression[14].

Identifying which components of the BMMC 
population are responsible for the beneficial effects 
of cell therapy is extremely important for clinical 
application. Recent studies have reported that 
monocytes may have important therapeutic potential 
in chronic liver diseases[21,22]. These cells are the 
precursors of the heterogeneous macrophage 
population involved in liver repair responses. In the 
liver, macrophages perform various functions, such 
as phagocytosis and cytokine production, which are 
important in the inflammatory response to damage, 
liver fibrosis and degradation of ECM[23,24]. In vitro 
assays have shown that monocytes maintained in 
culture supplemented with hepatocyte growth factor 
exhibited similar behavior to those hepatic cells 
obtained from the liver culture[21]. One preclinical 
study has shown that cellular therapy with cultured 
macrophages decreases murine liver fibrosis and this 
is followed by changes in the levels of some mediators 
involved in liver repair[22]. 

Although these findings are of great importance, 
information about the functions of monocyte/macro
phage cell lineages in cell therapy for liver diseases is 
still limited. The present study evaluated the therapeutic 
potential of bone marrow-derived monocytes in a 
murine model of chronic liver damage induced by 
carbon tetrachloride (CCl4) and ethanol.

MATERIALS AND METHODS
Animals 
Male C57BL/6 mice (4-6 wk of age), weighing 20-23 
g were obtained from the Animal Breeding Center 
Laboratory Fundação Oswaldo Cruz (FIOCRUZ, Rio de 
Janeiro, Rio de Janeiro, Brazil), and housed in the animal 
research facility in the Aggeu Magalhães Research 
Center (CPqAM; FIOCRUZ, Recife, Pernambuco, Brazil). 
The animal protocol was designed to minimize pain 
or discomfort to the animals, which were maintained 
in rooms with a controlled temperature (22 ± 2 ℃) 
and humidity (55% ± 10%) environment under 
continuous air renovation conditions. Animals were 
housed in a 12-h light/12-h dark cycle and free access 

to food (Nuvilab, Curitiba, Paraná, Brazil) and water. 
Experimental procedures were in accordance with the 
ethical standards of the Oswaldo Cruz Foundation and 
approved by the Ethics Committee for the Certified Use 
of Animals (CEUA-CPqAM 15/2011).

Chronic liver damage and experimental design
Chronic liver damage was induced in the mice by 
orogastric administration of 200 µL of 20% CCl4 solution 
diluted in olive oil, in twice weekly doses[14]. The mice 
also received a 5% ethanol solution in water ad libitum. 
CCl4 treatment was carried out for 6 mo. The mice 
were randomly divided into four experimental groups 
with chronic hepatic damage: Group Ⅰ: Control mice 
(normal mice) (n = 5); Group Ⅱ: Saline-treated mice 
(n = 5); Group Ⅲ: Mice treated with BMMCs (n = 5); 
Group Ⅳ: Mice treated with BMMC-derived monocytes 
(n = 5).

Isolation of BMMCs and monocytes 
Bone marrow was harvested from the femurs and 
tibiae of donor C57BL/6 mice (n = 15) and BMMCs 
were purified by centrifugation in a Ficoll gradient 
(Histopaque 1119 and 1077; Sigma Aldrich, St Louis, 
MO, United States) at 1000 × g for 15 min. This protocol 
facilitates the rapid recovery of viable BMMCs using 
two ready-to-use separation mediums in conjunction. 
The BMMC preparation was used to isolate monocytes 
by way of the immunomagnetic cell separation system. 
For this, the BMMCs (approximately 107 cells/mL) were 
incubated with anti-CD11b antibodies conjugated to 
magnetic microbeads (MACS units; Miltenyi Biotec™, 
Bergisch Gladbach, Germany), washed and passed 
through a magnetic column (MACS; Miltenyi Biotec™), 
where CD11b+ monocytes were retained and recovered 
in a buffer [0.5% PBS/0.5% bovine serum albumin 
(BSA) + 2 mmol/L EDTA]. Finally, the cells were washed 
and re-suspended in 0.9% sterile saline, which was 
later infused into the mice.

Cell characterization 
The BMMCs and monocytes obtained by immuno
magnetic separation were first incubated with Anti-
CD11b (PE Rat Anti-Mouse CD11b, M1/70 clone, BD 
Pharmingen™, San Jose, CA, United States), Anti-
CD14 (FITC Rat Anti-Mouse CD14, rmC5-3 clone; BD 
Pharmingen™), Anti-CD45 (APC Rat Anti-Mouse CD45, 
30-F11 clone; BD Pharmingen™), Anti-CD34 (PE Rat 
Anti-Mouse CD34, RAM34 clone; BD Pharmingen™) and 
Anti-Ly6A (FITC Rat Anti-Mouse Ly-6A/E, D& clone; BD 
Pharmingen™). After 30 min of incubation, cells were 
washed with 2 mL of PBS wash solution (PBS with 0.5% 
BSA + 0.1% sodium azide), centrifuged at 400 × g for 
5 min and then resuspended in 300 µL of the PBS wash 
solution. 

The samples were then phenotypically characte
rized by flow cytometry (FACS Calibur; BD Biosciences, 
San Jose, CA, United States). A minimum of 10000 
events/sample were collected. The cell population 
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Processing System Leica QWIN, version 2.6 MC (Leica, 
Cambridge, United Kingdom). Ten microscopic fields 
(100 × magnification) containing fibrous tissue areas 
were chosen for quantification. To detect and quantify 
Kupffer cells, the histological sections were stained 
with hematoxylin and eosin (H&E) and observed under 
an optical microscope (DM LB 2; Leica Microsystems). 
The cell counts were performed in 10 fields/sections 
(400 × magnification). 

Hydroxyproline (Hyp) assay
Liver samples (approximately 200 mg) were immersed 
in 6N HCl at approximately 120 ℃ for 18 h, followed 
by filtration. The hydroxyproline (Hyp) concentration 
was determined by a colorimetric assay at 558 nm as 
previously described[25] and expressed as nmol/g liver.

Immunohistochemistry analysis
Immunohistochemistry was carried out to evaluate 
the activated HSCs (alpha-smooth muscle actin, 
α-SMA) and OPN. To stain α-SMA, liver sections (5 μm) 
were initially deparaffinized with xylene, dehydrated 
in increasing concentrations of ethanol, incubated 
overnight with biotinylated antibody anti-α-SMA (Santa 
Cruz Biotechnology, Dallas, TX, United States), and 
then incubated with streptavidin-peroxidase for 10 
min. For OPN staining, the samples were incubated 
overnight with primary anti-OPN antibodies (AF808; 
R&D Systems, Minneapolis, MN, United States), 
as previously described[5]. Thereafter, a secondary 

obtained by immunomagnetic separation presented 
the following phenotype distribution: 99.12% CD11b+; 
97.99% CD14+; 98.3% CD45+; 1.36% CD34+; and 
1.81% Ly6A+ cells; differing from those of BMMCs, 
which were: 58.3% CD11b+; 47.76% CD14+; 79.4% 
CD45+; 3.6% CD34+; and 13.55% Ly6A+ cells. 
These distinctive profiles demonstrated enrichment 
of homogeneous monocytes population in our cell 
preparation. Figure 1 shows representative FACS 
histograms of BMMCs and CD11b+ monocytes isolated 
by immunomagnetic separation. 

Cell infusion in mice with chronic liver damage
At 6 mo after treatment with CCl4/ethanol, bone 
marrow-derived CD11b+CD14+ monocytes and BMMCs 
were administered endovenously to the mice (106 
cells/animal) for 3 consecutive wk. At 2 mo after 
transplantation, mice were euthanized and the liver 
and the spleen were extracted for further analysis 
(Figure 2).

Morphometric evaluation
In order to characterize and quantify liver fibrosis, 
treated and non-treated samples were fixed for 24 
h in 10% formalin, embedded in paraffin, sectioned 
(5 µm) and stained with picro-Sirius. Images were 
obtained using an optical microscope (DM LB 2; 
Leica Microsystems, Wetzlar, Germany) equipped 
with a JVC TK (model - C 1380; Leica, Allendale, NJ, 
United States) and analyzed using the Image Analysis 
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Figure 1  Representative FACS histograms of bone marrow mononuclear cells and CD11b+ monocytes isolated by immunomagnetic separation. BMMCs: 
Bone marrow mononuclear cells.
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antibody bound to a synthetic polymer conjugate 
with peroxidase (horseradish peroxidase, HRP). 3,3’
diaminobenzidine was used for staining. The sections 
were counterstained with Harris hematoxylin. The 
staining was measured in 10-fields/sections (200 × 
magnification) using the Image Analysis Processing 
System Leica QWIN, version 2.6 MC.

Glutathione measurement
To evaluate oxidative stress, the amount of glutathione 
(GSH) was quantified using liver fragments from mice 
submitted to the cell therapy and those that were not. 
The liver fragments were weighed, macerated in 5% 
metaphosphoric acid solution and centrifuged at 12000 
× g at 4 ℃ for 10 min. GSH was detected using the 
Glutathione Assay Kit (Sigma Aldrich) and measured 
with a microplate reader at 415 nm (BioRad, Hercules, 
CA, United States).

Enzyme-linked immunosorbent assay
Frozen liver fragments (approximately 100 mg) were 
homogenized in a lysis buffer (50 mmol/L Tris-HCl, 
300 mmol/L NaCl, 5 mmol/L EDTA, 1% Triton X-100, 
0.02% sodium azide) containing a protease inhibitor 
cocktail (Roche, Mannheim, Germany). The lysates 
were centrifuged at 16000 × g for 15 min at 4 ℃ 
and supernatants were used to quantify the levels of 
TNF-α, IL-6, IL-1β, IL-13, IL-10, IL-17, IL-23, TGF-β1, 
MMP-9 and TIMP-1 by way of a sandwich enzyme-
linked immunosorbent assay assay following the 
manufacturers’ instructions (IL-13, IL-17, IL-23, MMP-9 
and TIMP-1 by R&D Systems; TGF-β1: Human/Mouse 
TGF-beta1 by e-Bioscience, San Diego, CA, United 
States; TNF-α, IL-1β, IL-6 and IL-10 using the OptEIA 
Set for Mouse by BD Biosciences). Samples were read 
at a 450 nm wavelength using a microplate reader 
(Model 3550; Thermo Fisher Scientific, Waltham, MA, 
United States). The concentration of TGF-β1 was also 
determined from supernatants of splenocyte culture 

obtained from mice used in the study, as previously 
described[26]. The cytokine concentration was expressed 
in pg/mL.

Statistical analysis
Quantitative data were submitted to the normality test 
(Shapiro-Wilk’s). Differences were evaluated using the 
ANOVA test for parametric analysis, and the Kruskal-
Wallis test with post-hoc Dunn’s test for non-parametric 
analysis. Statistical analyses were performed using 
Prism Software (version 5.0; GraphPad Software, San 
Diego, CA, United States) and Bioestat 5.3 (Mamirauá 
Institute, Manaus, AM, Brazil). A P value of < 0.05 was 
considered statistically significant. Data were expressed 
as mean values (mean ± SEM).

RESULTS
Monocyte therapy alters hepatic fibrosis 
Morphometric analysis, 2 mo after therapy, showed 
a significant decrease in fibrotic areas in the liver 
from CD11b+CD14+ in the monocytes-treated group 
compared to the saline-treated group (P < 0.001; 
Figure 3B, D and E). This decrease was also found 
in mice treated with BMMCs (P < 0.05; Figure 3B, C 
and E). A marked reduction in the amount of Hyp was 
also observed in the group that received monocyte 
treatment (P < 0.01; Figure 3F). The number of 
Kupffer cells significantly increased in the monocyte-
treated (P < 0.001) and BMMC-treated (P < 0.01) 
groups, when compared to the saline-treated group 
(Figure 3G). 

To test whether CD11b+CD14+ monocyte trans
plantation was able to alter the number of activated 
HSCs, α-SMA-positive cells were assessed by immuno
histochemistry. As shown in Figure 4, α-SMA-positive 
cells in the hepatic parenchyma were decreased in the 
mice that received monocytes (P < 0.01; Figure 4D 
and E) as well as in the BMMC-treated group (P < 0.05; 

20% CCl4

5% EtOH
C57BL/6

Mice

A

C

D

Cell
therapy

Liver and 
spleen

Morphometry

Immunohistochemistry 

Biochemical
assays

Sandwich
ELISA

CD11b+ monocyte 
isolation

B

Figure 2  Schematic flowchart of experimental design. A: Male C57BL/6 mice underwent chronic administration of CCl4 and EtOH solutions for 6 mo; B: Bone 
marrow mononuclear cells were harvested from C57BL/6 donor mice for CD11b+ monocyte isolation using immunomagnetic separation; C: Chronically liver-damaged 
mice underwent cell therapy; D: After 2 mo, effects of the treatment were evaluated using morphometric, biochemical, immunohistochemistry and sandwich ELISA 
analysis.

de Souza VCA et al . Monocyte therapy improves hepatic fibrosis



5151 July 28, 2017|Volume 23|Issue 28|WJG|www.wjgnet.com

Figure 4C and E) compared with the group treated 
with saline (Figure 4B and E). Furthermore, OPN also 
decreased after CD11b+CD14+ monocyte therapy 
(Figure 5). 

Monocyte transplantation reduces hepatic inflammatory 
and pro-fibrotic cytokine levels 
To investigate the mechanisms involved in the im
provement of hepatic fibrosis after CD11b+CD14+ 
monocyte therapy, the levels of hepatic inflammatory 
and pro-fibrotic cytokine were quantified. The levels of 
TNF-α, IL-1β and IL-6 in liver lysates were significantly 
lower in the CD11b+CD14+ monocytes-treated group 
(P < 0.05; Figure 6A-C). IL-13 (Figure 6D) and TGF-β1 
(Figure 7A), important fibrogenic mediators, were 
significantly lower compared to those in mice treated 
with saline (P < 0.05). In the supernatant splenocyte 
culture obtained from the monocyte- and BMMC-
treated groups, there was a significant decrease in 
TGF-β1 compared with the saline-treated mice (P < 
0.05; Figure 7B). IL-17 cytokine levels were also lower 
in animals undergoing cell transplantation (P < 0.01; 
Figure 7C). A trend was also observed for decreased 
IL-23 cytokine levels (Figure 7D).

Monocyte therapy altered MMP-9, TIMP-1 and IL-10 
hepatic levels
The levels of MMP-9 and TIMP-1, two relevant factors 
associated with liver fibrosis, were evaluated. A 
significant increase in the production of MMP-9 was 
found in animals treated with CD11b+CD14+ monocytes 
and BMMCs (P < 0.05; Figure 8A). Interestingly, 
TIMP-1 levels were significantly lower in CD11b+CD14+ 

monocyte-treated mice (P < 0.05; Figure 8B). The 
monocyte-treated group also showed significantly 
increased levels of IL-10 in comparison with the saline-
treated group (P < 0.05; Figure 8C). 

Monocyte therapy increases GSH levels 
GSH levels were determined to evaluate the influence 
of CD11b+CD14+ monocyte therapy on oxidative stress. 
Monocyte-treated mice with chronic liver damage had 
significantly higher levels of this antioxidant molecule 
than the saline-treated group (P < 0.05; Figure 8D).

DISCUSSION
The present study corroborates the importance of 
monocytes/macrophages in liver repair. These may act 
to regulate some significant fibrogenic pathways, in 
a murine model of chronic liver damage. Monocytes/
macrophages are cells with great plasticity and, 
depending on the tissue microenvironment, may be 
caused to adopt a profile that contributes to resolution/
regression of experimental hepatic fibrosis[24]. 

The results of the present study demonstrate 
that transplantation of BMMC-derived CD11b+CD14+ 
monocytes had beneficial effects on liver lesions, 
thereby causing a significant reduction in fibrosis, 
mainly by regulating important cytokines involved in 
the liver repair process. Previous work carried out by 
our group has already shown a decrease in collagen 
levels in a liver undergoing BMMC therapy[14]. However, 
the results obtained in the present study demonstrated 
an improvement in these parameters on BMMC-derived 
CD11b+CD14+ monocyte infusion, with an almost 
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Figure 3  Photomicrographs of histological liver sections stained with picro-Sirius red. A-D: The figure shows hepatic collagens in (A) control mice, mice after 
CCl4 administration and treatment with (B) saline, (C) BMMCs and (D) BMMC-derived monocytes (picro-Sirius red; magnification × 100); E: Morphometric evaluation 
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histological liver sections from mice who underwent CD11b+CD14+ monocyte therapy and BMMC-treated mice. aP < 0.05; bP < 0.01; cP < 0.001. BMMCs: Bone 
marrow mononuclear cells.
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2-fold decrease in the collagen levels using the same 
experimental model. 

Macrophages, important mediators of inflammatory 
responses, have a dichotomous response when 
activated, assuming a classical (M1) or alternative (M2) 
pathways phenotype depending on the environmental 
stimulus[27]. The increase in the number of hepatic 
resident macrophages (Kupffer cells) after cell therapy 
observed in our study suggests that the subsets of 
restorative macrophages are involved in the tissue 
repair by inhibiting the production of pro-inflammatory 
cytokines (TNF-α, IL-1β and IL-6)[28]. Previous studies 
have reported the role of macrophages in mediating 
liver fibrogenesis, and have proposed using macrophage 
subpopulations during liver damage and repair[23,29]. 
Treatments carried out in experimental models have 
shown that the infusion of bone marrow-derived 
macrophages decreases fibrous tissue, and enhances 
hepatic regeneration[22,30,31].

The decrease in fibrous liver tissue observed in 
the present study may be associated with the lower 
number of activated HSCs found. The pro-fibrogenic 

role of this cell type has been already reported in the 
literature, indicating a direct relationship between 
murine liver fibrosis and the rise in the number of 
activated HSCs[3,4]. In this regard, some studies have 
reported a decrease in the number of α-SMA+ cells in 
murine models of liver damage treated with BMMCs. 
This decrease is probably due to an alteration in the 
modulation of HSCs by specific cytokines and growth 
factors, including TGF-β1, TNF-α and ROS, produced 
by hepatocytes in a damaged liver[32]. As activation 
of HSCs is mediated by autocrine and paracrine 
signaling and these cells not only secrete cytokines 
but also respond to them[32], it was hypothesized that 
BMMC-derived CD11b+CD14+ monocytes modulate 
the activity of HSCs by regulating the secretion of 
cytokines and growth factors. 

Production of the pro-inflammatory cytokine 
profiles of TNF-α, IL-1β and IL-6 were inhibited in 
mice submitted to liver damage and treated with 
CD11b+CD14+ monocytes. Furthermore, there was 
an increase in the synthesis of IL-10 cytokine, which 
is known for its T helper (Th)2 profile and anti-
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Figure 4  Immunohistochemistry for detection of α-SMA+ hepatic 
stellate cells in histological sections. A-D: Control (A), saline-treated (B), 
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inflammatory activity[33]. These results show the 
influence of CD11b+CD14+ monocyte infusion in the 
hepatic production of inflammation and fibrogenesis 
mediators. The modulation of inflammation during liver 
repair processes by way of increased expression of 
IL-10 and inhibition of the production of TNF-α, IL-1β 
and IL-6 is well described in the literature[34]. Because 
of their role in activating and proliferating HSCs, these 

cytokines have been implicated in the pathogenesis of 
chronic liver inflammation, mainly by increasing the 
production of collagen and regulating MMPs and TIMPs 
in liver damage[35,36]. Gene therapy studies have shown 
that the overexpression of IL-10 reduces the expression 
of pro-fibrotic molecules such as TGF-β1 and TNF-α[36], 
thereby down-regulating the inflammatory response 
and reducing activated HSCs, which ultimately leads to 
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the reestablishment of liver function[35,36].
The present study found a significant decrease 

in TGF-β1 levels in both the extracts of liver protein 
and the supernatant of cultured splenocytes. These 
results corroborate other findings of the study, 
thereby indicating that transplanted monocytes 
play an important anti-fibrogenic role. TGF-β1 is a 
growth factor which plays a crucial role in initiating 
and maintaining liver fibrogenesis[4]. This factor is 
directly involved in activating HSCs and synthesizing 
ECM components, mostly in type Ⅰ collagen[4]. It also 
plays an important role in inhibiting the degradation 
of ECM, stimulating the decrease of MMP synthesis 
and increasing the production of TIMPs, which leads to 
excessive deposition of collagen and the establishment 
of hepatic fibrosis[2]. Previous studies have associated 
the improvement of experimental liver fibrosis 
after BMMC-treatment with the reduction in TGF-β1 
levels[20,22]. The results of the present study suggest 
that monocyte therapy acts through this fibrogenic 
pathway, thereby contributing to reducing liver fibrosis 
in mice.

The present investigation showed that cell trans
plantation caused a significant decrease in IL-17 levels, 
an effector pro-inflammatory cytokine, produced by 
CD4+ T cells[37]. This mediator induces the recruit
ment of inflammatory factors into liver cells and also 
directly activates natural hepatic immunity systems, 
such as those mediated by neutrophils and dendritic 
cells, to release cytokines that perpetuate chronic 
inflammation[38]. Previous reports have reported that 
Th17 cells are able to participate in the pathogenesis 
of hepatic lesions associated with hepatitis B virus[39]. 
Recently, emerging evidence has indicated that IL- 
17 may be implicated in the induction of liver fibrosis, 

contributing to the activation of HSCs in vitro[39].
OPN is a glycoprotein expressed in a variety of 

tissues, mainly found in ECM and sites of healing 
wounds[40]. Studies have shown that this protein is 
highly expressed in fibrotic liver tissue and influences 
the function of hepatic progenitors[41]. Under this 
condition, increases in the level of TGF-β and activation 
of HSCs could be also observed[6,41]. It thus seems 
reasonable to suppose that deactivation of OPN could 
lead to attenuation of liver fibrosis[1,8]. The results of 
the present study accordingly showed a significant 
decrease in the production of OPN and in the number 
of activated HSCs. 

GSH is an important antioxidant molecule that acts 
as a modulator of redox signaling, cell proliferation, 
apoptosis, immune responses and fibrogenesis[42,43]. 
Reduced levels of this molecule have been found 
in preclinical fibrosis models and in human fibrotic 
diseases[42]. A previous study has shown that higher 
GSH production inhibits the fibrogenic activity of 
TGF-β1[43]. The present study also found an increase 
in this molecule after CD11b+CD14+ monocyte trans
plantation, suggesting an association between the 
anti-fibrotic effects observed in the monocyte-treated 
group and increased antioxidant activity of this cell 
population.

Alterations in the quantities of some molecules 
involved in fibrogenesis, as well as fibrous tissue remo
deling, were assayed in this study. The CD11b+CD14+ 
monocyte therapy in mice with chronic liver damage 
caused an increase in MMP-9 hepatic levels. Previous 
studies have associated reduced liver fibrosis with 
fibrous tissue degradation[3]. MMP-9 plays an important 
role in resolving liver fibrosis and has been considered 
a potent therapeutic target[11]. Yang et al[44] suggest 
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that, in the hepatic microenvironment, macrophage 
subpopulations play an anti-fibrotic role, as they 
express several MMPs, including MMP-9, which are 
directly involved in degrading ECM, facilitating the 
resolution of hepatic fibrosis. 

CD11b+CD14+ monocyte transplantation gave 
rise to a reduction in hepatic TIMP-1 and IL-13, two 
important pro-fibrogenic mediators. TIMPs are involved 
in the regulation of fibrogenic response by inhibiting the 
enzymatic activity of MMPs, having an anti-apoptotic 
effect on HSCs[9]. The presence of high quantities 
of these inhibitors in chronically damaged hepatic 
tissue may contribute to the establishment of liver 
fibrosis[45]. IL-13 is a cytokine associated with severe 
forms of schistosomal liver fibrosis as well as non-
schistosomiasis liver diseases[46]. IL-13 is considered 
one of the central mediators in liver pathogenesis and 
is involved in TGF-β1 production by liver cells, besides 
its ability to induce progenitor cells to transdifferentiate 
into myofibroblasts, which produce collagen[47]. The 
data produced by the present study corroborates the 
protective role of monocytes/macrophages in tissue 
repair processes, by way of fibrogenic pathways.

Several studies have attempted to identify and 
to correlate different macrophage profiles to tissue 
repair processes[29,30,48]. Ramachandran et al[29] found 
that Ly6Clow macrophages secrete large amounts of 
fibrolytic MMPs such as MMP-9 and MMP-13, as well as 
IL-10. Therefore, the increase in secretion of MMP-9 
and IL-10 observed in this study suggests a down-
regulation of the activation pathways that lead to the 
chronic inflammatory response.

In conclusion, the present study shows the im
portant contribution of bone marrow-derived mono
cyte/macrophage cell therapy for improving the state 
of liver fibrosis in a murine model of chronic liver 
damage. These cells act to modulate inflammation 
and fibrogenesis and regulate the oxidative stress 
caused by damaged tissue. Further studies should be 
conducted to establish a promising therapeutic tool for 
treating chronic liver diseases.
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