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Abstract
AIM
To investigate the effect of a single amino acid 
mutation in human class B scavenger receptor I (SR-BI) 
on the infectivity of cell culture-derived hepatitis C virus 
(HCVcc) in SR-BI knock-down Huh7-siSR-BI cells.

METHODS
Site-directed mutagenesis was used to construct the 
SR-BI S112F mutation, and the mutation was confirmed 
by nucleotide sequencing. SR-BI knock-down Huh7-
siSR-BI cells were transfected with SR-BI S112F, SR-BI 
wild type (WT) and control plasmids, and then infected 
with HCVpp (HCV pseudoparticles) and hepatitis C 
virus derived from cell culture (HCVcc). A fluorescence 
assay was performed to analyze the effect of the 
S112F mutation on HCV entry; quantitative real-time 
PCR, immunofluorescence, and Western blot assays 
were used to analyze the effect of the S112F mutation 
on HCV infectivity. CHO cells expressing WT and SR-
BI S112F were incubated with the HCV E2 protein 
expressed in HEK 293T cells, and flow cytometry was 
performed to examine the ability of SR-BI S112F to 
bind to the HCV E2 protein. Huh7-siSR-BI cells were 
transfected with SR-BI WT and the S112F mutant, and 
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then DiI-HDL was added and images captured under 
the microscope to assess the ability of SR-BI S112F to 
take up HDL.

RESULTS
The SR-BI S112F mutation was successfully constructed. 
The S112F mutation decreased the expression of the 
SR-BI mRNA and protein. SR-BI S112F decreased HCV 
entry and HCVcc infectivity in Huh7-siSR-BI cells. The 
S112F mutation impaired the binding of SR-BI to HCV 
E2 protein and decreased the HDL uptake of SR-BI.

CONCLUSION
The S112F single amino acid mutation in SR-BI 
decreased the levels of the SR-BI mRNA and protein, 
as well as the ability of SR-BI to bind to the HCV E2 
protein. Amino acid 112 in SR-BI plays important roles 
in HCV entry and the infectivity of HCVcc in vitro .

Key words: Hepatitis C virus; Class B scavenger 
receptor I; Mutant; Infectivity 
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Core tip: Human class B scavenger receptor I (SR-BI) 
plays important roles in both host lipid metabolism and 
the entry of hepatitis C virus (HCV). Single nucleotide 
polymorphisms (SNPs) in the host genome that affect 
the virus-host interaction have received increasing 
attention in recent years. Several SR-BI SNPs have 
been reported to affect the high-density lipoprotein 
cholesterol levels in populations carrying SR-BI 
mutations; however, the impact of SR-BI SNPs on HCV 
infection has not been studied intensively. Based on our 
results, the S112F single amino acid mutation in SR-BI 
inhibited the infectivity of hepatitis C virus derived from 
cell culture in a cell culture model by downregulating 
the expression of the SR-BI protein.

Gao R, Gao W, Xu G, Xu J, Ren H. Single amino acid mutation 
of SR-BI decreases infectivity of hepatitis C virus derived from 
cell culture in a cell culture model. World J Gastroenterol 2017; 
23(28): 5158-5166  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v23/i28/5158.htm  DOI: http://dx.doi.
org/10.3748/wjg.v23.i28.5158

INTRODUCTION
Hepatitis C virus (HCV) is an enveloped RNA virus that 
belongs to the Hepacivirus genus of the Flaviviridae 
family. The HCV genome encodes a large precursor 
polyprotein, which is cleaved by host and viral 
proteases to generate at least 10 functional viral 
proteins[1]. HCV infection is a global health problem, 
with an estimated 180 million persons infected 
worldwide, and HCV infection is the leading cause 
of cirrhosis and hepatocellular carcinoma[2]. The 

prevalence of chronic HCV infection in China was 3.2% 
in 1992 and 0.4% in 2006. Recent reports from the 
Chinese Ministry of Health have identified 70861 cases 
in 2006 and 201622 cases in 2012[3]. The most recent 
investigation showed a prevalence of HCV infection 
of 3.0% in northeastern China[4]. In recent years, the 
Chinese government has increased its investment in 
the prevention and control of viral hepatitis. However, 
an effective vaccine is not available and treatment with 
the combination of interferon and ribavirin therapy 
produces a response in approximately half of infected 
patients. More recently, a new therapy comprising 
novel direct-acting antivirals (DAAs), such as protease 
inhibitors (telaprevir, boceprevir and simeprevir) and 
an RNA polymerase inhibitor (sofosbuvir), increased 
the sustained virological response rate in HCV-infected 
patients[5-7]. However, the DAA therapy also produces 
significant side effects[8]. Therefore, novel anti-HCV 
methods, including host targets, are still needed.

HCV entry is a multi-step process that requires 
many host molecules, including the tetraspanin 
molecule CD81, human class B scavenger receptor 
I (SR-BI), and the tight-junction proteins claudin-1 
(CLDN1) and occludin (OCLN)[9-12]. Among these 
proteins, SR-BI plays a crucial role since both SR-BI 
and its ligand lipoprotein are involved in the HCV entry 
process[13,14]. SR-BI has a number of common ligands, 
including high-density lipoprotein (HDL), low-density 
lipoprotein (LDL) and oxidized LDL[13]. As shown in a 
study by Dreux et al[15], HDL enhances the infectivity 
of HCVpp (HCV pseudoparticles) and hepatitis C virus 
derived from cell culture (HCVcc).

SR-BI was originally defined as a class B scavenger 
receptor in a family that includes CD36, LIMP II 
(lysosome membrane protein II), and SR-BII (a form 
of SR-BI with an alternate C-terminal cytoplasmic 
tail)[16]. SR-BI is a lipoprotein receptor composed of 
509 amino acids (aa) in which the cytoplasmic C- 
and N-terminal domains are separated by a large 
extracellular domain. As an HDL receptor, SR-BI 
mediates selective uptake of HDL-derived cholesteryl 
ester (CE) in vitro and in vivo[17]. The conformation of 
the extracellular domain is important for the binding 
of SR-BI and HDL, and hence affects the function of 
SR-BI[18]. Eleven N-linked glycosylation sites (aa102, 
108, 116, 173, 212, 227, 255, 288, 310, 330 and 
383) have been identified in the extracellular domain, 
and two glycosylation sites (Asn108 and Asn173) 
were proven to be indispensable for the expression 
and function of SR-BI[19]. In addition to mediating 
selective CE transport, SR-BI has been shown to play 
important roles in many human diseases, including 
atherosclerosis, apoptosis, immune responses, HCV and 
dengue virus entry, and malaria parasite infection[20]. 

In recent years, the influence of single nucle-
otide polymorphisms (SNPs) in the host genome on 
the virus-host interaction has received increasing 
attention. For HCV, most studies have focused on SNPs 
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in the IL28B gene and HCV prognosis[21]. Currently, 
few reports on virus entry and host genomic SNPs 
have been published[22]. For SR-BI, researchers have 
focused on its regulation of HDL-cholesterol and other 
metabolites, and a very recent report showed that 
polymorphisms in the SR-BI gene are associated with 
the virological response in HCV-infected patients[23,24]. 
According to the results of a GWAS (genome-wide 
association study) of 10000 individuals, SNPs in the 
SR-BI gene are associated with a small, but significant 
elevation in plasma HDL-cholesterol levels[25]. Recently, 
a single loss-of-function mutation (P297S) in SR-
BI was identified, and the mutation increased HDL-
cholesterol levels and reduced cholesterol efflux from 
macrophages[26]. Subsequently, two novel missense 
mutations, S112F (nucleotide C588T) and T175A 
(nucleotide A776T) were also shown to be associated 
with elevated HDL-cholesterol levels[27,28]. However, few 
studies have investigated how the mutations impact 
HCV infection and development. In this study, we 
studied the effects of the SR-BI S112F single amino 
acid mutation on the infectivity of HCVcc using a cell 
culture model. 

MATERIALS AND METHODS
Materials
The Huh7 cell line, human embryonic kidney (HEK) 
293T cell line and Huh7-siSR-BI cell line are maintained 
in our laboratory. Briefly, SR-BI shRNA was designed, 
cloned into the pGP-Lenti3 vector (Biovector, Science 
Lab, Beijing), and the positive recombinant Lv-SR-
BI-shRNA vector was verified. This vector and helper 
plasmids were co-transfected into HEK 293T cells. 
The recombinant lenti-SR-BI-shRNA virus was used to 
infect Huh7 cells. Puromycin was added for screening, 
and real-time PCR and Western blot were conducted 
to detect the levels of the SR-BI mRNA and protein, 
respectively; finally, the Huh7-siSR-BI cell line was 
obtained[29].

Cells were grown in complete Dulbecco’s Modified 
Eagle’s Medium (DMEM; Invitrogen) supplemented 
with 10% (v/v) fetal bovine serum (FBS, Gibco BRL, 
United States), 1 mmol/L -glutamine, 100 nmol/L 
nonessential amino acids, 100 U/mL penicillin, and 100 
μg/mL streptomycin. 

Construction of SR-BI S112F plasmid expressing the 
SR-BI single amino acid mutation 
The SR-BI S112F mutation was introduced into pcDNA-
SR-BI (maintained in our lab) using a Quick Change 
Lightning Site-Directed Mutagenesis Kit (Stratagene, 
CA, United States), according to the manufacturer’s 
instructions, with the primers (S112F-F: 5’-ACAAC 
GACACCGTGTTCTTCCTCGAGTACCGCACCT-3’ and 
S112F-R: 5’-AGGTGCGGTACTCGAGGAAGAACA 
CGGTGTCGTTGT-3’; the italic letters represent the 
mutant nucleotide). The presence of the desired 

mutation was confirmed using nucleotide sequencing 
(Invitrogen, CA, United States).

Quantitative real-time RT-PCR (qRT-PCR)
RNA was isolated from harvested cells using TRIzol 
reagent (Invitrogen), and RNA was prepared according 
to the manufacturer’s instructions. RNA obtained 
from 1 × 105 cell equivalents was analyzed using RT-
PCR. RNA samples were transcribed into cDNA using 
random primers and then quantitatively analyzed 
with the specific primers SR-BI-F: 5’-GCTGCAGGAA 
GCAAAACTGT-3’ and SR-BI-R: 5’-CCAGTAGAAAAGGG 
TCACAGG-3’ using the quantitative RT-PCR kit (Applied 
Biosystems, United States). Genome copy numbers 
were normalized to GAPDH levels determined in 
parallel (GAPDH-F: 5’-TGACTTCAACAGCGACACCCA-3’; 
GAPDH-R: 5’-CACCCTGTTGCTGTAGCCAAA-3’) using 
the comparative cycle threshold values.

Immunofluorescence assays 
Huh7 and SR-BI knock-down Huh7-siSR-BI cells were 
cultured in collagen-coated 96-well plates at a density 
of 1 × 104 cells/well on the day before transfection. 
Cells were transfected with the SR-BI wild type (WT) 
and SR-BI S112F plasmids using LipofectamineTM 
(Invitrogen, CA, United States), according to the manu-
facturer’s instructions. Fresh cell medium was replaced 
6 h after transfection and the cells were cultured for 
48 h. Cells were washed with PBS, fixed with cold 
methanol, and then stained with an anti-SR-BI mouse 
monoclonal antibody (mAb) (1:1000 dilution, BD, 
United States) or serum from HCV-infected patients 
(1:100 dilution) for 2 h at room temperature (RT). 
After being washed with PBS, cells were reacted with 
an Alexa Fluor 488-conjugated anti-mouse antibody 
or human IgG antibodies (1:1000 dilution, BD, United 
States). Nuclei were stained with DAPI (1:2000 
dilution, BD, United States). Images were captured 
and infected foci were counted under a fluorescence 
microscope (Olympus IX81, Japan).

Western blot analysis
Protein extracts from transfected cells were prepared 
in a modified RIPA buffer containing 0.5% SDS and 
a protease inhibitor cocktail (Complete mini; Roche) 
on ice. After centrifugation, protein concentrations 
were determined using the BCA method (Beyotime). 
The proteins were separated using 10% (w/v) SDS-
polyacrylamide gel electrophoresis and transferred 
onto PVDF membranes (Millipore, Billerica, MA, 
United States) using a Trans-Blot apparatus (Bio-
Rad). Membranes were blocked with 5% nonfat milk, 
incubated with a primary anti-SR-BI mouse mAb (1: 
2000 dilution, BD), and detected using a horseradish 
peroxidase (HRP)-conjugated species-specific secondary 
antibody (Santa Cruz Biotechnology). Immunoreactivity 
was visualized using enhanced chemiluminescence (GE 
Healthcare).
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protein (transient expression in HEK 293T cells) for 1 
h at RT, washed twice with PBS, and incubated with an 
anti-E2 mAb (1 h at RT). After labeling with Alexa Fluor 
488-conjugated goat anti-mouse IgG (Invitrogen), the 
mean fluorescence intensity was quantified by flow 
cytometry (Beckman Coulter, Fullerton, CA, United 
States). 

DiI-HDL uptake assay of SR-BI WT and mutant 
Huh7-siSR-BI cells were seeded in a 96-well plate at 
a density of 2 × 104 cells/well and cultured for 24 h. 
Cells were transfected with the SR-BI WT and mutant 
S112F plasmids using LipofectamineTM. Complete 
culture medium was replaced 6 h after transfection 
and the cells cultured for 48 h before DiI-HDL (200 
μg/mL, Alfa Aesar, United States) was added and the 
cells were cultured for an additional 4 h. Nuclei were 
stained with Hoechst (Merk, NJ, United States) for 10 
min, and cells were observed and images captured 
using a microscope.

Statistical analysis
The error bars represent the SD of means from at least 
three independent experiments. Statistical significance 
was analyzed using Student’s t test. P < 0.05 was 
considered statistically significant.

RESULTS
Generation of the SR-BI S112F mutant
The pcDNA-SR-BI/S112F vector expressing the SR-
BI single amino acid mutant was obtained by site-
directed mutagenesis and confirmed by nucleotide 
sequencing. The Ser at site 112 was replaced with Phe 
in the mutant.

SR-BI S112F mutation decreases HCV entry
Huh7-siSR-BI cells were transfected with pcDNA3.1, 
pcDNA-SR-BI, or pcDNA-SR-BI/S112F first, and 
infected with HCVpp expressing the luciferase gene 3 d 
after transfection. Fluorescence was detected 3 d later. 
Compared with cells transfected with the pcDNA3.1 
vector control and pcDNA-SR-BI WT control, SR-BI 
S112F decreased the entry of HCV in Huh7-siSR-BI 
cells (Figure 1).

SR-BI S112F mutation decreases HCVcc infection
Huh7-siSR-BI cells were seeded in 96-well plates (for 
IFA) or 24-well plates (for qRT-PCR) and transfected 
with pcDNA3.1, pcDNA-SR-BI, or pcDNA-SR-BI/S112F; 
HCVcc (103FFU/mL) was added 24 h after transfection. 
Cells were harvested 72 h after infection and RNA was 
isolated for qRT-PCR. IFA was performed 48 h later. 
According to the IFA results, the expression of the HCV 
protein was decreased in the pcDNA-SR-BI/S112F 
group (Figure 2A). Based on the qRT-PCR results, the 
level of the HCV RNA was decreased in the pcDNA-SR-
BI/S112F group (0.711 of the WT level), compared 

HCVcc production and HCV infection assay
The pJFH1 plasmid, which was kindly provided by Dr. 
Takaji Wakita (National Institute of Infectious Diseases, 
Tokyo, Japan), was used as template to generate 
HCVcc as described[30]. Briefly, pJFH-1 was linearized to 
generate the template used in the in vitro transcription 
reaction to produce the viral RNA using the MEGAscript 
kit (Promega, Madison, WI, United States). Huh7 
cells were then transfected with JFH-1 transcripts 
by electroporation. Cell culture supernatants were 
collected 5 d later and the viral titer was quantified. For 
the infection assay, Huh7-siSR-BI cells were seeded in 
a 96-well plate, cultured in 10% FBS-DMEM overnight, 
and then infected with HCVcc. The cells were cultured 
for 48 h before the infectivity was measured using the 
immunofluorescence assays.

HCVpp production and HCV entry assay
HCVpp were generated as described[31]. Briefly, HEK 
293T cells were transfected with plasmids encoding 
the HCV envelope proteins, Gag/Pol (pLP1) and Rev 
(pLP2) and the pLenti6 transfer vector (Invitrogen) 
expressing the luciferase gene. Vesicular stomatitis 
virus pseudoparticles were produced as controls. Cell 
culture supernatants were collected 2 d later and the 
viral titer was quantified using immunofluorescence 
assay (IFA). For the HCV entry assay, Huh7-siSR-
BI cells were seeded on a 96-well plate, cultured 
overnight, and transfected with pCDNA-SR-BI WT 
and mutant plasmids, inoculated with HCVpp, and 
then cultured for 72 h before the entry of HCVpp was 
measured using a fluorescence assay.

SR-BI and HCV E2 protein binding assay
The SR-BI and HCV E2 protein binding assay was 
performed using a FACS-based assay, as previously 
described[32]. Briefly, 4 × 105 CHO cells expressing SR-
BI were incubated with equivalent amounts of HCV E2 
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Figure 1  Effect of the class B scavenger receptor I single amino acid 
mutant on hepatitis C virus entry. Huh7-siSR-BI cells were seeded on a 
96-well plate, cultured overnight, and transfected with pcDNA3.1 (NC), pcDNA-
SR-BI, or pcDNA-SR-BI/S112F. Three days after transfection, HCVpp were 
added to the cell culture. Cells were harvested 72 h post infection and cell 
lysates were analyzed using a fluorescence assay. The data are presented as 
the mean ± SEM from three independent experiments (aP < 0.05). WT: Wild 
type.
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with pcDNA3.1 vector control and pcDNA-SR-BI WT 
control (Figure 2B). 

S112F mutation decreases the expression of the SR-BI 
mRNA and protein
Huh7-siSR-BI cells were transfected with pcDNA3.1, 
pcDNA-SR-BI and pcDNA-SR-BI/S112F. Forty-eight 
hours after transfection, cells were harvested and 
analyzed by Western blot and qRT-PCR, and the results 
showed that the levels of the SR-BI S112F mRNA and 
protein were decreased compared with SR-BI WT cells 
(Figure 3). 

SR-BI S112F mutation impairs the binding of SR-BI to 
the HCV E2 protein 
SR-BI has been reported to bind to HCV E2 protein. 
The ability of CHO cells expressing WT and mutant 
SR-BI to bind to the HCV E2 protein that had been 
expressed in HEK 293T cells was analyzed, and the 
results showed that the S112F mutation impaired the 
binding of SR-BI to the HCV E2 protein (Figure 4). We 
also performed the binding assay using HCVcc instead 
of the expressed HCV E2 protein and obtained similar 
results.

SR-BI S112F mutation decreases HDL uptake by SR-BI
We performed the HDL uptake assay with DiI-HDL to 
determine whether the single amino acid mutation 
affects the HDL uptake ability of SR-BI. Huh7-siSR-

BI cells were first transfected with SR-BI WT and 
mutant S112F plasmids, and then DiI-HDL was added. 
Based on the microscopic images, the S112F mutation 
decreased HDL uptake compared with SR-BI WT (Figure 
5).

DISCUSSION
The SR-BI receptor is associated with lipid metabolism 
and participates in the bidirectional transport of 
cholesterol between cells and HDL. Increased clearance 
of HDL-CE from plasma and enhanced reverse choles-
terol transport have been shown to significantly reduce 
atherosclerosis in animal models[23]. Previous studies 
have confirmed that the extracellular domain of SR-BI 
is critical for its receptor function[19]. 

Recently, the functions of SNPs in the SR-BI gene 
have been studied both in human and animal models. 
Acton and colleagues were the first to identify the 
associations between SNPs in the SR-BI gene and 
plasma lipid levels and body mass index in a Caucasian 
European population[33]. The nonsynonymous exon 1 
SNP (rs4238001 [G2S]), which encodes a different 
amino acid, was significantly associated with higher 
HDL cholesterol (HDL-C) and lower LDL cholesterol 
(LDL-C) levels[33]. In 2011, a P297S missense mutation 
in SR-BI was reported, and people who carry the P297S 
mutation have increased HDL cholesterol levels[26]. 
Then, two novel missense mutations, S112F and 
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Figure 2  Effect of the class B scavenger receptor I single amino acid mutant on hepatitis C virus infectivity. A: Immunofluorescence assay (IFA) of the effects 
of the SR-BI single amino acid mutant on hepatitis C virus (HCV) infectivity. Huh7-siSR-BI cells were seeded in 96-well plates, cultured overnight, and then transfected 
with pcDNA3.1 (NC), pcDNA-SR-BI (WT), or pcDNA- SR-BI/S112F. HCVcc (103 FFU/mL) was added 24 h after transfection, and the IFA was performed 48 h later. B: 
Effect of the SR-BI single amino acid mutant on the HCV viral RNA. Huh7-siSR-BI cells were seeded in 24-well plates, cultured overnight, and then transfected with 
pcDNA3.1 (NC), pcDNA-SR-BI, or pcDNA-SR-BI/S112F. HCVcc (104 FFU/mL) was added 24 h after transfection, and cells were harvested 72 h later to prepare RNA 
for the qRT-PCR analysis (aP < 0.05). SR-BI: Class B scavenger receptor I; WT: Wild type.
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T175A, in human SR-BI were identified in patients with 
atherosclerosis, which led to elevated HDL cholesterol 
levels[27]. A coding variant in SR-BI (I179N) significantly 
increased atherosclerosis, although the mutation did 
not dramatically affect the plasma lipid levels[34]. The 
hydrophobicity of N-terminal half of the extracellular 
domain of SR-BI was proven to be critical for the SR-
BI-mediated cholesterol transport function, and this 
domain might function by interacting with other integral 
membrane proteins[35-37]. S112F, T175A and I179N 
point mutations occurred in the same region, but had 
different effects on the function of SR-BI and require 
further study. 

HCV infection is a complicated process and is 
closely correlated with host lipid metabolism. In the 
attachment step, the HCV lipoviral particle (LVP) is 
recruited and binds to glycosaminoglycans on heparan 
sulfate and low-density lipoprotein receptor on host 
cells; then, HCV enters hepatocytes by interacting 
with several host entry factors, including CD81, SR-
BI, the tight junction proteins CLDN1 and OCLN, and 
the cholesterol absorption receptor Niemann-Pick C1-
like-1[38]. Lipids and lipid receptors play key roles in 
the early stage of HCV infection, and researchers have 
postulated that LVP was actually endocytosed into the 
hepatocytes as a regular lipoprotein[39].

During the entry step, the HCV E2 HVR1 region 

interacts with the extracellular loop of SR-BI in both 
the binding and post-binding steps[40,41]. Therefore, 
strategies targeting SR-BI have been reported to 
inhibit HCV infection. SR-BI binds to serum amyloid 
A (SAA), an acute-phase protein produced by the 
liver, promoting SAA internalization and inhibiting 
HCV entry[42]. A small-molecule antiviral compound, 
ITX5061, has been reported to impede the uptake 
of HDL by SR-BI and blocks the uptake of HCV viral 
particles by hepatocytes[43,44]. 

In addition to the entry step, the replication of HCV 
in the membrane web and release from hepatocytes 
are associated with the host lipid metabolism. Since 
SR-BI has a key role in the host lipid metabolism 
and SNPs in the SR-BI gene have been reported 
to modulate the function of SR-BI, we studied the 
effect of the S112F missense mutation in SR-BI on 
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Figure 3  Effects of the single amino acid mutant on class B scavenger 
receptor I mRNA and protein expression. A: Effect of the single amino acid 
mutant on SR-BI protein expression. Huh7-siSR-BI cells were seeded in 24-well 
plates, cultured overnight, and transfected with pcDNA3.1 (NC), pcDNA-SR-
BI, or pcDNA-SR-BI/S112F. Cells were harvested 72 h after transfection and 
lysed with RIPA cell lysis buffer; Western blot was performed to analyze the 
expression of the SR-BI protein. B: Effect of the single amino acid mutant on the 
SR-BI mRNA level. Huh7-siSR-BI cells were seeded in 24-well plates, cultured 
overnight, and then transfected with pcDNA3.1 (NC), pcDNA-SR-BI (WT), or 
pcDNA-SR-BI/S112F (S112F). Cells were harvested 72 h after transfection and 
RNA was isolated and the level of the SR-BI mRNA was analyzed using qRT-
PCR (aP < 0.05; bP < 0.001). SR-BI: Class B scavenger receptor I; WT: Wild 
type.
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Figure 4  Ability of the class B scavenger receptor I single amino acid 
mutant to bind to the hepatitis C virus E2 protein. CHO cells expressing 
the wild type (WT) and mutant SR-BI protein were incubated with equivalent 
amounts of hepatitis C virus E2 protein that had been expressed in HEK 293T 
cells for 1 h at RT, washed twice, and incubated with an anti-E2 mAb for 1 
h at RT. After labeling with Alexa Fluor 488-conjugated goat anti-mouse IgG 
(Invitrogen), the mean fluorescence intensity was quantified by flow cytometry 
(aP < 0.05). SR-BI: Class B scavenger receptor I.
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Figure 5  Effect of the single amino acid mutant on high-density 
lipoprotein absorption by class B scavenger receptor I. Huh7-siSR-BI cells 
were seeded in a 96-well plate and cultured overnight prior to transfection. Cells 
were transfected with the SR-BI wild type (WT) and mutant S112F plasmids 
using LipofectamineTM. Complete culture medium was replaced 6 h after 
transfection and cells were cultured for 48 h before DiI-HDL (200 μg/mL) was 
added, and the cells were cultured for an additional 4 h. Nuclei were stained 
with Hoechst for 10 min, and cells were observed and images captured using a 
microscope (bP < 0.01). SR-BI: Class B scavenger receptor I.
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the infectivity of HCVcc in SR-BI knock-down Huh7 
cells. The Huh7-siSR-BI cell line was established by 
screening Huh7 cells with puromycin after infection 
with Lv-SR-BI-shRNA[29]. We first constructed SR-
BI S112F using site-directed mutagenesis, and then 
Huh7-siSR-BI cells were used to detect the effects of 
the single amino acid mutant in SR-BI on the entry 
and infectivity of HCV. The S112F single amino acid 
mutation decreased HCV entry and the infection of 
HCVcc compared with SR-BI WT. We further assessed 
the effects of S112F on the SR-BI mRNA and protein 
levels to determine how the S112F mutation affected 
SR-BI, and the results showed that the levels of both 
the SR-BI mRNA and protein decreased when Ser112 
was replaced with Phe. Then, we detected the ability 
of SR-BI S112F to bind to HCV E2 and showed that 
the binding ability decreased, potentially due to the 
decreased level of the SR-BI protein. Finally, since the 
S112F mutation is associated with an abnormal HDL 
level and HCV replication is closely correlated with lipid 
metabolism, we measured the HDL uptake ability of 
SR-BI S112F and observed a decrease compared with 
SR-BI WT. 

We performed a literature search to determine 
why the S112F mutant significantly decreased the 
expression of SR-BI and found that Ser112 is located 
in the extracellular domain of SR-BI. SR-BI and LIMP 
II belong to the same family and share 34% sequence 
identity and 56% sequence homology. The X-ray 
crystal structure of the extracellular domain of human 
LIMP II has been solved. Therefore, we used the 
LIMP II structure as a guide to generate a homology 
model of human SR-BI. Ser112 in SR-BI is located 
in a hydrophilic pocket, which is conserved in SR-
BI. If the serine (hydrophilic amino acid) is mutated 
to phenylalanine (hydrophobic amino acid), this 
hydrophilic pocket will be destroyed. Thus, the protein 
will not fold correctly, which might be responsible 
for the downregulation of SR-BI expression in cells 
expressing the SR-BI S112F mutant.

In summary, we constructed the S112F single 
amino acid SR-BI mutant and analyzed the effects of 
this mutant on HCV entry and infectivity. The S112F 
single amino acid mutant decreased the levels of the 
SR-BI mRNA and protein and subsequently reduced 
the binding of SR-BI to HCV E2 protein, as well as the 
SR-BI-dependent HCV entry and infectivity of HCVcc. 
In this study, Huh-7-siSR-BI cells expressing SR-BI 
S112F also showed decreased HDL uptake, but the 
effects of this mutation on the release of progeny 
viruses require further investigation. 
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