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Functional Protein in Ullrch Muscular Dystrophy
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Dominant-negative mutations in the genes that encode the
three major o chains of collagen type VI, COL6A1, COL6A2,
and COL6A3, account for more than 50% of Ullrich congenital
muscular dystrophy patients and nearly all Bethlem myop-
athy patients. Gapmer antisense oligonucleotides (AONs) are
usually used for gene silencing by stimulating RNA cleavage
through the recruitment of an endogenous endonuclease
known as RNase H to cleave the RNA strand of a DNA-RNA
duplex. In this study, we exploited the application of the
allele-specific silencing approach by gapmer AON as a poten-
tial therapy for Collagen-VI-related congenital muscular
dystrophy (COL6-CMD). A series of AONs were designed to
selectively target an 18-nt heterozygous genomic deletion in
exon 15 of COL6A3 at the mRNA and pre-mRNA level. We
showed that gapmer AONS can selectively suppress the expres-
sion of mutant transcripts at both pre-mRNA and mRNA
levels, and that the latter strategy had a far stronger efficiency
than the former. More importantly, we found that silencing
of the mutant transcripts by gapmer AONSs increased the depo-
sition of collagen VI protein into the extracellular matrix, thus
restoring functional protein production. Our findings provide
a clear proof of concept for AON allele-specific silencing as a
therapeutic approach for COL6-CMD.

INTRODUCTION

Collagen-VI-related congenital muscular dystrophies (COL6-CMD)
are the second most common diagnosis in congenital muscular
dystrophies according to a recent retrospective review performed by
our center on genetic studies in childhood neuromuscular diseases
in the UK population.' The collagen-VI-related myopathies, ranging
from severe Ullrich congenital muscular dystrophy (UCMD) to mild
Bethlem myopathy (BM) and intermediate clinical phenotypes, are
caused by mutations in one of the genes that encode the three major
o chains of collagen type VI: COL6A1 (MIM*120220), COL6A2
(MIM*120240), and COL6A3 (MIM*120250).>> The severe UCMD
is an early-onset CMD variant that presents with slowly progressive
muscle weakness, progressive joint contractures, and respiratory
failure and the frequent development of severe scoliosis.” Currently,
there is no cure for COL6-CMD.
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Collagen VI is one of the microfibrillar components of the extracel-
lular matrix (ECM) expressed in a wide variety of tissues and shows
a particular association with basement membranes by interacting
with cells indirectly via components of the basal lamina.” Collagen
VI undergoes an extensive assembly process inside the cell before
being secreted into the ECM. The assembly begins with the formation
of the basic monomer, which is composed of one of each of the three
a chain subunits encoded by the three collagen 6 genes. Within the
cell, these monomers associate to form dimers, which then pair up
into tetramers. These tetramers are then secreted into the ECM,
where they assemble in an end-to-end fashion to give rise to the final
microfibrillar network.™® Mutations in any of the three collagen
6 genes disrupt the correct formation of tetramers and they conse-
quently fail to be secreted into the ECM to form collagen VI microfi-
brillar structures (Figure 1).> The role of collagen VI in muscle is
not completely understood. A role in mitochondrial survival had
been previously reported.” A more recent study in organizing the
satellite cell niche, which regulates muscle regeneration, was also
demonstrated.®

Bethlem myopathy is almost exclusively caused by dominant
COL6A1, COL6A2, or COL6A3 mutations, whereas UCMD occurs
as a result of both recessive and dominant mutations. In populations
with a low degree of consanguinity, de novo autosomal-dominant
mutations are the most common underlying mechanism of
UCMD.™ There are two common types of dominant mutations in
COL6-CMD: one is represented by in-frame deletions or splice site
mutations causing in-frame exon skipping and another is represented
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Figure 1. Schematic Diagram of Allele-Specific Silencing by Gapmer AONs on the Mutant Allele of the COL6A Genes

In the absence of AON, the mutant allele is transcribed and translated into a defective monomer. This affects the assembly of the collagen VI tetramer, which fails to be
secreted into the ECM. Following the gapmer AON uptake by cellular endocytosis, it can hybridize with either pre-mRNA in the nucleus or mature mRNA in both the nucleus
and cytoplasm. Hybridization of the gapmer AON-mutant mRNA/pre-mRNA induces the activation of RNase H, leading to selective degradation of the mutant
mRNA/pre-mRNA. This strategy will retain the transcription of the wild-type allele, followed by the translation of normal collagen VI monomer and efficient assembly of a
normal tetramer. The normal tetramer is eventually secreted and functions within the ECM.

by missense mutations. These types of mutations act in a dominant-
negative fashion due to the failure in incorporating the mutated
o chain subunits into collagen VI monomers. Interestingly, complete
deletion of one copy of the three COL6A genes is not associated with
any clinical phenotypes, as indicated by the parents of children
affected by the recessive variant, who may carry nonsense mutations
or a large genomic deletion but remain completely asymptomatic.'’
This suggests that suppression of one allele of the COL6A gene is
not associated with a clinical phenotype and therefore may be used
as a therapeutic strategy. Specifically, it has been hypothesized
that silencing the mutated allele in one of the COL6A genes by
allele-specific antisense oligonucleotides (AONs) may correct the
abnormal collagen VI expression in CMD caused by dominant
mutations. The fact that dominant-negative mutations account for
50%-75% of UCMD cases'"'” and nearly 100% of BM cases' "'’
makes an allele-specific silencing approach an interesting therapeutic
strategy for a large proportion of COL6-CMD patients.

Encouraging data have been reported recently from a study using
AON to target an SNP and induce out-of-frame exon skipping in
the COL6A2 gene to deplete the mutated transcript via RNA
nonsense-mediated decay. The preferential skipping of the target
exon via SNP recognition recovered the production of functional

collagen VI in cultured fibroblasts from a patient with UCMD."
This approach was further supported by two additional studies using
a small interfering RNA (siRNA) approach to selectively silence the
mutant allele, which carries the heterozygous exon 16 deletion in
the COL6A3 gene'” and the missense ¢.850G > A (p.G284R) mutation
in the COL6A1 gene.'® These studies provide the proof of principle for
allele-selective suppression by different RNA-based approaches as a
therapeutic strategy in COL6-CMD.

In this study, we describe the investigation of gapmer AONSs for allele-
specific silencing (Figure 1). Gapmer AONs were designed to selec-
tively bind to the mutant allele to induce target RNA degradation
by activating RNase H, an endonuclease that cleaves the RNA strand
of a DNA-RNA duplex.'”'® A skin fibroblast cell line from a
UCMD patient carrying a de novo 18-nt genomic deletion in exon
15 of the COL6A3 gene was selected as an in vitro model. A series
of gapmer AONs were designed with various combinations in length
by targeting the premature mRNA (pre-mRNA) and mRNA, respec-
tively. Our study shows that gapmer AONs can selectively suppress
the expression of the mutant transcripts while not interfering with
the wild-type transcripts. Functionally, AON treatment significantly
reduces the intracellular retention of the collagen VI complex and
increases the secretion of a functional protein in the ECM. This is a
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Figure 2. Design of Gapmer AONs Targeting the
Mutant Allele

An 18-nt in-frame deletion was presented in exon 15 of
the COLBA3 gene. Gapmer AONs were designed to
target the mutant allele at either the pre-mRNA (A) or
mRNA (B) levels. The gapmer AON was designed as a
short RNase H activating phosphorothioate DNA
(P*-DNA) antisense sequence flanked by short 2'-OMe
RNA antisense sequence at each end. AONs targeting
pre-mRNA or mRNA differ at the 5’ end with 2’-OMe
chemical modification, which either binds to the
conjunctive intron 15 sequence (pre-mRNA level) or exon
16 sequence (MRNA level).

Intron 15

Exon 16

AGAGGGGAGACCGCGGGCC*IATCGGCAGCATCGGGCC*«AAG |GGTATTCCTGGAGAAGACGGCTA ‘

Gapmer AONs Silence the Mutant mRNA
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major step forward in establishing the allele-specific silencing by
AON as a therapeutic strategy for the treatment of dominant
COL6-CMD.

RESULTS

Gapmer AONs Designed to Bind the Deletion Site of COL6A3 and
Target Either Pre-mRNA or mRNA Products

Gapmer AONs were designed to stimulate RNA degradation through
the recruitment of RNase H. In humans, the specific enzyme recruited
by the AON-RNA duplex is RNase H1."” It has been reported that
RNase H active AONs exert their action predominantly in the
nucleus, where they interact with the pre-mRNA’, whereas in other
reports, mRNA in the cytoplasm is the predominant target of RNase
H active AONs."® To understand if the gapmer AONSs preferentially
target the pre-mRNA or mRNA of the COL6A3 gene, we selected a
fibroblast cell line carrying a specific 18-nt genomic deletion
(c.6135_6152del; p.1le2046_Pro2051del) in exon 15 of COL6A3 as
the cellular model. This 6-aa in-frame deletion is near the amino
terminus of the triple helical domain and plays a strong dominant-
negative effect.”’

Deletion of 18 nt near the 3’ end of exon 15 results in different
sequences of pre-mRNA and mRNA. Therefore, unique gapmer
AONs can be designed to anneal to pre-mRNA or mRNA, respec-
tively (Figure 2). We followed the classic design of gapmer AON:
the RNase H activating phosphorothioate DNA domain (DNA gap)
is flanked by short RNA sequences in the 2'-OMe backbone at both
ends (wings) to protect the AONs from degradation by nucleases.*”
Two groups of gapmer AONs were designed to target either the
mRNA or the pre-mRNA. Three different lengths of AONS,
16-mer, 18-mer, and 22-mer, were designed; these were associated
with a different length of the DNA gap, between 6 nt and 12 nt
(Table 1).
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and the mutant transcript in this cell line is that

the wild-type transcript is 18 bp longer than the

mutant one when the same primers are used to
amplify the PCR products flanking the mutation region. This, there-
fore, provides us with a practical tool to distinguish the two transcripts
by gel electrophoresis. To test the efficiency of AONs on suppressing
the mutant allele, we performed semiquantitative reverse transcript
one-step PCR. RNA samples were isolated from the patient’s fibroblast
cell line treated with different gapmer AONSs at 100 nM for 24 hr. The
percentage of PCR band intensity of the mutant COL6A3 transcripts
fragment (lower PCR band) to total COL6A3 transcripts fragment
(wild-type transcript/top PCR band + mutant transcript/lower PCR
band) was used to measure the efficiency of mutant allele silencing.

In untreated or scrambled AON-treated fibroblasts, there was
approximately 60%-70% expression of mutant to total COL6A3 tran-
scripts. The mutant transcripts were dramatically reduced after AON
treatment. Gapmer AONs suppressed the expression of mutant tran-
scripts at both mRNA (Figure 3A) and pre-mRNA levels (Figure 3B).
AONSs targeting mRNA achieved more significant suppression on
the mutant transcripts than those targeting pre-mRNA. In the pre-
mRNA targeting group, there was approximately 25%-50% suppres-
sion of the mutant transcripts compared to the scrambled control
(Figure 3B). However, in the mRNA-targeting group, the mutant
transcripts were 50%-100% suppressed compared to control. The
most striking suppression was detected in cells treated with the
22-mer gapmer AONs. Among them, the AONs with an 8-nt
(AON-3) and 10-nt (AON-2) DNA gap had the most significant
efficiency, with near complete suppression of the mutant transcripts.
This was followed by the 22-mer AON with a 12-nt DNA gap
(AON-1) and the 18-mer AON with an 8-nt DNA gap (AON-4),
which showed approximately 80%-85% silencing of the mutant tran-
scripts. The short 16-mer AONs with a 6- and 8-nt DNA gap (AON-6
and AON-5) also showed mutant-allele silencing, although to a
lesser extent, and achieved approximately 50%-60% suppression. In
addition to the semiquantitative one-step PCR, we performed Sanger



www.moleculartherapy.org

Table 1. AONs Tested in This Study

Total Length DNA Gap

AON ID  AON Sequence (5 to 3) (mer) Length (nt)
AON-Targeting mRNA Level
[GAAUA|C* C*C*T*T*T*G*G*C*C*C*G*
AON-1 [CGGUC] 22 12
[GAAUAC]C*C*T*T*T*G*G*C*C*C*
AON-2 [GCGGUC] 22 10
[GAAUACC|C*T*T*T*G*G*C*C*
AON3 o GGUd) 2 8
AON-4  [AUACC|C*T*T*T*G*G*C*C*[CGCGG] 18 8
AON-5  [UACCIC*'T*T*T*G*G*C*C*[CGCG] 16 8
AON-6  [UACCC]IT*T*T*G*G*C*[CCGCG] 16 6
[GAAUACA]JA*T*T*T*A*A*C*C*
AON-Scr [CUAUGUC] 22 8
AON-Targeting Pre-mRNA Level
[ACCGUJA*CX C*T*T*T*G*G*C*C*C*G*
AON-7 [CGGUC] 22 12
[ACCGUAJC*C*T*T*T*G*G*C*C*C*
AON-8 [GCGGUC] 22 10
[ACCGUAC]C*T*T*T*G*G*C*C*C*
AON-9 [GCGGUC] 22 8
[ACCGUACC]T*T*T*G*G*C*
AON-10 [CCGCGGUC] 22 6
AON-11 [CGUAC|C*'T*T*T*G*G*C*C*[CGCGG] 18 8
AON-12 [GUAC|C*'T*T*T*G*G*C*C*[CGCG] 16 8
AON-13  [GUACC]|T*T*T*G*G*C*[CCGCG] 16 6

[N], RNA in 2’-OMe backbone (wings); N*phosphorothioate (ps) DNA (DNA gap).

sequencing of PRC products amplified in RNA samples collected
from AON-3-treated fibroblasts. Complete silencing of the mutant
allele and near-normal sequencing chromatogram was detected in
fibroblasts after AON-3 treatment (Figure 3C).

To further determine the efficacy of these AONs, we lowered the AON
concentration to 10 nM and measured the effect on mutant-allele
expression (Figure 4A). At this concentration, the superiority of
mRNA-targeting AONs became more evident than pre-mRNA-target-
ing AONs. AON-2 and AON-3 were the most efficient AONs and
showed an approximate 80% suppression on the mutant transcripts
at 10 nM. By using ANOVA, we compared the efficiency of AON-3,
AON-4, and AON-5, the three 22-mer, 18-mer, and 16-mer mRNA-
targeting AONs with the same 8-nt DNA gap. There were significant
differences in the efficiency on mutant-transcript suppression between
AONs with different lengths in both the 10 nM and 100 nM AON-
treated groups (Figure 4B, p <0.0001). The 22-mer AON gave the great-
est efficiency, followed by the 18-mer AON and then the 16-mer AON.

Gapmer AONs Selectively Silence the Mutant Transcripts in a
Dose-Dependent Manner

To understand the range of effective concentrations of the lead
gapmer AON in silencing the mutant transcripts, we treated patient

fibroblasts with AON-3 at concentrations of 1, 2, 5, 10, and 20 nM
for 24 hr. A clear dose response was detected starting as low as
2 nM and reached 50% suppression (ICs) at concentrations between
5 nM and 10 nM. A reduction of approximately 90% of the mutant
transcripts was detected in cells treated at 20 nM (Figure 4C).

To exclude the possible suppression on the wild-type transcripts by
AONs, a potential undesirable off-target effect, we examined the
effect of AON-3 on COL6A3 transcripts in fibroblasts from a healthy
donor. Control fibroblasts were treated with AON-3 at 20, 50, and
100 nM for 24 hr. Quantitative reverse transcript real-time PCR
was performed to measure the abundance of the wild-type COL6A3
transcripts (Figure 4D), normalized to endogenous 18S transcripts.
At 100 nM, COL6A3 wild-type transcripts were reduced by approxi-
mately 50% (p < 0.05). A slight reduction (~25%) of the wild-type
transcripts was also detected in 50 nM AON-3 treated cells, although
this was not statistically significant. No transcript reduction occurred
in cells treated at 20 nM. We therefore chose 20 nM as the concentra-
tion for the subsequent protein studies.

Gapmer AONs Decreased Intracellular Collagen VI Retention
and Increased Collagen VI Deposition in the ECM in UCMD
Fibroblasts

Significant accumulation of intracellular collagen VI is a typical
feature in cultures of UCMD fibroblasts.”> The UCMD fibroblasts
used in this study displayed strong intracellular collagen VI retention,
detected when collagen VI protein was stained on permeabilized cells
treated by 0.1% Triton in blocking buffer (Figure 5). Patient fibro-
blasts were treated with 20 nM AON-2 and AON-3 for 24 hr in
transfection medium and then replaced with growth medium with
50 pg/mL ascorbic acid for another 24 hr before being processed
for immunostaining. The retention of intracellular collagen VI was
markedly reduced and accompanied by increased collagen VI protein
deposition in the ECM (Figure 5).

In unpermeabilized cells, where immunofluorescence staining only
detects collagen VI in the ECM, collagen VI fibrils were dramatically
reduced in patient fibroblasts and replaced by a discontinuous and
speckled staining pattern (Figure 6). After a single AON-3 treatment
at 20 nM, the pattern of collagen deposition changed to linear fibrils,
similar to the pattern in healthy control fibroblasts (Figure 6).

Fibronectin is another main component of the ECM and associates
with collagen VI in cultured fibroblasts, although the two microfi-
brillar systems do not completely co-localize.** To examine the effect
of AON treatment on the organization of collagen VI and fibronectin
in UCMD fibroblasts, we performed double staining of collagen
VI and fibronectin in the unpermeabilized cells (Figure 7A). Studies
in Col6a null mice and CMD patient fibroblast cultures showed
that fibronectin levels and expression were similar to controls and
indicates that the synthesis and secretion of fibronectin is not depen-
dent on collagen VI synthesis or its secretion in the culture medium.**
We therefore performed semiquantitative fluorescence imaging anal-
ysis of ECM collagen VI abundance and used fibronectin as a control
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Figure 3. Suppression of Mutant Transcripts by Gapmer AONs

A fibroblast cell line from a UCMD patient carrying the 18-nt heterozygous genomic deletion in exon 15 of COL6A3 was treated with AONs at 100 nM for 24 hr by targeting
either mRNA (A) or pre-mRNA (B) sequences. The efficiency of AONs on suppression of mutant transcripts was measured by semiquantitative one-step reverse transcript
PCR. The percentage of PCR band intensity of the mutant transcripts to total transcripts (Mt/WT+Mt (%)) was used to measure the efficiency of mutant allele suppression. The
AON-Scr-treated UCMD fibroblast was used as control. Measurement was performed in three individual experiments. *AON-2 and AON-3, targeting the mRNA sequences
with 22-mer long and a DNA gap size of 8-10 nt, showed the most significant suppression on mutant transcripts. (C) Sanger sequencing showed the silencing of the mutant
allele in patient fibroblasts after AON-3 treatment. Data are presented as mean + SEM.

ECM protein marker. Images were analyzed and quantified using
Image] software. The analysis of the area of collagen-VI-positive
fibrils relative to that of fibronectin-positive fibrils was compared
between scrambled and AON-3-treated patient fibroblasts and
healthy control fibroblasts. There was a strong reduction in ECM
collagen VI abundance in the scrambled AON-treated patient’s fibro-
blast compared to the healthy control (p < 0.0001), and was signifi-
cantly increased after AON-3 treatment (p < 0.01), although the
expression was still below the level of the healthy control (p < 0.05)
(Figure 7B).

To quantitatively determine the change of ECM collagen VI, we per-
formed flow cytometry of collagen VI a3 in cultured fibroblasts.”” The
standard operating procedure of the collagen VI flow cytometry assay
used in the diagnostic services in our laboratory is a 5-day procedure,
starting from fibroblast seeding to final cell harvest for detection.
Considering the longer procedure time (5 days) than immunohisto-
chemistry (2 days), we therefore performed two consecutive transfec-
tions in fibroblast cultures. Patient fibroblasts received two 20 nM
AON-2, AON-3, or scrambled AON (AON-Scr) treatments at

420 Molecular Therapy: Nucleic Acids Vol. 8 September 2017

48-hr intervals and 50 pg/mL L-ascorbic acid for 24 hr on the last
day before being processed for the flow cytometry assay. The mean
fluorescence intensity (MFI) in the scrambled AON-treated fibroblast
(1,641 + 35.69; n = 3) was dramatically reduced compared to the
healthy control (4,117 + 222.8; n = 3; p < 0.0001). This equated
to 40% of healthy control levels. The MFI in patient fibroblasts
was significantly improved after AON-2 (2,653 + 11.17; n = 3;
p < 0.001) and AON-3 (2,570 + 155.7; n = 3; p < 0.001) treatment
to approximately 60% of the healthy control levels (Figure 8).

DISCUSSION

In this study, we describe for the first time the development of an
allele-specific silencing approach using gapmer AONs to diminish
the dominant-negative effect in a UCMD fibroblast cell line carrying
a dominant mutation in the COL6A3 gene.

Gapmer is a chimeric AON that contains a central sequence of phos-
phorothioate DNA nucleotides (“DNA gap”) flanked by sequences of
modified RNA residues at each end to protect the DNA gap from
nuclease degradation, whereas the central DNA gap region allows
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Figure 4. AON-3 Suppressed the Mutant Transcripts in a Dose-Dependent Manner

(A) One-step reverse transcript PCR of mRNA isolated from patient fibroblasts treated with 13 AONs at 10 nM. Measurement was performed in three individual experiments
(n = 3 per concentration). *AON-2 and AON-3 exhibited the most efficient suppression, over 80%, on the mutant transcripts. (B) Comparison of the efficiency of AON-3
(22-mer), AON-4 (18-mer), and AON-5 (16-mer), all with the same 8-nt DNA gap, in suppressing the mutant transcripts at concentrations of 10 nM and 100 nM, respectively.
There was a significant difference between AONs with different lengths (*p < 0.05; **p < 0.01; **p < 0.001; n = 3 per group). (C) Fibroblasts were treated with AON-3 at
a range of concentrations of between 1 nM and 20 nM. The IC5, was identified at 5-10 nM. There was an approximately 90% reduction of the mutant transcripts in cells
treated at 20 nM (n = 4 per concentration). (D) Effects of AON-3 on wild-type transcripts (n = 3 per concentration). At 100 nM, approximately 50% of wild-type COLEA3
transcripts were affected (“p < 0.05). No transcript reduction was detected at 20 nM. Data are presented as mean + SEM.
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Figure 5. Gapmer AON Decreased Intracellular Collagen VI Retention and
Increased Its ECM Deposition in Fibroblasts

The fibroblasts were permeabilized by 0.1% Triton in blocking buffer during
immunostaining. Strong intracellular accumulation was observed in patient’s un-
treated fibroblasts (UCMD) compared to healthy control fibroblasts, where collagen
VI was localized in the ECM. After a single treatment of AON-2 (UCMD+AON-2) or
AON-3 (UCMD+AON-3) at 20 nM, the retention of intracellular collagen VI was
markedly reduced, although it was notable occasionally in some cells (asterisk) and
accompanied by partial deposition in the ECM (arrow).

RNase-H-mediated cleavage of the target RNA.*® RNase-H-mediated
RNA degradation by gapmer AONs is a commonly used strategy to
regulate gene expression. Increasing numbers of second generation
gapmer AONs, with 2'-O-modifications (ie., 2'-O-methoxy-ethyl
and 2'-OMe), have proceeded to different phases of clinical trials
in the last decade and have expanded to many disease fields (see
review” ). RNase H is a ubiquitous enzyme found in both the
nucleus and cytoplasm of all cells. Although the majority of the intra-
cellular RNase H is localized in the nucleus,’! far lower but still detect-
able amounts (~5%) are present in the cytoplasm.3 % The relative
contribution of RNase H in these two different cellular compartments
is still unclear. Observations that gapmer AONSs efficiently silence
gene expression by targeting intron sequences,*’
to be only found in the nucleus, or nuclear RNA*** and nuclear
long non-coding RNA (IncRNA),”” suggest that the nucleus is the
major cellular compartment where gapmer AONs have effect. Activ-
ity in the cytoplasm is less clear. However, a recent report of a cyto-
plasmic pathway for gapmer AON-mediated gene silencing in
mammalian cells provides a new mechanism® and suggests that
nuclear targeting is not an absolute requirement for gene silencing.

which are assumed

In this study, we designed two groups of gapmer AONs that targeted
mRNA and pre-mRNA sequences, respectively. Our study showed
that although both groups presented efficiency in allele-specific
silencing, the AONs targeting mRNA levels are superior to those
targeting pre-mRNA levels (Figure 3). In this case, it is possible
that both nucleus and cytoplasmic RNase H mechanisms are involved
in this process. The differential efficiencies between AONSs targeting
exon and intron sequences have also been reported previously
in other genes.”” Possible reasons why AONs targeting mRNA
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sequences work better than pre-mRNA sequences in the COL6A3
gene may include (1) the difference in the secondary structures of
the two sequences; (2) different uptake efficiency of AONGs in different
cellular compartments; and (3) cellular localization of target tran-
scripts. The secondary structure of the target mRNA or pre-mRNA
is an important determinant of activity for all RNA-related therapies,
including siRNA and AONss for gene silencing and splicing modula-
tion. It is assumed that the predicted secondary structure of the
mutant allele at the pre-mRNA level containing intron sequences is
different from the structure of mature mRNA in this case. The cellular
uptake of AON is predominantly mediated by endocytosis. AONs
then continuously shuttle between cytoplasm and the nucleus
through yet an unidentified cellular pathway with molecules that
undergo nucleo-cytoplasmic transport.”” Understanding of the path-
ways that result in efficient AON trafficking to different intracellular
active compartments, and especially between cytoplasm and nucleus,
will help to figure out the difference observed above between the two
AON target groups. It is thought that mature protein-coding mRNAs
predominantly reside in the cytoplasm for subsequent protein
synthesis, whereas pre-mRNA exclusively resides in the nucleus. It
is therefore possible that the abundant COL6A3 transcripts in the
cytoplasm of the cell line in our study may influence the gapmer
AON activities.

To elicit mRNA degradation by RNase H, a gap of at least 5 consec-
utive phosphorothioate DNA nt, with 7-10 being optimal, is usually
incorporated into the design of gapmer AON.***® In this study, we
compared a number of different lengths of the gapmer AON
sequences (16-, 18-, and 22-mer), and the central DNA gap (6, 8,
10, and 12 nt). Our findings showed that the best antisense activity
was found with 22-mer gapmers and a DNA gap size of between
8 and 10 nt (Figures 3 and 4). Length of AONs is also an important
parameter in determining the antisense activities in different applica-
tions.””*” Gapmer AONSs are typically composed of 16-22 nt for
general gene silencing. Usually, the longer the sequence, the stronger
the binding affinity. However, in the case of allele-specific gene
silencing, a long AON sequence may reduce its specificity in discrim-
inating the mutant and wild-type alleles. Therefore, calibrating the
length of AONs and the size of the DNA gap is required in the design
of allele-specific silencing gapmer AONS.

The effective concentration (ICsy) of the lead gapmer AON deter-
mined in this study was as low as 5-10 nM (Figure 4C). An undesir-
able and significant off-target effect on the wild-type transcripts was
detected at the higher concentration of 100 nM. Although it is 10-fold
higher than the ICs, the possibility of adverse events related to the
targeting of the wild-type sequence by the gapmer AON needs to
be taken into consideration when evaluating future in vivo studies.
Newer generations of oligonucleotide chemical modifications may
be applied to overcome this limitation of gapmer AON in the
2’-OMe backbone.

Further chemical modifications of the sugar at the 2/ position, such as
2'-OMe, 2'-O-methoxy-ethyl (2’-MOE), and locked nucleic acids
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(LNAs), improve the RNA-binding affinity, increase resistance to the
endonuclease, decrease toxicity, and prolong tissue half-life and pre-
serve RNase H activation to the RNA:AON duplex. LNA gapmer
AONSs with two or three LNA moieties placed at the 3’ and 5 ends
have been widely used in gene silencing,*® However, the striking acute
hepatotoxicity induced by some LNA gapmer AONSs in mice in pre-
clinical studies have limited the clinical development of this chemical
modification.”’ In contrast, 2’-MOE gapmer AONs have a more
favorable safety profile, as suggested by a number of clinical studies.*”
Moreover, systemically administered MOE gapmer AONSs, when tar-
geting transcripts with prolonged nuclear residence, can enter skeletal
muscle fibers and cause rapid target gene knockdown via RNase H1 in
the transgenic mouse model of myotonic dystrophy.** Gapmer AONs
with another sugar modification, such as the 2’-deoxy-2’-fluoro-B-D-
arabinonucleic acid (2'F-ANA), have also improved RNase H activity
and reduced cell toxicity.'®**
of gapmer AON with the 2’-OMe modification in this study. Investi-
gations of more chemical modifications, such as MOE and 2'F-ANA,
may provide more efficient candidates for the allele-specific silencing
approach in COL6-CMD.

We only measured the cellular activity

Because interstitial fibroblasts are the main source of collagen 6 syn-
thesis in skeletal muscle,* the uptake and efficiency of gapmer AONs
in skeletal-muscle-originated interstitial fibroblasts is yet to be eluci-
dated. Although modified AONs such as MOE, LNA, 2'F-ANA, and
other emerging ones may improve the biodistribution, advanced
technology, such as cell-penetrating peptide-mediated oligonucleo-
tide therapy, may also provide further benefit.*’

Allele-specific knockdown using siRNA has been reported to effi-
ciently and selectively silence the mutant mRNA transcripts in
UCMD with dominant mutations in COL6 genes, such as the hetero-
zygous exon 16 deletion in the COL6A3 gene,"” and the missense
c.850G > A (p.G284R) mutation in the COL6AI gene.'® Treatment
with lead siRNAs reduced intracellular collagen VI retention and
increased the quantity and quality of collagen VI microfibrils assem-
bled in the ECM."” Although siRNA is potent and effective in gene
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Figure 6. Effect of AON-3 on Collagen VI Deposition
in the ECM

Representative images of collagen VI a3 staining (in green)
in unpermeabilized fibroblasts treated with scrambled
AON (UCMD+AON-Scr), AON-3 (UCMD+AON-3), and
healthy control fibroblasts. Higher magnification of the
images is presented in the lower panel. Scale bar, 25 pm
and 50 pm, respectively.

silencing in in vitro cell-based assays, hurdles
such as the poor in vivo stability of the unmod-
ified nucleotides, passive delivery and ineffective
uptake to target cells, potential off-target effects,
and immune stimulation have hampered its
translation from the bench to further clinical
application.'® Approaches, including chemical
modifications of the RNA bases and packaging into advanced in vivo
delivery cargos and an alternative form of short hairpin RNAs
(shRNAs) with viral vectors, may be applied to improve the stability
and uptake of siRNA in vivo.

AON technology offers great potential for conditions that cannot be
impacted by traditional drugs. This technology has been applied as
experimental therapies in a number of neuromuscular disorders by
targeting different modulatory mechanisms in RNA processing and
has shown tremendous potential in treating these otherwise untreat-
able diseases.’® The two very recent accelerated approvals by the Food
and Drug Administration (FDA) of Eteplirsen, a phosphorodiami-
date morpholino AON that modulates splicing in the Dystrophin
gene to treat patients with Duchenne muscular dystrophy,*”*® and
Nusinersen, an MOE AON that modulates splicing in the SMN2
gene to treat patients with spinal muscular atrophy,**°
step forward in facilitating AONSs as therapeutic strategies in genetic
diseases and will undoubtedly promote similar development in other
neuromuscular diseases. Our group and others have provided strong
and promising proof-of-concept studies on allele-specific silencing as
a therapeutic strategy for COL6-CMD by investigating various RNA-
related approaches. Future studies on the efficacy of gapmer AON-
induced allele-specific silencing in vivo in animal models are required
prior to its translation to clinical evaluation.

are a huge

In conclusion, we have designed and critically evaluated gapmer
AON:s to elicit allele-specific silencing on dominant mutation in the
COL6A3 gene in patient fibroblasts. Gapmer AONs targeting
mRNA sequences, with a length of 22-mer and a DNA gap size of
8-10 nt gave the most efficient allele-specific silencing effect. The
effective concentration can be as low as 5-10 nM, whereas a high
concentration is associated with off-target effects. This design princi-
ple can be applied to target a broad range of mutations with domi-
nant-negative effects in any COL6A1, COL6A2, and COL6A3 genes.
This AON approach may benefit more than 50% of UCMD and
nearly all Bethlem myopathy patients that are affected by dominant
mutations in one of three COL6A genes. The next step will be to
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validate gapmer AONGs in different chemical modifications and in vivo
in the relevant mouse model and eventually translate to clinical
studies.

MATERIALS AND METHODS

COLG6A3 Mutation and AON Design

The mutation in the UCMD patient whose fibroblasts were used for
this study is a heterozygous 18-nt genomic deletion in exon 15 of
the COL6A3 gene (c.6135_6152del; p.1le2046_Pro2051del). This de
novo in-frame 6-aa deletion has been confirmed at both genomic
DNA and mRNA levels. A series of gapmer AONs were designed
to target the mutation and its flanking sequences at both pre-
mRNA and mRNA levels (Table 1). The RNase H activating ps
DNA domain (DNA gap) is flanked by short RNA sequences in the
2'-OMe backbone at the 5" and 3’ end to protect the AONs from
degradation by nucleases. Lengths ranging from 16 to 22 bases for
the entire sequence and 6 to 12 bases for the DNA gap were designed
and analyzed in the study.

Cell Culture and Transfection

A fibroblast cell line was established from a skin biopsy of the patient
with written informed consent of parents. The Declaration of
Helsinki protocols were followed. The study was approved by the
Berkshire Research Ethics Committee (REC reference 05/MRE
12/32). Fibroblasts were supplied by the MRC Center for Neuromus-
cular Diseases Biobank London (REC reference number 06/Q0406/
33, http://www.cnmd.ac.uk). Fibroblasts were cultured in growth
medium, DMEM supplemented with 10% fetal bovine serum (FBS)
and 1% glutamax, at 37°C and 5% CO,. Cells were seeded into
six-well plates at a concentration of 2 x 10° cells per well, which gives
90% confluence when transfected on the next day. For the immuno-
fluorescence study, a 12-mm diameter glass coverslip pre-coated with
collagen (BD Discovery) was placed in the culture dish before cell
seeding. Lipofectamine 2000 (Life Technologies) was used as the
transfection reagent to complex AONs in Opti-MEM (Life Technol-
ogies) according to the manufacturer’s instructions.
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Figure 7. Gapmer AON Increased ECM Deposition
of Collagen VI in Co-staining with Fibronectin in
Fibroblast

(A) Double immunostaining of collagen 6 (green) and
fibronectin (red) was performed in a patient’s unper-
meabilized fibroblasts treated with scrambled AON
(UCMD+AON-Scr) and AON-3 (UCMD+AON-3) and
compared with staining in fibroblasts from a healthy
control. Scale bar, 30 um. (B) Semiquantification of the
fluorescence signals from collagen 6, relative to the sig-
nals from fibronectin, was performed using ImageJ soft-
ware. Three to four images were captured from each
coverslip, and the experiment was performed in triplicate
(*p < 0.05; **p < 0.01; **p < 0.001; n = 9-12 images/
group). Data are presented as mean + SEM.

Reverse-Transcription One-Step PCR and Gel Analysis

For studies at the RNA level, fibroblasts were treated with gapmer
AON:s at final concentrations ranging from 1 to 100 nM in transfec-
tion medium. Cells were harvested 24 hr post-transfection for RNA
extraction. Total RNA from the cultured cells was extracted with
the RNeasy kit (QIAGEN). The concentration of total RNA was
measured by the NanoDrop spectrophotometer (Thermo Scienti-
fic). The amount of 100 ng of total RNA was used in one-step
reverse-transcription PCR (QIAGEN) to amplify the transcripts.
The primers (forward: 5-TGG GCA GAG GGG AGA C-3' and
reverse: 5’-TCT TCT CCA GGA ATA CCC TTT-3') were used to
amplify the wild-type allele (82 bp) and mutant allele (64 bp).
A 240-bp PCR product was also amplified for Sanger sequencing,
with forward primer: 5-CCC TGA GGC TTA ACT TGC TG-3
and reverse primer: 5-AAA CCT TGA GTG CCG TTC AC-3.
The products were amplified semiquantitatively as follows: a
reverse-transcription reaction at 50°C for 30 min and the initial
PCR activation step at 95°C for 15 min. These were followed by
three-step cycling as denaturation at 94°C for 30 s, annealing at
60°C for 30 s, and extension at 72°C for 30 s, for a total of 26 cycles,
and finished at 72°C for 10 min as the final extension. PCR samples
were run on a 3% (for the 64- and 82-bp products) or 2% (for the
240-bp product for sequencing) agarose gel and visualized under
the Gel Doc XR imaging system (Bio-Rad). The intensity of each
PCR band was quantified using Image] software (https://imagej.
nih.gov). Sanger sequencing service was provided by Source
BioScience.

Quantitative Reverse-Transcript Real-Time PCR

500 ng of RNA was used for first-strand cDNA synthesis with a
Superscript III reverse transcription kit (Life Technologies). Quan-
titative real-time PCR was performed using the Takyon Rox SYBR
qPCR kit (Eurogentec). The primer set, forward 5'-CAT CGG CAG
CAT CGG-3' (in exon 15) and reverse 5-AAA CCT TGA GTG
CCG TTC AC-3' (in exon 17), was used for the amplification of
a 117-bp product of the wild-type COL6A3 gene in healthy control
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Figure 8. Quantification of ECM Collagen VI a3
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Protein in Fibroblasts by Flow Cytometry

(A) Representative flow cytometry images of collagen VI .3
analysis. Flow cytometry analysis was performed in patient
fibroblasts treated with AON-Scr, AON-2, and AON-3 and
healthy control fibroblasts. A total of 10,000 cells were
collected and gated using the side scatter on the y axis
and fluorescence intensity of collagen VI a3 immunolab-
eling (FL8 log-APC) on the x axis. (B) The MFI of collagen VI
a3 in fibroblasts treated with scrambled control AON
(1,658 + 37.16; n = 3) was dramatically reduced
compared to the MFI in healthy control cells (4,107 +

FL8 Log: APC

AON-3

FL8 Log:APC

222.9; n = 3; p < 0.0001). This was significantly increased
after AON-2 (2,582 + 13.58; n = 3) and AON-3 (2,516 =
160.4; n = 3; **p < 0.01) treatment. Data are presented as
mean + SEM.
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Immunofluorescence Staining

24 hr after AON transfection, the culture
medium was changed to growth medium con-
taining 50 pg/mL ascorbic acid for another
24 hr. Cells on coverslips were then fixed with
4% paraformaldehyde for 10 min at room tem-
perature and rinsed in PBS. After 1-hr blocking
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in 5% goat serum in PBS, coverslips were incu-
bated for 1 hr at room temperature with
the following primary antibodies: rabbit anti-
collagen VI alpha3 chain-specific antibody
(HPA010080; dilution 1:50, Sigma-Aldrich)
and mouse anti-fibronectin antibody (F0791;
dilution 1:100, Sigma-Aldrich). For intracellular
collagen VT staining, 0.1% Triton was added in
the blocking buffer for cell permeabilization.
Coverslips were washed three times in PBS
and then incubated with secondary antibodies
(goat anti-mouse Alexa-594 and goat anti-rabbit
Alexa 488; 1:500 dilution; Life Technologies) in
PBS for 1 hr at room temperature. Coverslips

~
&8
Qpb

fibroblasts. PCR and analysis were performed with StepOne real-
time PCR systems (Applied Biosystems) using the recommended
program: activation at 95°C for 3 min, 40 cycles of denaturation
at 95°C for 3 s, and annealing extension at 60°C for 30 s. Human
18S was used as the reference gene. Quantification was based on
concurrent standard curves produced from serial dilutions of
c¢DNA from the untreated healthy control fibroblasts. The cycle
at which the amount of fluorescence was above the threshold
(Ct) was detected. The ratios of wild-type COL6A3 to 18S of the
treated samples were normalized, taking the ratio of the untreated
sample as 1.0.

were washed three times and nuclei were stained

with Hoechst 33258 (Promega) for 5 min.

Coverslips were mounted with Fluoromount

(Southern-Biotech) and viewed under the Leica

DMR fluorescence microscope. Images were
captured digitally using Metamorph software (Universal Imaging),
with fixed setting on exposure for all the slides. The semiquantifica-
tion of ECM collagen VI expression in immunofluorescence staining
was analyzed by Image] software, normalized to fibronectin ECM
expression captured in the same image.

Flow Cytometry Analysis

1.0 x 10° fibroblasts were seeded in 75 cm? tissue culture flasks (BD)
in growth medium to achieve 90% confluence on the next day. Cells
were transfected with AONs at 20 nM. 24 hr after this, the medium
was replaced with growth medium for another 24 hr. This was then
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followed by the second 24-hr AON transfection, and medium was
changed to growth medium for a further 24 hr. 50 ng/mL ascorbic
acid was added for the final 24-hr incubation. Cells were detached
using a non-enzymatic cell dissociation solution (Sigma), washed
twice with PBS (Mg2+ and Ca?* free, Life Technologies), and centri-
fuged for 5 min at 500 x g. Cells were fixed by incubating with 2%
paraformaldehyde in PBS for 15 min on ice. Following fixation, cells
were washed three times with PBS supplemented with 0.1% FBS and
centrifuged at 1,850 x g for 4 min. Cell pellets were re-suspended
and incubated with the polyclonal rabbit anti-collagen VI a3
chain-specific antibody (HPA010080; dilution 1:20, Sigma) diluted
in PBS/0.1% FBS for 30 min on ice, washed twice in PBS/0.1%
FBS, and centrifuged at 1,850 x g for 4 min. For a negative control
in each group, cells were incubated with an equivalent amount of
0.1% FBS/PBS without the primary antibody. Cells were then incu-
bated with donkey anti-rabbit immunoglobulin G (IgG) conjugated
to Alexa Fluor 647, (A-31573; dilution 1:100; Life Technologies)
diluted in PBS/0.1% FBS for 20 min on ice, washed twice in
PBS/0.1% FBS, and centrifuged at 1,850 x g for 4 min. Cell pellets
were re-suspended in PBS and transferred to FACS tubes (BD
Biosciences). Cells were immediately analyzed using the CyAn
ADP Flow Cytometer equipped with a 488-nm blue laser and a
635-nm red diode (Beckman Coulter). A total of 10,000 cells were
acquired and subsequently analyzed using FlowJo software version
7.6.5 (Tree Star). The negative control was used to set up the
collagen VI gate and remove the level of background fluorescence.
The amount of collagen VI was assessed by the MFI of ECM
collagen VI a3 expression.

Statistical Analysis

GraphPad Prism 5.0 software was used for statistical analysis and
graph design. Data were presented as mean = SEM. One-way
ANOVA and post Bonferroni test were used to determine statistical
significance when comparing more than two groups. Student’s t test
was used for statistical analysis of two groups of data.
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