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Chronic electromyograms in treadmill running SOD1 mice
reveal early changes in muscle activation
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Key points

� The present study demonstrates that electromyograms (EMGs) obtained during locomotor
activity in mice were effective for identification of early physiological markers of amyotrophic
lateral sclerosis (ALS). These measures could be used to evaluate therapeutic intervention
strategies in animal models of ALS.

� Several parameters of locomotor activity were shifted early in the disease time course in
SOD1G93A mice, especially when the treadmill was inclined, including intermuscular phase,
burst skew and amplitude of the locomotor bursts.

� The results of the present study indicate that early compensatory changes may be taking place
within the neural network controlling locomotor activity, including spinal interneurons.

� Locomotor EMGs could have potential use as a clinical diagnostic tool.

Abstract To improve our understanding of early disease mechanisms and to identify reliable
biomarkers of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, we
measured electromyogram (EMG) activity in hind limb muscles of SOD1G93A mice. By contrast
to clinical diagnostic measures using EMGs, which are performed on quiescent patients, we
monitored activity during treadmill running aiming to detect presymptomatic changes in motor
patterning. Chronic EMG electrodes were implanted into vastus lateralis, biceps femoris posterior,
lateral gastrocnemius and tibialis anterior in mice from postnatal day 55 to 100 and the results
obtained were assessed using linear mixed models. We evaluated differences in parameters related
to EMG amplitude (peak and area) and timing (phase and skew, a measure of burst shape) when
animals ran on level and inclined treadmills. There were significant changes in both the timing
of activity and the amplitude of EMG bursts in SOD1G93A mice. Significant differences between
wild-type and SOD1G93A mice were mainly observed when animals locomoted on inclined
treadmills. All muscles had significant effects of mutation that were independent of age. These
novel results indicate (i) locomotor EMG activity might be an early measure of disease onset;
(ii) alterations in locomotor patterning may reflect changes in neuronal drive and compensation
at the network level including altered activity of spinal interneurons; and (iii) the increased
power output necessary on an inclined treadmill was important in revealing altered activity in
SOD1G93A mice.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neuro-
degenerative disease marked by muscle wasting, cortical
and spinal motoneuron dysfunction, eventually leading
to a complete loss of motor control (Simon et al. 2014).
Although finding treatments for ALS has proven difficult,
new therapies could be on the horizon (Vucic et al. 2014;
Wainger et al. 2014; Bartus et al. 2016; Riancho et al. 2016).
Unfortunately, the effectiveness of these new treatments
may be constrained by limitations of diagnostic protocols.
By the time that patients are diagnosed, motor unit loss is
well underway (Sobue et al. 1983). Both earlier diagnosis
and more effective treatments are crucial for preventing
the loss of motor function in ALS.

The present study aimed to identify early markers of
ALS in animal models by looking for functional changes in
EMGs. Although fasciculations, fibrillations and positive
sharp waves in electromyogram (EMG) traces from
quiescent ALS patients are diagnostically significant (de
Carvalho et al. 2008), much less is known about how EMG
activity is altered during co-ordinated locomotor activity,
such as walking or running. One previous study found an
abnormality in activity in tibialis anterior (TA) starting
at postnatal day (P)84 in SOD1G93A mice (Akay, 2014),
and another study described functional abnormalities in
stance, paw placement and grip strength (Vinsant et al.
2013a, b), although neither study performed a full analysis
of locomotor-evoked EMG activity. Although comprising
a more invasive technique, the EMG approach used in
the present study increases the sensitivity of our results
and provides additional insight into changes in neuro-
muscular drive. There is a wealth of evidence indicating
that both upper and lower motor neuron properties are
significantly altered before loss of motor units (Kuo et al.
2004, 2005; Bories et al. 2007; Amendola & Durand,
2008; Pambo-Pambo et al. 2009; Pieri et al. 2009, 2013;
Quinlan, 2011; Filipchuk & Durand, 2012; Jara et al. 2012;
Martin et al. 2013; Leroy et al. 2014; Fogarty et al. 2015;
Quinlan et al. 2015; Saba et al. 2015). Even after the
first motor units fail, overt symptoms such tremors do
not appear in the SOD1G93A mouse for over 1 month
(Hegedus et al. 2007). Thus, changes within the neurons
and networks controlling motor output begin long before
gross functional losses. It appears that the nervous system
is able to compensate for the loss of a great number
of motor units before functional decline. Our hypo-
theses are (i) that the delay between motor unit loss and
functional decline is provided by compensatory shifts in
motor patterning and (ii) that these shifts in patterning
will be detectable using EMGs. In particular, muscles that
are predominately composed of the most vulnerable fast
fatigable (FF) and fast fatigue resistant (FR) motor units
(Pun et al. 2006; Hegedus et al. 2007) may progressively
carry less of the burden of force production, whereas

an increased burden may be taken on by muscles that
are predominantly composed of slow (S) fibres, and thus
are more resistant. Such a compensatory shift in activity
would not necessarily be observable from gross locomotor
kinematics but requires EMG recordings. Our results show
EMG patterns during locomotor activity are altered in
ALS, potentially reflecting early changes in the central
patterning of motor activity and, importantly, providing
new tools for experimental evaluations of ALS.

Methods

Ethical approval

Northwestern University Animal Care and Usage
Committee approved all animal procedures, and all studies
were conducted in accordance with the United States
Public Health Service’s Policy on Humane Care and Use
of Laboratory Animals. All steps were taken to minimize
any pain and suffering of animals used in the present
study. The authors understand the ethical principles under
which The Journal of Physiology operates and ensure that
this work complies with all points in the animal ethics
checklist (Grundy, 2015).

SOD1 mouse model

We examined the hind limb EMG activity in a commonly
used animal model of ALS overexpressing a point-mutated
form of the human SOD1 gene (Gurney et al. 1994).
Transgenic mice (SOD1G93A; www.jax.org/strain/002726)
were compared with a control group that overexpresses
wild-type (WT) human SOD1 gene (SOD1WT; www.jax.
org/strain/002297). We used 12 adult B6SJL SOD1G93A

and SOD1WT transgenic mice of both sexes: four G93A
male, four G93A female, two WT male and two WT
female. Food and water was provided ad libitum and mice
were housed singly. Recordings were made in a period
including pre-symptomatic and symptomatic time points
[post-embryonic day (P)55–100], overlapping the onset of
overt symptoms in these animals at P90. Each mouse was
implanted with eight EMG electrodes (four per hind limb).

Implantation of EMG electrodes

Electrodes were surgically implanted into the muscles as
described previously (Tysseling et al. 2013). Briefly, mice
were anaesthetized with the inhalation anaesthetic, iso-
flurane (1–3%) and prepared for aseptic surgery. Each
set of electrodes was placed in the thick portion of the
muscle with these specifications: distal muscle belly of
vastus lateralis (VL), mid-muscle belly of biceps femoris
posterior (BFP) and TA and distal muscle belly of lateral
gastrocnemius (LG) to best avoid interference from BFP.
Mice were given Meloxicam (1 mg kg−1) prior to the end
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of surgery and daily thereafter for 48 h after surgery and
after treadmill running. After surgery, mice recovered in
cages warmed with heating pads placed below and were
monitored for any signs of distress. Implantation of EMG
electrodes was well tolerated in all 12 mice. The study
was terminated after P100 when the SOD1G93A mice had
difficulty keeping up with the treadmill. Animals were then
killed by I.P. injection of 150 mg kg−1 Euthasol (Virbac,
Carros, France).

Data collection during treadmill locomotion

After recovery from the implantation (1 week), animals
were placed on a motorized treadmill (Columbus
Instruments, Columbus, OH, USA), locomoted at
30 cm s−1 on a flat (0°) and inclined (20°) treadmill for
3 min (each condition), during which the entire session
was recorded. The back connector was attached to a cable
and the signals were amplified (X5000, Model 1700
Differential Amplifier; A-M Systems, Carlsborg, WA,
USA) and bandpass filtered (30–1000 Hz) prior to
being sampled (2500 Hz; 16 bit, PCI-6229; National
Instruments, Austin, TX, USA) using custom routines
created in LabVIEW (National Instruments). Analyses
were performed in Matlab (Mathworks, Natick, MA)
using customized routines and Merlin software (Rossignol
Laboratory, University of Montreal, Montreal, QC,
Canada). All recordings underwent high pass digital

filtering (second order Butterworth, 50 Hz cut-off) to
minimize movement artefact prior to analysis. Quality
control of the EMGs was performed at several stages.
During experimentation, mice were monitored for
damaged wires, and channels were removed from analysis
as necessary. Mice were examined post mortem to verify
proper electrode placement and channels were removed
from analysis as necessary. Finally, a blind assessment was
performed on the quality of raw EMG data: each channel
was rated for the signal quality from 1 to 6 (1–2 is best
quality: signal to noise ratio is high, there is no movement
artefact and bursts are clearly defined; 3–4: signal to noise
ratio is not high but bursting is still clearly distinguishable;
5–6: locomotor bursts cannot be distinguished from noise
or wires were damaged; often channels were turned off
during data collection in the last case). Any channel rated
below 4 was dropped from the analysis. Typical raw data
are shown in Fig. 1. In Fig. 1A, all channels were rated
2 except for RLG, which was rated 5 at both time points
and was not included in the analysis. In Fig. 1B, at P69, all
channels were rated as 2, except for RTA (rated 3) and RLG
(rated 4). At P100, the SOD1G93A channels were rated 2
(LVL and LLG), 3 (LBFP, LTA, RBFP), 5 (RTA and RLG,
these channels were not included in the final analysis) and
6 (RVL, as a result of a disconnected wire, this channel was
turned off). All experimenters were blinded during data
collection and analysis. All analysis was performed by a
laboratory member with EMG expertise.

LVL
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P69 WT P100 WT

P100 G93AP69 G93A

LBFP

LTA

LLG

RVL

RBFP

RTA

RLG

LVL
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Figure 1. In vivo EMG recording
Raw EMG traces (prior to digital filtering,
rectification and averaging) from two mice: one
SOD1WT (A) and one SOD1G93A (B). At P69,
G93A mice are pre-symptomatic (left traces) and,
at P100, mice are symptomatic (right traces).
Muscle labels apply to traces on both left and
right. Scale bar in (A) = 500 ms applies to all.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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Data analysis

Primary analyses aimed to explore the relationship
between disease status (i.e. mutation) and several outcome
measures related either to burst amplitude (burst peak,
burst area) or to burst timing (phase, skew). Each
parameter was determined from the averaged activity over
about 30 locomotor cycles (using onset of activity in VL
as the marker of cycle onset). Both left and right legs were
used for analysis if both VLs were of acceptable quality
(defined above). Onsets of muscles were correlated with
their ipsilateral VL to determine phase and skew. If the
ipsilateral VL was not of sufficient quality, muscles from
that particular leg were not used for analysis of phase
and skew. Cycle duration was measured in a preliminary
data set without averaging together locomotor cycles and
no differences were found between G93A and WT. Burst
peak was calculated as the maximum amplitude of the
averaged activity for each muscle. Burst area was calculated
as the integrated amplitude of the averaged activity. The
mean phase was calculated as the centre of the averaged
activity for each muscle, as described previously (Klein
et al. 2010). Circular skew of bursts was calculated from
the averaged activity with the Circular Statistics Toolbox
in Matlab (Berens, 2009), using the formula:

b =
∑N

i=1 misin2(αi − ᾱ)
∑N

i=1 mi

where b is the circular skew value, N is the number of
phase samples used, mi is the EMG activity for the ith
sample, ᾱ is the mean phase of the EMG activity and αi

is the phase of the ith sample. Circular skew is directly
analogous to standard measures of skew in non-circular
distributions and reflects the symmetry of the distribution
around its mean as shown in Fig. 2. Negative values of
skew indicate that the EMG activity is mainly concentrated
early in its burst; positive values of skew indicate that
the EMG activity is mainly concentrated late in its burst.
For simplicity, we refer to this measure as burst skew or
skew.

Statistical analysis

We analysed each outcome measure (peak, area, skew,
mean phase) for each muscle group (VL, BFP, TA,
LG) separately using a series of linear mixed models
implemented in Matlab. Because amplitude measures
(peak, area) were non-negative, distributions of these
measures usually violated normality assumptions; we
therefore natural log-transformed these measures prior to
analysis. Inspection of the distribution of mean phases for
each muscle confirmed that they were well clustered within
the locomotor cycle, justifying our use of linear models
to analyse this outcome measure. Although linear mixed
models for circular statistics would be more appropriate

for this measure, such statistical methods are not well
developed at present. All distributions were inspected
for normality and occasional outliers that violated this
assumption were excluded (3/205 data points for LG
peak amplitude and 2/121 data points for TA mean
phase). To account for correlated multiple observations for
each animal, we included random intercept (animal) and
slope (time or age) effects as appropriate. To account for
variability in outcomes due to differences in experimental
conditions (i.e. mutant vs. WT, incline vs. flat) and age, we
included the following fixed terms in an initial model: age,
incline, mutation-by-age interaction, mutation-by-incline
interaction, age-by-incline interaction and a quadratic age
term. Age was treated as a continuous variable; all other
variables were treated as nominal. To avoid convergence
issues because of multicolinearity of the potential pre-
dictors involving age, we centred the age variable for model
building purposes (i.e. subtracted the mean age from each
value). We started with an initial model containing all fixed
terms then eliminated variables one at a time, refitting
the model each time, to obtain the most parsimonious
model. The higher order (interaction and quadratic) terms
were first examined and removed according to descending
magnitude of model type III P value (a criterion of P<0.10
was used to decide whether to include a variable in the

PhaseA

B Skew

–0.5 0 0.5

Figure 2. Schematic of methods for measurement of burst
parameters
All measurements were taken from rectified and averaged traces. A,
mean phase was determined from the timing of activity within the
locomotor cycle (using onset of activity in VL as the marker of cycle
onset). B, idealized traces illustrating three bursts with different
measures of skew. All three bursts have the same mean phase. The
red trace has activity that is symmetrically located around its mean
phase and so corresponds to a skew value of 0. The black trace has
most of its activity located to the left of its mean and so corresponds
to a negative skew value. The grey trace has most of its activity
located to the right of its mean, corresponding to a positive skew
value.
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Table 1. Statistical significance for measured parameters

Variable Incline Age × Incline Age Age2 Mutation Mutation × Age Mutation × Incline

Amplitude VL < 0.0001 0.0010 0.0036
BFp < 0.0001 0.0014 0.0089
LG 0.0008 0.0008 0.0213 < 0.0001
TA 0.0001 0.0097 0.0006 0.0153

Area VL 0.0025 0.0011 0.0357
BFp < 0.0001 0.0197
LG < 0.0001 0.0034 0.0046 0.0046 0.0147
TA 0.0137 0.0068 < 0.0001

Phase VL < 0.0001 0.0136 < 0.0001
BFp 0.0388 0.0076 0.0002
LG 0.0010 0.0035 0.0271
TA 0.0002

Skew VL 0.0130
BFp 0.0012 0.0354
LG 0.0006 0.0418 0.0244
TA 0.0027 < 0.0001 0.0022

final model). Any first-order fixed terms remaining in
the model were then removed one-at-a-time according to
descending magnitude of model type III P value until the
final, most parsimonious model contained only variables
significant at P = 0.10. This procedure was repeated
for each outcome measure and for each muscle. All
analyses were implemented in Matlab using fitlme (with
parameters selecting maximum likelihood model fits and
using ‘effects’ to code dummy variables) and anova (using
the Satterthwaite estimate for degrees of freedom).

Results

Stable recordings from hind limb muscles were obtained
for BFP, VL, LG and TA (443, 332, 234 and 206 locomotor
sessions, respectively). Typical EMG traces are shown in
Fig. 1. Smaller numbers of usable observations in LG
and TA were probably a result of their relatively small
size and accessibility of the distal electrodes to the mice.
To capture overall activity, 20–30 locomotor bursts in
each session were rectified and averaged for analysis as
shown in Fig. 2A. A mixed model was used for statistical
analysis to detect changes in burst characteristics. Analysis
incorporated three independent variables (age, G93A
mutation and incline of treadmill) and four dependent
variables (burst peak, area, mean intermuscular phase and
skew). Schematics of the calculation of phase and skew are
shown in Fig. 2.

Age and treadmill incline increase EMG amplitude
and area

Burst area and peak amplitude significantly increased in
all muscles with both age and treadmill incline (Table 1).

The parameter of time was considered as both Age and
Age2 because it was unknown whether the effects would
be linear during disease onset. There was also an increase
in area and amplitude when the treadmill was inclined.
Inclining the treadmill served to increase the amount of
work required from each muscle: more motor units had
to be activated.

Burst amplitude increased in SOD1G93A mice

As shown in Fig. 3, TA EMG bursts reached a larger
peak amplitude in G93A mice. This was also the case
in LG, where, along with TA, the effect of mutation was
significant in interaction with incline. The interaction of
mutation and incline indicates that significantly larger
burst amplitudes appeared when G93A mice ran on an
inclined treadmill. For example, in Fig. 3A, there is no
increase in peak amplitude in age-matched WT and G93A
mice running on a level treadmill. However, there is a
marked increase in TA amplitude of G93A compared to
WT on the inclined treadmill (Fig. 3B). Thus, there is
significant interaction of mutation and incline (Table 1).
Measurements of peak amplitude are shown for the other
three muscles in Fig. 4, and the ratio of peak amplitude on
an inclined treadmill to peak amplitude on a flat treadmill
is shown in Fig. 5. In LG, there was a significant interaction
of mutation and age, indicating that G93A mice showed an
increased peak burst amplitude at older ages. TA and BFP
in G93A mice had larger amplitude bursts independent of
age. Thus, the effects of SOD1G93A mutation were most
pronounced when the treadmill was inclined, and were
often independent of age. By contrast to burst amplitude,
burst area was not greatly affected by G93A mutation. The
only significant mutation effect found for burst area was
in LG in interaction with incline. Perhaps burst area is not

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society
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a sensitive measurement for detecting changes occurring
in EMG activity of G93A mice.

Intermuscular phasing and burst skew are affected by
G93A mutation

The primary aim of the present study was to determine
whether changes in locomotor patterning were taking
place presymptomatically. Early differences in both skew
and phase in G93A mice show this was indeed the case.
Burst skew indicates the shape of the distribution of EMG
activity within its burst; activity that is symmetric around
its mean has a skew of 0, whereas activity with a large
asymmetry will have a large skew. As shown for LG in
Fig. 6, the skew was significantly shifted to negative values
by the G93A mutation because there was increased EMG
activity earlier in the burst. This particular example is
from the LG of mice aged P76, well before overt symptom
onset at P90. G93A BFP also showed a significant shift in
skew, from values near 0 to more negative values in G93A,
in interaction with age (Fig. 7 and Table 1). G93A VL
showed a significant change in skew in interaction with
incline. In G93A VL, the skew values shifted closer to 0
from more positive values in WT VL, indicating that WT
VL bursts were less symmetric. In all cases, the change in
skew indicated that there was more EMG activity earlier
in the burst in G93A muscles.

Intermuscular phase was advanced at an early age in
G93A mice. The examples in Fig. 8 were taken from
P65, showing possibly the earliest behavioural signs of
dysfunction in G93A mice. Phase shifts were observed in
BFP (Fig. 8) and LG (Fig. 9), as well as in G93A VL in
interaction with incline. In each case, there was a tendency
for muscles to be activated earlier in the locomotor cycle
in G93A mice.

In summary, these changes indicated that both
motoneuron firing (burst amplitude characteristics) and

locomotor network activity (patterning) were affected
before overt symptom onset in G93A mice. These markers
could be used as experimental targets for the assessment
of early treatments.

Discussion

We have identified novel early biomarkers produced
by an ALS-causing mutation. These markers can help
identify disease mechanisms and experimental efficacy
of early treatments for ALS. These biomarkers could be
particularly helpful for testing new therapies in animal
models. Early changes in the SOD1G93A mouse model
of ALS were manifest in the amplitude of EMG bursts
(BFP, LG and TA), intermuscular phasing (VL, BFP and
LG) and skew (VL, BFP, LG and TA). BFP and LG
appeared to be the best early disease indicators because
they were significantly altered in G93A mutants for each
of the above measurements. These two muscles stand out
for the greatest vulnerability based on muscle fibre type
(LG; see below) and the greatest number of observations
obtained (BFP), suggesting that the significance we found
might be the result of a combination of statistical power
and vulnerability to the disease. The majority of these
changes were independent of age. Inclined locomotion was
especially effective in revealing effects of G93A mutation.

Motor unit type and disease progression

Motor units are selectively vulnerable to ALS. In SOD1
mice, FF motor units are lost first, followed by FR and
finally S motor units (Frey et al. 2000; Pun et al. 2006;
Hegedus et al. 2007). All of the muscles investigated in
the present study have a high proportion of FF motor
units. The highest percentage of FFs in mice is the lateral
gastrocnemius, with values reported in the literature at
83–94% FF, 5–17% FR and 0–6% slow (Wang & Kernell,
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Figure 3. Peak amplitude of bursts increases in
G93A mice and on an inclined treadmill
A and B, EMG traces from TA obtained at P83. All
WT TA data (blue traces) and G93A TA data
(orange traces) are averaged across mice. SD of
averaged traces is indicated by the semitransparent
shading above and below the averaged traces. The
significant interaction of treadmill incline and G93A
is clear when comparing peak of bursts in (A) and
(B). Scale bar = 0.1 mV applied to all averages. C
and D, measurements of peak burst amplitude for
TA from all mice, plotted by age.
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2001; Guderley et al. 2008). TA in mice reportedly has 60%
FF, 30% FR and 5% slow (Hegedus et al. 2007). In rats,
which presumably are comparable to mice, BFP has 49%
FF, 47% FR and slow 4% (Ariano et al. 1973) and VL has
42% FF, 56% FR and 2% slow (Ariano et al. 1973). Thus,
each of the muscles investigated in the present study had
a high likelihood of showing early deficits in response to
denervation of FF motor units.

Plasticity of locomotor patterning in G93A mice

Changes in intermuscular phase and burst skew could be
brought about by two factors: (i) changing the intrinsic
properties of the motoneurons and (ii) altering the
synaptic drive to motoneurons.

Although sprouting of motoneuron axons could
contribute to the observed changes in burst skew and
intermuscular phase, intrinsic properties of motoneurons
probably do not play a large role in these alterations.
Evidence for hyperexcitability, glutamate excitotoxicity
and increased Ca2+ permeability of glutamate receptors

in motoneurons has been obtained from ALS patients
and animal models (Williams et al. 1997; Lin et al. 1998;
Trotti et al. 1999; Guo et al. 2003; Van Damme et al. 2005;
Pardo et al. 2006; Vucic & Kiernan, 2006; Vucic et al. 2008;
Pieri et al. 2009; Meehan et al. 2010; Fuchs et al. 2013);
however, recent studies suggest that, in the lead up to
neurodegeneration, there is a more nuanced progression
than simple overactivity of motoneurons (Saxena et al.
2013; Delestree et al. 2014). Indeed, motoneuron firing
has been shown to be relatively unchanged until failure
(de Carvalho et al. 2014; Delestree et al. 2014) and the
primary determinants of motoneuron recruitment order
do not change substantially in ALS (Heckman & Binder,
1993). EMGs may, however, be shaped by the progressive
loss of fast motor units and re-sprouting of S motoneuron
axons to the denervated muscle fibres during the course
of the present study (Pun et al. 2006; Krysciak et al.
2014; Jensen et al. 2016). These new larger motor units
would be composed of both S and FF muscle fibres
and activated by S motoneurons. Because S motoneurons
require less drive to activate than FFs, they would be active
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Figure 4. Peak amplitude of bursts plotted by age
A and B, VL data from a flat treadmill (left) and from an inclined treadmill (right) by age. Peak burst amplitude is
not significantly changed in G93A VL. C and D, plots of peak BFP amplitude by age. G93A BFP peak amplitude
was significantly increased. E and F, plots of peak LG amplitude by age. G93A LG peak amplitude was significantly
increased in interaction with age and incline.
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throughout the entire burst (i.e. S motor units are the
first to be activated and the last to turn off). Skew values
driven by these units would be close to 0 because they
are symmetrical. Thus re-sprouting could be a factor in
skew measurements decreasing from a positive number
towards values near 0 because, normally, FF motor units
turn on toward the end of the burst but, as they are lost

and re-innervated by S motoneurons, their activity would
become more symmetrical. However in LG, BFP and TA,
there is significant progression from neutral values to
more negative values, which is not easily explained by
re-sprouting of motor units.

Altering synaptic drive to motoneurons is another
potential explanation of changes in skew and phase.
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Organization of intermuscular activity is achieved in vivo
by (and can be modulated through alterations in)
neuromodulatory descending drive (Ghosh & Pearse,
2014), local spinal circuits (Zhang et al. 2008; Crone
et al. 2009) and sensory feedback loops (Akay et al.
2014). Neural circuits modelled to recapitulate locomotor
activity indicates a two-layer circuit in which patterning
changes (such as those reported in the present study) can
be brought about by altering pre-motor drive (McCrea &
Rybak, 2008). Perhaps compensation at the network level
could help to temporarily mask functional motor deficits
during the time between initial motoneuron denervation
at P40 and overt symptom onset at P90 in the mouse
model.

The idea that spinal premotor activity is altered in
ALS is not new, although it is not well-explored. In ALS
patients, a longer and less complete mixed nerve silent
period, evoked by electrical stimulation of a mixed nerve,
suggests dysfunction of inhibitory interneurons (Shefner
& Logigian, 1998). Studies in SOD1G93A mice show
changes in spinal inhibitory circuits beginning around
1 month and progressing until symptom onset (Martin
et al. 2007; Chang & Martin, 2009; Casas et al. 2013;
Wootz et al. 2013). Furthermore, in the isolated sacral cord,
activity patterns suggest increased activity of spinal inter-
neurons (Jiang et al. 2009). Additional evidence suggesting
that the activity of spinal neurons resistant to degeneration
can affect the survival of vulnerable neuron populations
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comes from mouse lines with impaired afferent input and a
loss of γ motoneurons (Kieran et al. 2005; Chen et al. 2007;
Ilieva et al. 2008; Lalancette-Hebert et al. 2016). Synaptic
drive from afferents has been shown to contribute to loss
of vulnerable α motoneurons and negatively affect life-
span (Lalancette-Hebert et al. 2016). These studies suggest
that spinal circuits play a role in disease mechanisms
in ALS.

In summary, although increased burst amplitude
indicates changes in the number of active motoneurons or
the size of motor unit potentials, changed phase and skew
indicate an altered activity of the locomotor circuitry. In
other words, the neural network co-ordinating locomotor
activity in the spinal cord may be changing intramuscular
co-ordination. Perhaps a better understanding of changes
in the synaptic drive to motoneurons will aid in the
identification of improved treatments for ALS.

Overall lack of effect of age on EMG activity in G93A
mutants

There was a surprising lack of interaction of age and
G93A mutation (Table 1), despite known progressive
denervation during this time. It might be expected that, as
G93A mice became more obviously affected by the disease
around P80–90, behavioural effects would worsen and all
EMG changes would have an age-mutation interaction.
Instead, the scarcity of age-mutation interactions may
indicate that the detected changes were already present at

P55 in G93A mice and remained present throughout the
course of this study from P55 to 100. This suggests that
changes in EMG amplitude, phase and skew may represent
the first behavioural signs of ALS.

From Table 1, it is clear that both WT and G93A animals
showed progressive increases in peak amplitude and area
of EMG bursts during the course of the present study.
This increase was also noted in the original methods study
(Tysseling et al. 2013), although the underlying reason
for this interaction is still unclear. Muscle fibre volume
in mice has been shown to reach a plateau at P56 and
muscle fibre types are settled by P21; thus, these factors
are probably not driving changes in amplitude or the
area of EMGs observed in the present study (Wirtz et al.
1983a, b; White et al. 2010). These increases could be
artefacts that arise from the EMG implantation procedure,
which may involve a greater interaction of the EMG wires
with the nearby muscle fibres over time. The increase
could also arise from different mechanisms in the G93A
mice vs. the SOD1WT mice. For example, the trans-
genic SOD1WT mice were free from disease and normally
continue to gain weight up to P120 (Koschnitzky et al.
2014). Age-dependent increases in amplitude and area of
EMG bursts thus could be a result of increasing weight,
which would require more work from muscles during
locomotion. By contrast, SOD1G93A mice do not increase
in weight in a similar way as their control counterparts;
their weight plateaus around P80 (Koschnitzky et al. 2014).
Accordingly, although increasing the amplitude and area
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of bursts could be a result of weight gain in WT mice,
this would not be the case in G93A mice and, instead, the
same phenomenon could be a result of a re-sprouting
of S motoneurons to re-innervate denervated FF and
FR muscle fibres, creating larger motor units in G93A
mice (Thompson & Jansen, 1977; Bodine-Fowler et al.
1993; Gordon et al. 1993; Pun et al. 2006; Tysseling et al.
2013).

New measure for the effectiveness of intervention
strategies

Our strategy was to identify early physiological markers
of ALS, although another merit of the present study
is the results suggesting that EMGs can be used as a

sensitive measure for evaluating therapeutic intervention
strategies in animal models of ALS. Most motor units
are already lost by the time of ALS diagnosis (Sobue
et al. 1983) and so it is clear that, to be more effective,
clinical interventions and diagnoses have to start even
earlier. The results of the present study suggest that our
locomotor protocol, particularly the task of running
on the inclined treadmill, and the parameters of burst
amplitude, phase and skew comprise a sensitive method
for early diagnosis in mice. Future studies are needed to
directly evaluate the predictive ability of these measures.
Although our EMG electrodes were implanted in mice,
future studies in patients could employ multielectrode
surface EMGs to non-invasively collect similar data
(Farina & Negro, 2012). Better and earlier treatments for
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ALS are desperately needed along with better diagnostic
markers, such that patients who are diagnosed have the
hope of retaining motor functions and preserving their
current quality of life. Based on the results of the present
study, future investigations investigating new diagnostic
methods for ALS in patients might consider focusing on
activities driven by vulnerable neural circuits rather than
on a single neuronal element in isolation.
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