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The ten-eleven translocation (TET) family of enzymes were originally cloned from the trans-
location breakpoint of t(10;11) in infant acute myeloid leukemia (AML) with subsequent
genomic analyses revealing somatic mutations and suppressed expression of TET family
members across a range of malignancies, particularly enriched in hematological neoplasms.
The TET family of enzymes is responsible for the hydroxylation of 5-methylcytosines (5-mC)
to 5-hydroxymethylcytosine (5-hmC), followed byactive and passive mechanisms leading to
DNA demethylation. Given the complexity and importance of DNA methylation events in
cellular proliferation and differentiation, it comes as no surprise that the TET family of
enzymes is intricately regulated by both small molecules and regulatory cooperating pro-
teins. Here, we review the structure and function of TET2, its interactions with cooperating
mutations and small molecules, and its role in aberrant hematopoiesis.

Although often thought to be a stable epige-
netic mark, recent research has revealed

DNA methylation to be dynamic modification
capable of regulating critical features of cellular
proliferation, differentiation, and gene expres-
sion. Integral to this regulatory function are the
enzymes necessary for both addition of the
DNA-methyl mark and subsequent removal.
Amongst these enzymes, the ten-eleven translo-
cation (TET) family of proteins has emerged as
critical regulators of the oxidation of 5-methyl-
cytosine (5-mC) to 5-hydroxymethylcytosine
(5-hmC). Since its recent identification in
2009, an explosion of studies has interrogated
the roles of TET2 in malignancies of the blood
and brain, developmental processes, and roles in

inflammation. Genetic and biochemical studies
in both human tumor specimen and animal
models of disease have revealed TET2 as a critical
node linking alterations in tumor metabolism to
alterations in DNA methylation and modified
chromatin. These features require a refined un-
derstanding of how to classify a cancer-associat-
ed gene that fits neither rigid definitions of an
oncogene nor a tumor suppressor.

In this review, we will review the initial stud-
ies in hematologic malignancy that led to the
discovery of TET2, the function and structure of
the enzyme, its interactions with cooperating
mutations and small molecules, and a perspec-
tive into other diseases in which TET2 muta-
tions have been identified.
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MUTATIONS IN HEMATOLOGIC DISEASE

In 2009, a series of papers identified somatic
mutations in TET2 in multiple hematologic
malignancies (Delhommeau et al. 2009; Jan-
kowska et al. 2009; Langemeijer et al. 2009; Tef-
feri et al. 2009a,b). Mapping of minimal regions
of deletion in the 4q24 cytoband revealed TET2
loss of heterozygosity (LOH) and somatic mu-
tations in as many as 30%–50% of myelodys-
plastic syndrome (MDS) and myeloproliferative
neoplasia (MPN) patients, whereas 32% of sec-
ondary acute myeloid leukemia (AML) patients
harbored TET2 mutations (Jankowska et al.
2009). Further genomic studies in MPN pa-
tients revealed the presence of TET2 mutations
in both JAK2-V617F-positive and -negative pa-
tients, with relatively equal distribution across
essential thrombocytosis (ET), polycythemia
vera (PV), and myelofibrosis (MF) (Tefferi et al.
2009b). In each of these studies, deletions as
well as nonsense and missense mutations were
found across multiple exons. Interestingly, most
AML patients with TET2 mutations retain ex-
pression of the wild-type allele with only 10%
of patients possessing biallelic mutations (Del-
hommeau et al. 2009). Although the function of
TET2 was not known at the time, these data
were suggestive of a tumor suppressor role and
potentially haploinsufficient loss-of-function
role in TET2 mutants.

TET2 mutations are present in multiple
lymphoid and myeloid lineages, as well as
CD34þ progenitor cells, suggestive of an early
clonal mutation in the stem cell compartment
(Smith et al. 2010). In line with this early mu-
tation designation, TET2 mutants have contin-
ually been found at high allele frequency indi-
cating that they are often the “first hit” in the
multihit model of leukemogenesis (Smith et al.
2010; Papaemmanuil et al. 2016). These find-
ings are reinforced by genetic studies identifying
somatic TET2 mutations in asymptomatic,
healthy adults with clonal hematopoiesis
(Smith et al. 2010; Busque et al. 2012). This,
however, does not appear to always be the
case, as two studies have shown that in MPN
patients with JAK2-V617F mutations TET2
can either present as the first hit or the second

hit based on mutant allele frequency (Abdel-
Wahab et al. 2010; Ortmann et al. 2015). Inter-
estingly, “JAK2-first” patients presented with
significantly worse overall survival compared
with “TET2-first” patients (Ortmann et al.
2015). In addition to the co-occurrence with
JAK2 mutations in MPN mentioned above, mu-
tations in TET2 have been shown to co-occur
with mutations in ASXL1, SRSF2, SF3B1,
U2AF1, and CALR (Rampal et al. 2014a). In
AML, TET2 shows comutational patterns with
NPM1, FLT3 and DNMT3a (Papaemmanuil
et al. 2016). How these mutations cooperate in
leukemogenesis remains an area of intense in-
vestigation and will be discussed later in this
review.

Prognosis

TET2 mutational status has been found to be a
variable prognostic indicator. One of the earliest
studies of a cohort of 48 patients with systemic
mastocytosis found no prognostic association
with TET2 mutational status (Tefferi et al.
2009a). Similarly, no survival association was
found in a cohort of 63 patients with AML,
chronic myelomonocytic leukemia (CMML),
or MPN/MDS (Jankowska et al. 2009). Mean-
while, other studies showed a significant asso-
ciation with poor prognosis in AML (Abdel-
Wahab et al. 2009) and a favorable prognostic
association in MDS (Kosmider et al. 2009). In
the largest cohorts to date by The Cancer Ge-
nome Atlas (TCGA) (Cancer Genome Atlas
Research Network 2013) and by a group at the
Sanger Institute (Papaemmanuil et al. 2016),
there was no independent association with sur-
vival for TET2 mutations. Interestingly, in a
cohort of 211 MDS patients, there was an asso-
ciation in response to the hypomethylating
agents decitabine and azacitidine, in which pa-
tients with TET2 mutant AML were more likely
to respond to therapy than those without the
mutation, a finding that was more pronounced
when the comutational partner ASXL1 was not
mutated (Bejar et al. 2014). Further studies
into the functional role of TET2 in disease pro-
gression and response to different therapeutic
regiments may help clarify the prognostic value
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of TET2 mutations in various hematologic
malignancies.

TET2 FUNCTION AND STRUCTURE

When mutations in TET2 were first discovered
through mapping of the 4q24 region of loss/
LOH, the functions of this protein remained
unknown. Shortly after, homology searches for
the trypanosome proteins JBP1 and JBP2, en-
zymes known to oxidize methyl-thymine, iden-
tified the mammalian TET family as 2-oxoglu-
tarate (2-OG) and Fe(II)-dependent enzymes
(Tahiliani et al. 2009). These studies revealed
that TET1 possessed enzymatic activity for con-

verting 5-mC to 5-hmC, and follow-up studies
soon confirmed similar enzymatic activity
for TET2 and TET3 (Ito et al. 2010; Ko et al.
2010). Subsequent studies would reveal that
TET proteins are capable of generating iterative
cytosine alterations leading to the formation
of 5-formylcytosine (5-fC) and 5-carboxylcyto-
sine (5-caC) (Fig. 1) (Ito et al. 2011). These
intermediates were further shown to be sub-
strates for thymine-DNA glycosylase (TDG)-
mediated base excision repair (BER), converting
the modified cytosine residue back to the un-
methylated cytosine base (He et al. 2011; Maiti
and Drohat 2011). Alternative demethylating
mechanisms involve the APOBEC family mem-
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Figure 1. Reactions involved in TET-mediated oxidation of 5-methylcytosine (5-mC). Depicted here is cytosine-
mediated methylation by the family of DNA methyltransferases (DNMT) with the substrate S-adenosyl methi-
onine (SAM) leading to the formation of 5-mC. TET family members are then capable of mediating the iterative
oxidation of 5-mC to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine
(5-caC) in an Fe(II), O2, and a-ketoglutarate (a-KG)-dependent reaction. These a-KG-dependent reactions
can be inhibited by the oncometabolite 2-hydroxyglutarate (2-HG), which is a neomorphic by-product of
mutant IDH1 and IDH2. Each downstream product (5-hmC, 5-fC, and 5-caC) can serve as substrates for thymine
DNA glycosylase (TDG) leading to base excision repair (BER) and eventual return to unmodified cytosine.
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bers deaminating 5-hmC into 5-hydroxymeth-
yluracil (5-hmU), which presents as a target for
TDG and selective monofunctional uracil-DNA
glycosylase 1 (SMUG1)-mediated BER (Bhu-
tani et al. 2011). In addition to these active
processes of DNA demehtylation, TET2 has
been implicated in passive DNA demethylation,
as 5-hmC serves as a poor substrate for the cell
cycle–regulated DNMT1 leading to dilution of
the 5-mC mark with each round of DNA repli-
cation and cell division (Hashimoto et al. 2012).
It is important to note that the relative role
of these different pathways in the ultimate re-
moval of DNA modifications back to unmeth-
ylated cytosine remains to be fully delineated.

Recent biochemical studies have identified
the structural components of TET2 that medi-
ate these catalytic functions (Hu et al. 2013).
Human TET2 encodes a 2002–amino acid,
223-kDa protein with a carboxy-terminal cata-
lytic domain and poorly conserved amino-ter-
minal domain. Biochemical studies on trunca-
tion variants were capable of reconstituting
the enzymatic functions of TET2 within an
807–amino acid stretch (1129–1936) contain-
ing cysteine rich regions and a double-stranded
b helix (DSBH) separated by an unstructured
linker. This fragment was subsequently crystal-
ized in complex with methylated DNA revealing
coordination of a catalytic core by two zinc fin-
ger domains. These studies further revealed a
cavity allowing for recognition of various mod-
ifications on the 5-mC base in the catalytic core.
Subsequent studies showed that 5-hmC and
5-fC substrates possessed enzymatically unfa-
vorable coordination of hydrogen bonds in the
catalytic cavity, offering a potential explanation
for the preferred substrate specificity of TET2
for 5-mC over that of 5-hmC and 5-fC (Hu et al.
2015), as well as the stability of 5-hmC in vivo
(Ito et al. 2011).

REGULATION OF TET2 FUNCTION

Inhibition by IDH1/2 Mutant-Derived
2-Hydroxyglutarate

In addition to the genetic and biochemical
studies above, one of the most important clues

to understanding TET2 biology was the identi-
fication of mutually exclusive mutations in the
metabolic enzymes isocitrate dehydrogenase 1
(IDH1) and IDH2, placing these enzymes in a
putative genetic pathway (Abdel-Wahab et al.
2010). In a broader biological context, the iden-
tification of mutation in IDH1 and IDH2 was of
fundamental importance in linking of altered
cellular metabolism to the genomic age of can-
cer research. Although the altered glycolysis was
a long appreciated hallmark of tumorigenesis
(Hanahan and Weinberg 2011), it was not im-
mediately clear how mutations in enzymes ca-
nonically involved in the citric acid cycle might
impact tumorigenesis. The mechanistic role of
these metabolic mutations began to take shape
on the discovery that R132H mutant IDH1 was
capable of producing 2-HG through an
NADPH-dependent reduction of a-ketogluta-
rate (a-KG) (Dang et al. 2009). Soon after, these
findings would be extended to the more com-
mon leukemic mutations of IDH2-R172K and
IDH2-R140K (Ward et al. 2010). As IDH1/2
mutations were enriched in diseases with a
relatively undifferentiated phenotype, low-
grade glioma and leukemia, it was hypothesized
that 2-HG might block differentiation albeit
through unknown mechanisms. Definitive evi-
dence would come later that year with the dis-
covery that IDH1/2 mutant-derived 2-HG was
capable of blocking differentiation and inhibit-
ing the a-KG dependent enzyme TET2 (Figue-
roa et al. 2010). Critically, these studies revealed
that IDH1/2 mutant AML patients displayed a
hypermethylated phenotype (Figueroa et al.
2010), linking TET2 inhibition by 2-HG with
the demethylating functions of TET proteins in
development (Ito et al. 2011; Ko et al. 2011).
The inhibitory capacity of 2-HG would later
be extended to most a-KG-dependent enzymes
(Xu et al. 2011), suggesting that IDH1/2 muta-
tions might possess TET2-independent func-
tions. Indeed, IDH1 mutant mice have been
shown to down-regulate the DNA damage sen-
sor ATM through altered histone methylation
(Inoue et al. 2016). Further work will aim to
identify therapeutic vulnerabilities that are
shared between TET2 and IDH1/2 mutant
AML, as well as those that are specifically rele-
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vant to the pleiotropic features of IDH1/2 mu-
tant disease.

Although 2-HG has received much atten-
tion as a mutant IDH1/2 neometabolite, its
production is not limited to these mutations.
Importantly, 2-HG is a chiral molecule with
the D-enantiomer being produced by mutant
IDH1/2. Recent work has identified that under
hypoxic conditions the L enantiomer of 2-HG is
produced as a promiscuous bioproduct of lac-
tate dehydrogenase A (LDHA)-mediated and
malate dehydrogenase 1 (MDH1)-mediated re-
duction ofa-KG (Intlekofer et al. 2015; Oldham
et al. 2015). L2-HG was shown to function as
a competitive inhibitor of the EGLN prolyl hy-
droxylase promoting hypoxia-inducible factor
1-a (HIF1-a) stability, whereas D2-HG served
a substrate leading to HIF1-a degradation (In-
tlekofer et al. 2015). Meanwhile, both enantio-
mers are capable of inhibiting TET2 (Figueroa
et al. 2010; Shim et al. 2014). These studies lead
to the possibility that physiological production
of L2-HG might play a role in modulating TET2
function in homeostasis, especially in the con-
text of the hypoxic hematopoietic stem cell
niche (Spencer et al. 2014).

TET2 Binding Proteins

The amino terminus of TET1 and TET3 contain
a well-conserved CXXC domain that has been
shown to mediate binding to unmethylated
CpG residues (Xu et al. 2012); however, no
such domain is present in TET2. Interestingly,
a CXXC domain–containing protein, IDAX
(CXXC4), is encoded 50 of the TET2 genomic
locus, suggestive of evolutionary splitting of the
original TET2-CXXC gene into two separate
genes (Ko et al. 2013). Biochemical studies
revealed that IDAX is capable of binding both
the amino terminus and catalytic domain of
TET2, in which binding was associated with
caspase-mediated TET2 degradation. This neg-
ative regulation of TET2 may present an addi-
tional mechanism for affecting 5-mC levels
in malignancy, independent of genomic alter-
ations to TET2 or mutations in IDH1/2.
Indeed, IDAX has found to be overexpressed
in villous adenomas in the colon (Nguyen

et al. 2010). In addition to its interaction with
TET2, IDAX is a known inhibitor of WNT sig-
naling (Hino et al. 2001), suggesting a potential
source of cross talk between these pathways. An-
other interacting partner with WNT signaling,
WT1, has also been shown to bind TET2 and
TET3 (Rampal et al. 2014b), acting as a guide
for TET2 to specific genomic loci associated
with proliferation (Wang et al. 2015). In sup-
port of this observation, WT1 is mutated in
AML, in a mutually exclusive pattern with
TET2, and WT1 loss was further shown to phe-
nocopy TET2 loss in hematopoiesis (Rampal
et al. 2014b). In addition to these factors, the
CRL4-VprBP complex has been shown to sta-
bilize TET family members through mono-
ubiquitination, increasing TET family members
binding to DNA (Yu et al. 2013). Mutation at, or
around, the TET2 monoubiquitination site at
residue K1299 have been identified in several
leukemia cell lines, offering another plausible
mechanism for TET2 dysfunction in cancer
(Nakagawa et al. 2015).

Vitamin C

Vitamin C has been shown to induce TET
activity in embryonic stem (ES) cells, and to
induce a global increase in 5-hmC content
(Blaschke et al. 2013). Although this activity
appeared to be specific to vitamin C and no
other reducing agents, vitamin C affected both
TET1 and TET2, the only TET family members
expressed in ES cells. Interestingly, in this
study, the investigators found that not all meth-
ylation marks were equally sensitive to subse-
quent demethylation. Indeed 5-hmC levels were
most robustly affected at the promoters of
genes, whereas methylation of retro elements
remained unchanged. Vitamin C has previously
been shown to regulate the activity of several
iron-dependent dioxygenases; however, in this
setting its effects did not appear to depend on
either iron availability or a-KG concentration.
In contrast, Hore et al. (2016) found in ES cells
that vitamin C increased iron recycling and did
not function as a cofactor. Although the details
of the regulation may diverge, the capacity for
vitamin C to induce TET2 activity is robust,
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with consistent effects in ES cells, mouse em-
bryonic fibroblasts, Tregulatory cells (Nair et al.
2016; Yue et al. 2016), and melanoma cells
(Gustafson et al. 2015). Interestingly, in 2009,
a single-arm clinical trial on 16 AML patients
revealed a subset of patients that showed a clin-
ical response following vitamin C deprivation
(Park et al. 2009), highlighting the clinical rele-
vance of vitamin C to leukemia biology. In ad-
dition to vitamin C, vitamin A has also been
shown to play a role in inducing TET activity
through the direct transcriptional regulation of
both TET2 and TET3 (Hore et al. 2016). Under-
standing the mechanisms of both vitamin A and
vitamin C activities on TET function could pro-
vide key insights into therapeutic options for
both IDH and DNMT mutant cancers.

MECHANISMS OF CONTRIBUTION TO
LEUKEMOGENESIS

The cancer genetics and biochemical studies
discussed above provided substantial insight
into the function of TET2 in DNA methylation,
yet understanding the cellular manifestations of
these activities was made possible through the
development of genetic mouse models. Condi-
tional loss of TET2 activity by Vav:Cre-mediat-
ed removal of exon 3 led to an expansion of the
lineage negative Sca.1þ cKitþ (LSK) cells in vivo
and an increase in replating potential in a colo-
ny forming unit assay in vitro (Moran-Crusio
et al. 2011). These studies further showed that
TET2KO/KO bone marrow was capable of out-
competing TET2WT/WT bone marrow in com-
petitive transplant assays and showed increased
stem cell function and self-renewal. Finally, aged
TET2KO/KO mice developed a CMML-like syn-
drome with expansion of the monocytes, in-
creased spleen weight, and proliferative growth
in the bone marrow, spleen, liver, and lung.
Multiple studies published in the same year con-
firmed these findings (Ko et al. 2011; Li et al.
2011; Quivoron et al. 2011; Shide et al. 2012),
with many studies revealing decreased 5-hmC
levels in the LSK population. The expansion of
the LSK and hematopoietic stem cell (HSC)
populations in these mice mirror the findings
in patient samples in which clonal TET2 muta-

tions were found in healthy individuals with
clonal hematopoiesis (Busque et al. 2012).

In AML and myeloproliferative disease,
TET2 mutations are typically present in concert
with other mutations. Mutations in the fms re-
lated tyrosine kinase 3 (FLT3) are among the
most common events in AML with point mu-
tations in the tyrosine kinase domain, and in-
ternal tandem duplications (ITDs) near the jux-
tamembrane domain, leading to autoactivation
of the kinase (Levis and Small 2003). Interest-
ingly, when TET2 loss was combined with a
FLT3-ITD mutation there was a distinct set of
genomic loci that underwent hypermethylation
compared with either mutation alone (Shih
et al. 2015). Among these loci, hypermethyla-
tion of the GATA2 promoter led to a reduction
in expression, blockade in differentiation and
the development of a transplantable leukemia
derived from the LSK progenitor compartment.
Interestingly, in addition to the hypermeth-
ylated regions, there were more than 500 hypo-
methylated regions in the combined TET2-
FLT3-ITD mutants that were not present in
either mutant alone. These, at first paradoxical,
findings may be partially explained by FLT3’s
role in the commitment to the myeloid lineage
and thus hypomethylation of genes necessary
for that engagement. Future studies on DNA
methylation and 5-hmC will be of interest to
determine if the loci-specific effects are indeed
specific to this model or representative of a more
general leukemic transformation phenotype.
Additional models of mutational cooperation
with TET2 loss include expression of a mutant
c-KIT in mast cells (Soucie et al. 2012), expres-
sion of AML-ETO (Hatlen et al. 2016), and loss
of Notch signaling (Lobry et al. 2013).

MUTATIONS IN OTHER MALIGNANCIES

T-Cell Lymphoma

In addition to myeloid malignancies detailed
above, TET2 mutations have also been identified
in patients with T-cell lymphoma (Quivoron
et al. 2011). One study found TET2 mutations
in 47% of angioimmunoblastic T-cell lympho-
mas (ATLs) and in 38% of peripheral T-cell lym-
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phomas not otherwise specified (PCTL-NOS)
(Lemonnier et al. 2012). Subsequent studies
have identified TET2 mutations in upward of
75% of ATL patients (Odejide et al. 2014). Inter-
estingly, this study found multiple subclonal
mutations in TET2 within individual patients,
all of which resulted in truncation or disruption
of the final gene product. Unlike the myeloid
leukemia setting, few mutations were found in
CD34þ progenitors or subsequent myeloid col-
onies derived from this population (Odejide et al.
2014). Collectively, these results place TET2 loss
as a recurrent driver in ATL with acquisition of
the mutation in a lineage committed stage, con-
trasting sharply with the myeloid malignancies. A
related contrast was identified when patients pre-
sented with both TET2 and IDH1 mutations
(Odejide et al. 2014), events that are largely mu-
tually exclusive in myeloid malignancy. This may
reflect a different role for subclonal TET2 loss of
function in ATL versus the presumed expansion
of a preleukemic clone in AML.

Melanoma

TET2 mutations have been predominantly as-
sociated with hematologic malignancies; how-
ever, whole-genome analyses through TCGA
have identified additional mutations in mela-
noma and cutaneous squamous cell carcinoma
(Cancer Genome Atlas Network 2015). Consis-
tent with these genomic findings, loss of 5-hmC
has been proposed to be a prevalent, epigenetic
hallmark, of melanoma (Lian et al. 2012). In-
deed, epigenetic silencing of TET2 and TET3
has been shown to drive TGF-b-dependent in-
vasion and acquisition of EMT-like features
(Gong et al. 2016). Subsequent in vivo studies
showed that overexpression of TET2 blunted
tumor growth and metastasis. Given the prom-
inent role of dedifferentiation in metastatic
melanoma, it will be interesting to investigate
the potentially parallel roles of TET2 in hema-
topoietic and melanocyte differentiation.

Glioma

CpG-island hypermethylator phenotypes
(CIMPs) have also been identified in low-grade

gliomas, as well as some glioblastoma patients.
Although TET2 promoter methylation has been
identified in glioma (Kim et al. 2011), the pre-
dominant mechanism appears to be driven by
mutations in IDH1, with few loss-of-function
mutations present in TET2 (Kraus et al. 2015).
This is in stark contrast to MPN and AML stud-
ies in which TET2, IDH1, and IDH2 mutations
are all present. These studies support a growing
literature showing mutant IDH1 and IDH2
elicit functions outside of 2-HG-mediated
TET2 inhibition, including inhibition of his-
tone demethylases (Lu et al. 2012), alteration
of DNA damage repair (Inoue et al. 2016),
and alterations in branched chain amino acid
metabolism (Tonjes et al. 2013). This apparent
tissue-specific distinction in mutational pat-
terns may also be the result of tissue-specific
gene expression levels of TET2, which is sub-
stantially more highly expressed in AML than
in the gliomas (Fig. 2).

Other Diseases

In addition to melanoma, TET2 has been
shown to be down-regulated in an androgen-
dependent manner in prostate cancer, with
lower expression conferring worse prognosis
for patients (Nickerson et al. 2016). In colorec-
tal cancer, TET2 has been shown to be excluded
from the nucleus (Huang et al. 2016), with sim-
ilar findings for TET1 in glioma (Waha et al.
2012).

CONCLUDING REMARKS

In sum, TET2 is a critical regulator of DNA
methylation in development and malignancy.
Genomic alterations of TET2, in addition to
modulation of binding partners, lead to alter-
ations in 5-hmC levels and downstream outputs
on proliferation and maintenance of stem cells.
Although mutations are enriched in hemato-
logic neoplasms, TET2 loss of function has
been observed in solid tumors as well. Collec-
tively, these studies have provided insight into
how TET2 contributes to disease and may pro-
vide clues for identifying specific therapeutic
avenues for patients harboring these mutations.
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