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Abstract

Exposure to drugs early in life has complex and long-lasting implications for brain structure and 

function. This review summarizes work to date on the immediate and long-term effects of prenatal 

exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, 

particularly dopamine, during sensitive periods of brain development, and leads to permanent 

changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and 

significance with mechanistic preclinical studies, to define our current knowledge base and 

identify gaps for future investigation.
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Introduction

Cocaine abuse and addiction continue to be major public health concerns in the United 

States and across the world. According to the 2014 National Survey on Drug Use and 

Health, 1.5 million Americans age 12 or older (or ∼0.6% of the population) self-reported 

current cocaine use. Equally concerning is cocaine use by pregnant women. Among 

pregnant women aged 15 to 44, 5.4% were current illicit drug users (SAMHSA, 2014). 

Furthermore, nearly 28% of women become aware of pregnancy on average 2.5 months post 

conception (Ayoola et al., 2009), increasing the risk for fetal drug exposure. In fact, it has 

been estimated that over 7.5 million U.S. children have been prenatally exposed to cocaine 

(Chae and Covington, 2009).

The cocaine epidemic emerged in United States in the 1980s and early 1990s. 

Epidemiological studies conducted during this time indicated that up to 27% of women used 

cocaine during pregnancy (Frank et al., 1988; Chasnoff 1989; Gomby and Shiono, 1991), 
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and initial reports suggested potentially dramatic adverse effects for the newborn child at 

birth (Chasnoff et al., 1985; MacGregor et al., 1987). This led to fears in the general media 

that an entire generation of “crack babies” may have been “lost.” Unfortunately, many of 

these fears were exaggerated and, subsequently, public notions swung in the opposite 

direction, suggesting that prenatal cocaine exposure (PCE) may produce no or only subtle 

effects on intellectual abilities. However, debate and discussion have prevailed regarding the 

consequences of PCE on brain and behavioral development and, perhaps not surprisingly, 

the truth is actually somewhere in the middle. In fact, more recent studies report that PCE 

produces persisting deficits in higher cognitive functions, such as attention, executive 

function, and language (Sheinkopf et al., 2009; Ackerman et al., 2010; Bandstra et al., 2011; 

Carmody et al., 2011; Liu et al., 2013; Akyuz et al., 2014; Allen et al., 2014).

One of the issues that fuels the debate is the inherent variability in findings from studies in 

human subjects. For example, studies that rely on self-reporting of illicit drug use are subject 

to an underreporting bias, especially regarding drug use during pregnancy (Frank et al., 

1988; Gomby and Shiono, 1991; Ostrea et al., 1992). For instance, in one study, only 25% of 

mothers who had abused cocaine during pregnancy admitted to using it (Ostrea et al., 1992). 

In addition, multi-drug use, including alcohol, marijuana, and nicotine, is common among 

individuals who use cocaine and presents another confounding variable. Poor nutrition, drug 

dose, route of administration, timing, frequency, and duration of exposure also add further 

complexities.

As PCE continues to be a significant public health concern, whether it can affect early brain 

development and to what extent remains a significant question from scientific, public health, 

and public policy perspectives. As a result, scientific attention has focused on animal models 

of PCE. Studies using animal models permit rigorous and hypothesis-driven exploration of 

the consequences of PCE on the development of the brain and behavior, and have the 

potential to help settle this debate. However, the vast majority of the studies using animal 

models have focused on behaviors and molecular mechanisms associated with drug 

reinforcement, sensitization, or reward (Simansky and Kachelries, 1996; Glatt et al., 2000; 

Paule et al., 2000; Rocha et al., 2002; Crozatier et al., 2003; Malanga and Kosofsky, 2003; 

Stanwood and Levitt, 2003; Malanga et al., 2007; Malanga et al., 2008; Malanga, 2009), 

rather than on the types of cognitive functions analyzed in human subjects. In other words, 

direct extrapolation of the data from studies on animal models to human subjects tends to 

pose its own challenges.

Given these circumstances, our goal here is to critically evaluate findings from human and 

animal model studies with a predisposition toward identifying common themes and 

directions on the short- and long-term consequences of PCE on brain structure and function.

Human Studies

Cocaine use during pregnancy affects two generations simultaneously—the mother and her 

child. Pregnant women who use cocaine have an increased risk for premature rupture of the 

membranes and hemorrhage, as well as spontaneous abortion or fetal death (Oro and Dixon, 

1987; Townsend et al., 1988; Handler et al., 1991; Kistin et al., 1996). The consequences 
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that PCE imposes on child include increased risk for prematurity, intrauterine growth 

retardation, respiratory distress, seizure,; decreased head circumference, low birth weight 

and reduced length, malformations of the genitourinary track, bowel and cerebral 

infarctions/malformations, and an increased risk for sudden infant death syndrome (Chasnoff 

et al., 1985; Bingol et al., 1987; Oro and Dixon, 1987; Ryan et al., 1987; Braude et al., 1987; 

Chasnoff et al., 1987; Chasnoff et al., 1988; Riley et al., 1988; Doberczak et al., 1988; 

Chasnoff and Griffith, 1989; Frank et al., 1990; Dominguez et al., 1991; Handler et al., 

1991; Lester et al., 1991; Bada et al., 2002; Bada et al., 2005; Bauer et al., 2005).

Behavioral Assessments

PCE is associated with lower scores in the Apgar evaluation (Ryan et al., 1987; Chasnoff et 

al., 1989b) as well as in the Neonatal Behavioral Assessment Scale (NBAS) (Chasnoff et al., 

1985; Doberczak et al., 1988; Chasnoff et al., 1989a; Schneider and Chasnoff, 1992; 

Delaney-Black et al., 1996; Bauer et al., 2005). There appears to be a correlation between 

the timing of gestational cocaine exposure and the infant's behavioral profile. For example, 

cocaine use during the first and second trimesters increased the number of abnormal 

reflexes, whereas cocaine use during the second and third trimester reduced motor maturity 

and muscle tone (Richardson et al., 1996b). Unfortunately, many early studies using the 

NBAS involved the concomitant maternal use of other drugs, such as opioids, marijuana, 

alcohol, and tobacco. Thus, singling out the role of PCE in these outcomes has been 

difficult.

PCE produces deficits in language development and emotional reactivity, as well as 

impairments in arousal and attention (Davis et al., 1992; Chasnoff, 1992; Chiriboga et al., 

1993; Azuma and Chasnoff, 1993; Griffith et al., 1994; Mayes et al., 1995; Mayes et al., 

1996; Jacobson et al., 1996; Delaney-Black et al., 1996; Richardson et al., 1996a; Bada et 

al., 2007; Lewis et al., 2007; Bandstra et al., 2011; Carmody et al., 2011; Lewis et al., 2011) 

(see Fig. 1). Many behavioral and neurophysiological findings have suggested that PCE 

disrupts arousal regulation. Because the regulation of arousal serves as a gating mechanism 

for orientation and attention, it has important implications for information processing, 

learning, and memory. In fact, deficits in arousal appear early and persist well into 

adolescence and adulthood. For instance, cocaine-exposed 3-month old infants demonstrated 

deficits in reactivity to novel stimuli. These infants were more likely to exhibit crying and 

negative affect on novel stimulus presentations, as well as deficits in information processing 

and habituation, suggesting deficits in arousal and attention regulation (Mayes et al., 1995; 

Mayes et al., 1996; Mayes et al., 1998). Children prenatally exposed to cocaine also have 

decreased inhibition and deficits in their ability to sustain attention, which demonstrate 

abnormal cognitive processing and executive function (Richardson et al., 1996a; Espy et al., 

1999; Leech et al., 1999; Linares et al., 2006). Specifically, when persistence was measured 

in a Stanford-Binet Intelligence scale (persistence is not always measured and may account 

for variability in the overall findings among different standardized tests), 3-year old toddlers 

prenatally exposed to cocaine demonstrated poor task persistence and increased irritability 

and distractibility, compared to control subjects (Azuma and Chasnoff, 1993). Even at older 

ages (6, 9, and 11 years), deficits in attention and inhibitory control were present following 
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PCE. Once again, this effect on attention and arousal has been shown to be more robust with 

higher levels of PCE (Carmody et al., 2011).

Other related cognitive deficits following PCE include visual attention deficits and 

difficulties in sustained attention (Heffelfinger et al., 2002) (Fig. 1). In addition, children 

exposed prenatally to cocaine have also shown impairments in procedural learning, and 

demonstrated reduced visuospatial working memory. Specifically, the cocaine-exposed 

group demonstrated slower responses, made more errors, and showed less consolidation in 

learning compared to non-exposed children, signifying a possible deficit in procedural 

learning and spatial working memory (Schroder et al., 2004; Mayes et al., 2007). These 

cognitive deficits seem to appear early on such that some studies have shown impaired 

recognition memory in infants following PCE (Struthers and Hansen, 1992).

Specific language and cognitive deficits have also been reliably detected (Fig. 1). These 

include language delays and impairments in verbal reasoning in preschool-aged children 

(Angelilli et al., 1994; Griffith et al., 1994; Bandstra et al., 2004; Lewis et al., 2004; Morrow 

et al., 2004). Using the Wechsler Intelligence Scale for Children–Fourth Edition to assess 

math, reading, and written language ability, preschool children prenatally exposed to cocaine 

were found to have lower perceptual reasoning IQ associated with language deficits. Once 

again greater effects were seen in those children that were exposed to higher amounts of 

cocaine (compared to a lower cocaine-exposed group and control subjects) (Singer et al., 

2008). Other language deficits in infants and toddlers include failure to vocalize other than 

crying, delayed acquisition of words, limited use of newly learned words, failure to call the 

primary caregiver “mama” or “dada” until after 15 months of age, and long periods of 

silence (Davis et al., 1992). Longitudinal studies examining language delays include deficits 

in receptive, expressive, and total language domains that are persistent throughout childhood 

and last, at least, into adolescence (Singer et al., 2001; Morrow et al., 2003b; Bandstra et al., 

2004; Lewis et al., 2007; Lewis et al., 2011; Bandstra et al., 2011).

Prenatally cocaine-exposed children have also been found to have increased risk for 

behavioral problems and impaired social development, compared to non-exposed children 

(Yolton and Bolig, 1994; Bland-Stewart et al., 1998; Richardson, 1998; Delaney-Black et al., 

1998; Linares et al., 2006; Bada et al., 2007) (Fig. 1). Specifically, temperament differences 

have been found at both 1 and 3 years of age, with the onset of behavioral problems starting 

at 3 years following PCE (Richardson, 1998). Similarly, in another clinical study of 

preschool- and elementary school-aged children (3-, 5-, and 7-year old), children with PCE 

demonstrated increased externalizing behaviors (e.g., aggressive or defiant behaviors), as 

well as increased internalizing behaviors (e.g., social withdrawal, nervousness or irritability, 

and fearfulness) at all three ages, even after controlling for other factors such as 

environment. Once again, higher levels of cocaine exposure in utero were associated with 

greater risk for these behaviors (Bada et al., 2007). In addition, these children had delayed 

conceptual development. Emotional and social deficits, including blunted and dulled 

emotions, less secure attachment, limited play skills, less social play behavior, passive and 

withdrawn personalities, and rapid mood swings were also found in children prenatally 

exposed to cocaine (Rodning et al., 1989; Gittler and McPherson, 1990; Grace, 1993).
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Brain Anatomy

Abnormal brain development likely underlies the PCE-induced behavioral deficits described 

above. For instance, decreased head circumference and microcephaly are commonly found 

in infants prenatally exposed to cocaine, particularly high levels of cocaine (Bingol et al., 

1987; Ryan et al., 1987; Zuckerman et al., 1989; Chasnoff et al., 1989a; Fulroth et al., 1989; 

Frank et al., 1990; Gillogley et al., 1990; Little and Snell, 1991; Nulman et al., 2001; Bada 

et al., 2002; Bauer et al., 2005; Akyuz et al., 2014). Additionally, studies that find a decrease 

in head circumference also typically find behavioral and cognitive deficits. In fact, head 

circumference is thought to be a good predictor of neurobehavioral deficits in those children 

prenatally exposed to cocaine.

Brain imaging studies have also been used to examine structural and volumetric changes in 

the brain following PCE. Specifically, magnetic resonance imaging (MRI) has revealed 

smaller cortical and subcortical structures, including a smaller caudate (Rao et al., 2007; 

Rivkin et al., 2008) [although see also (Avants et al., 2007)], corpus callosum (Dow-

Edwards et al., 2006), and pallidum (Liu et al., 2013), following PCE. In contrast, PCE 

appears to be associated with a larger amygdala (Rao et al., 2007). Akyuz et al. (2014) and 

Liu et al. (2013) used MRI to examine changes in brain structure following PCE at two 

separate time points (8–10-year old children and 13–15-year adolescents). Initial studies of 

8–10-year olds revealed a trend toward a reduction in overall brain volume in those 

prenatally exposed to cocaine. The specific structures in which the volume was significantly 

reduced included cortical gray matter, the thalamus, and the putamen. The size reductions in 

the thalamus and putamen were inversely correlated with the amount of cocaine exposure in 

utero. In addition, MRI scans using a smaller cohort of 13–15-year olds determined that the 

reductions in the volume of these structures persisted at least into the teenage years (Akyuz 

et al., 2014). Diffusion tensor imaging has shown that PCE is associated with increased 

diffusion in the frontal brain regions, including the medial and lateral white matter tracts, 

suggesting immature development (Warner et al., 2006) and a reduction in the mean cortical 

gray matter and total parenchymal volumes (Rivkin et al., 2008). In comparison, arterial 

spin-labeling perfusion fMRI has shown that adolescents prenatally exposed to cocaine 

exhibit a global reduction in resting cerebral blood flow and have a relative increased 

cerebral blood flow in the frontal and limbic regions, suggesting a compensatory mechanism 

(Rao et al., 2007).

Seizures

PCE is also associated with increased risk of seizures in newborns and changes in brain 

wave activity (Doberczak et al., 1988; Shih et al., 1988; Chasnoff et al., 1989a; Kramer et 

al., 1990; Carzoli et al., 1991; Scher et al., 2000; Lester et al., 2002). In one study, 100% of 

the infants prenatally exposed to cocaine experienced seizures within 36 hr of delivery; 50% 

of these infants had repetitive seizures during their neonatal hospitalization stay, but did not 

have reoccurrences during a follow-up period of 4 to 12 months. The other 50%, however, 

continued to experience neonatal seizures after their initial month of life and a smaller subset 

continued to experience seizures even after 6 months of life, suggesting long-term 

neurodevelopmental effects of early cocaine exposure (Kramer et al., 1990). In a separate 

study by Doberczak et al. (1988), which focused on EEG patterns, 90% of the infants that 
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were prenatally exposed to cocaine displayed deficits in neurophysiological behavior, such 

as increased CNS irritability, and over 50% had abnormal EEGs. These effects, however, 

were transient such that by week 2, only 20% of infants displayed abnormal EEGs, and by 3 

to 12 months of age, only 1 infant out of 10 displayed abnormal EEG patterns. Lastly, brain 

stem auditory responses were shown to have prolonged inter-peak latencies and prolonged 

absolute latencies, indicating that the myelination of these neurons may be impaired or 

retarded (Shih et al., 1988; Lester et al., 2002). Collectively, these results suggest that 

abnormal brain function appears as early as infancy following PCE.

Functional Imaging Studies

Functional MRI studies of school age children (8–9-year old) showed that PCE was 

associated with greater activation of the right inferior frontal cortex and caudate following a 

response inhibition task, whereas non-PCE children showed greater activation in temporal 

and occipital regions (Sheinkopf et al., 2009). These results suggest that PCE likely affects 

the development of brain regions involved in attention and response inhibition. To assess the 

location and degree of neural activation underlying working memory, teenagers 

approximately 15-year old were subjected to an executive function task. Teens prenatally 

exposed to cocaine demonstrated performances and fMRI activation patterns during this task 

that were comparable to those of control subjects, indicating no differences between these 

groups (Hurt et al., 2008). These seeming discrepancies may be due to high versus low 

levels of cocaine exposure, as well as other confounding variables, and therefore necessitate 

future studies to further understand the functional long-term effects of PCE.

Animal Models

Behavioral Consequences

A large body of literature suggests that PCE leads to a number of deficits in simple, 

unlearned behaviors, such as surface righting, cliff avoidance, orientation, state control, 

negative geotaxis, motor development, and tremors (Sobrian et al., 1990; Kunko et al., 1993; 

Sobrian et al., 1995; Lidow, 2003; He et al., 2004) (see Table 1: Behavioral & Cognitive 

Consequences for examples), whereas, others have found no effects of PCE on reflexes 

(Spear et al., 1989a; Morris et al., 1996a; Paule et al., 1996) or state (Zmitrovich et al., 

1992). However, one behavior that is consistently found in animal models of PCE is 

important for pup survival: ultrasonic vocalizations (USV). As with humans, neonates emit 

calls that indicate to the dam a change in environment or arousal state, for instance. These 

cries are critical in the mother-infant relationship. Studies have shown that neonates exposed 

gestationally to cocaine display altered vocalization patterns. In rodents and chickens, PCE 

can result in decreases in the number of vocalizations (Hahn et al., 2000; Cox et al., 2012; 

Lippard et al., 2015), while others have shown increases in USVs relative to controls; 

although this effect normalized soon after in rodents (Kabir et al., 2014; Zeskind et al., 

2014). As in humans, others have shown that USV emitted from PCE-exposed rodents also 

differ from their control peers in the acoustic structure, harmonics, duration, and pitch of the 

calls (Hahn et al., 2000; Cox et al., 2012; Zeskind et al., 2014).
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Attentional and cognitive deficits are also commonly found in animal models of PCE. 

Neonatal rhesus monkeys have been shown to have attentional deficits (He et al., 2004). 

PCE also results in long-lasting cognitive and attentional deficits in adult rodents and rabbits 

(Kosofsky and Wilkins, 1998; Wilkins et al., 1998b; Gendle et al., 2004a; Gendle et al., 

2004b; Thompson et al., 2005), with specific emphasis on deficits in visual or visuospatial 

attention (Gendle et al., 2003; He et al., 2006b), similar to those human studies previously 

mentioned (Heffelfinger et al., 1997; Heffelfinger et al., 2002); however, see (Morrow et al., 

2002b). While the underlying mechanism for these deficiencies is not clear, alterations in 

attentional processing following PCE have been found in adult rodents (Mactutus, 1999; 

Bayer et al., 2000; Brunzell et al., 2002; Morgan et al., 2002) and rabbits (Romano and 

Harvey, 1998). Some data suggest that these defects arise from PCE-induced changes in the 

dopamine D1 receptor signaling (Bayer et al., 2000).

Such attentional deficits may contribute to deleterious cognitive effects following PCE. 

While some researchers have found little to no evidence of cognitive deficits (Morris et al., 

1996b; Paule et al., 1996; Galler and Tonkiss, 1998; Markowski et al., 2000), the majority of 

findings suggest the opposite. These deficits are apparent at a very early age, as prenatally 

cocaine-exposed neonatal rats were significantly impaired in the acquisition and retention of 

milk-odor associations relative to controls (Spear et al., 1989b), and demonstrated an initial 

inability to develop associations in a test of Pavlovian conditioning (Kosofsky and Wilkins, 

1998). They also exhibited increased latencies to acquire conditioning to an aversive 

stimulus (Goodwin et al., 1992). In contrast, primates (∼6 months of age) do not exhibit any 

overt learning and memory deficits (Paule et al., 1996). In adults, a number of studies have 

found significant alterations in egocentric learning (Vorhees et al., 1995), as well as working 

memory—both spatial and non-spatial—following PCE (Sobrian et al., 1995; Cutler et al., 

1996; He et al., 2006b; Morrow et al., 2002b; Bashkatova et al., 2005; Thompson et al., 

2005; Salas-Ramirez et al., 2010; Lu et al., 2012); although these effects are potentially sex- 

and/or dose-dependent (Levin and Seidler, 1993; Vorhees et al., 1995). Others have noted 

deficits in visual discrimination tasks (Romano and Harvey, 1996, 1998; Chelonis et al., 

2003), passive and active avoidance (Church and Overbeck, 1990), fear extinction recall 

(Kabir et al., 2013), as well as Pavlovian conditioning tests (Kosofsky, 1998; Wilkins et al., 

1998b), among the different animal models of PCE.

As with humans, animals exposed prenatally to cocaine exhibit alterations in social 

behaviors. Similar to the PCE-induced cognitive deficits, these effects appear early in the 

postnatal period. For instance, PCE-exposed pups do not effectively compete with 

unexposed pups for time at the nipple, demonstrating deficits in social competition (Wood et 

al., 1994). Exposed rodents also exhibit less play behavior (e.g., pinning) and altered social 

interaction early on (Wood et al., 1994; Wood et al., 1995; Kabir et al., 2014). These deficits 

in social behavior seem to persist such that adults generally demonstrate deficits in social 

interaction (Johns and Noonan, 1995; Overstreet et al., 2000; Estelles et al., 2006b; Williams 

and Johns, 2014) and, most predominantly, increases in aggressive behaviors (Goodwin et 

al., 1992; Wood and Spear, 1998; Estelles et al., 2005). Maternal care is also an important 

factor in proper infant development, and dams administered cocaine demonstrate aberrant 

maternal behaviors, which can exacerbate the deleterious effects of PCE [for review, see 

(Williams and Johns, 2014)]. Moreover, female offspring exposed to cocaine in utero exhibit 
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aberrant maternal behaviors themselves, including elevated aggression and disrupted pup 

retrieval time (Hess et al., 2002; McMurray et al., 2008). While it has been suggested that 

oxytocin plays a role in the long-term effects of PCE on social behavior (Williams and 

Johns, 2014) and that environmental enrichment ameliorates these outcomes (Neugebauer et 

al., 2004), additional research is needed to understand the underlying mechanisms involving 

PCE's role in social behaviors.

PCE-exposed animals also demonstrate distinct impairments in motor functions (Table 1). 

PCE invokes alterations in basal locomotor activity and rearing (Hutchings et al., 1989; 

Johns et al., 1992b; Peris et al., 1992; Vathy et al., 1993; Peeke et al., 1994; Laferriere et al., 

1995; Vorhees et al., 1995; Tonkiss et al., 1996; Romano and Harvey, 1998; Johns et al., 

1998; Schrott et al., 1998; Sithisarn et al., 2011); however see (Fung et al., 1989; Estelles et 

al., 2006b). Moreover, ambulatory and stereotypic effects were exacerbated following acute 

administration of dopaminergic ligands (e.g., cocaine, amphetamine, quinpirole, 

methylphenidate) (Meyer et al., 1992; Peris et al., 1992; Kunko et al., 1993; Sobrian et al., 

1995; Kunko et al., 1996; Simansky and Kachelries, 1996; Stewart et al., 1998; Glatt et al., 

2000; Tilakaratne et al., 2001; Torres-Reveron and Dow-Edwards, 2006; Estelles et al., 

2006a; Lu et al., 2009; Sasaki et al., 2014); however, see (Benson et al., 1996). Changes in 

response to such challenges indicate that PCE affects dopaminergic circuitry and/or the 

corticostriatal motor pathway during development (Jones et al., 2000; Stanwood et al., 

2001a; Tilakaratne et al., 2001; Crandall et al., 2004; McCarthy et al., 2011; McCarthy and 

Bhide, 2012; Sasaki et al., 2014), thus resulting in long-term dysfunction to these and related 

circuits. Interestingly, administering low concentration, intermittent doses of 

psychostimulants results in an intensified motor response in PCE-exposed animals. Termed 

behavioral sensitization, this phenomenon is one indicator of “drug wanting,” or the 

potential for addiction to a substance (Steketee and Kalivas, 2011). In addition, a number of 

studies indicate that prenatal exposure to cocaine exacerbates the stereotypic responses but 

not necessarily the locomotor effects, during behavioral sensitization (Byrnes et al., 1993; 

Melnick and Dow-Edwards, 2001; Crozatier et al., 2003; Guerriero et al., 2005). PCE can 

also decrease the rewarding or reinforcing properties of psychostimulants and other drugs of 

abuse (Heyser et al., 1992a; Heyser et al., 1992b; Heyser et al., 1994; Hecht et al., 1998; 

Gulley et al., 1999; Stanwood and Levitt, 2003; Estelles et al., 2006a; Malanga et al., 2007). 

However, others have shown that animals exposed to PCE are more sensitive to the 

rewarding properties of drugs. For instance, studies on PCE-exposed rodents indicate 

increased impulsivity (Sobrian et al., 2003; Hamilton et al., 2011), which can portend the 

potential for addiction, whereas in other studies PCE rodents exhibit augmented sensitivity 

to cocaine reward in conditioned place preference (Dow-Edwards et al., 2014), brain 

stimulation-reward (Lin and Kellogg, 1996; Malanga et al., 2008), and self-administration 

(Keller et al., 1996b; Rocha et al., 2002). Overall, these results suggest that gestational 

cocaine exposure affects the vulnerability of offspring to administer drugs of abuse later in 

life.

Finally, the effects of PCE are not limited to these behavioral domains. Animals 

developmentally exposed to cocaine demonstrate increased depression-like behaviors 

(Bilitzke and Church, 1992; Sobrian et al., 2003), elevated anxiety-like behavior (Johns et 

al., 1992a; Johns et al., 1992b; Johns et al., 1998; Salas-Ramirez et al., 2010; Sithisarn et al., 
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2011), abnormal sexual behavior (Raum et al., 1990; Cutler et al., 1996; Vathy and Marson, 

1998), atypical responses in acoustic startle-prepulse inhibition (Sobrian et al., 1990; 

Bilitzke and Church, 1992; Overstreet et al., 2000), altered reactivity to stressors (Spear et 

al., 1989b; Campbell et al., 2000; Huber et al., 2001; Gendle et al., 2004a; Malanga et al., 

2007), respiratory dysfunction (Moss et al., 1995; Lipton et al., 1996), catalepsy or seizures 

(Meyer et al., 1994; Baraban and Schwartzkroin, 1997), and arousal or state dysregulation 

(Moss et al., 1995; Strother et al., 1998; Gendle et al., 2004b), to name a few. Given the 

overlapping outcomes of preclinical PCE studies with those same effects in humans, using 

animal models to delve deeper into the biological mechanisms and underpinnings of PCE 

will potentially improve the outcomes for exposed humans.

Brain Anatomy

A primate model of PCE reported reduced head circumference (Ronnekleiv et al., 1998) and 

lasting effects on the overall brain and cortical volume, the total number of neocortical 

neurons, and the cell density, similar to the findings from human studies (Lidow, 1995; 

Lidow and Song, 2001b). In contrast, in rodent models, although some studies have also 

reported a reduction in brain volume and cortical thickness in the embryonic, newborn, and 

adult brain (Gressens et al., 1992b; He et al., 2006b; Lee et al., 2011), most rodent studies 

have failed to find significant effects on measures, such as brain and cortical structure and 

volume, as well as biparietal thickness of the cortex and thickness of cortical layers 

following PCE (Wang et al., 1995c; Jones et al., 1996; Johnson et al., 2002; Morrow et al., 

2002a; Crandall et al., 2004; McCarthy and Bhide, 2012), suggesting a possible species-

specific effect. In addition, no significant changes have been found for sub-cortical 

structures, such as the caudate, putamen, or amygdala (Hamilton et al., 2010). Interestingly, 

significant effects were found in some of these animal models between the saline pair-fed 

controls and the ad-lib controls, indicating the possible effect that nutrition may play in brain 

and cortical development (Kosofsky et al., 1994; Wilkins et al., 1998a).

In addition to potential deficits in brain volume and/or cortical thickness, body growth 

retardation has also been reported both in utero and postnatally by some preclinical studies. 

For instance, although these results are variable, some have demonstrated in utero growth 

retardation (Henderson and McMillen, 1990; Church and Rauch, 1992; Gressens et al., 

1992a; Akbari et al., 1994) and decreased weight in newborns (Kosofsky et al., 1994); these 

effects appear to be dependent on the dose and duration of cocaine exposure. In contrast, 

others have suggested that no effect exists or only exists in comparison against saline 

controls and not saline pair-fed controls (Heyser et al., 1990; Wiggins and Ruiz, 1990a; 

Wiggins and Ruiz, 1990b; Kunko et al., 1993; Wilkins et al., 1998a). Taken together, there is 

relevant evidence from preclinical studies to support the aforementioned clinical studies, 

and, as with the clinical studies, the confounding factors add to discrepancies and variability 

in these important findings.

Neurotransmitter Mechanisms

Studies using animal models have significant advantages over human studies because animal 

studies permit detailed experimental analysis of neurotransmitter signaling mechanisms at 

the level of the neurotransmitter itself, as well as its transporters, receptors and second 
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messenger systems. As cocaine binds to monoamine transporters in the fetal brain, PCE 

research has focused on dopamine (DA) serotonin (5-HT) and norepinephrine (NET) 

signaling mechanisms (see Table 2: Cellular and Molecular Findings). In one study using a 

guinea pig model of PCE, Lidow et al. (1999) described a decrease in the D1R and D2R 

expression in the dorsal forebrain within a few days of initial exposure (E25, with treatment 

beginning on E20); however, these expression levels significantly increased later in 

embryonic development (E40–E50) (Lidow et al., 1999). Similarly, β-adrenergic receptor 

expression in the embryonic brain was also initially decreased following the onset of cocaine 

exposure, but then was found to be significantly increased later throughout embryonic 

development (Lidow et al., 1999). In fact, this increase in β-adrenergic receptor expression 

seems to persist throughout adolescence and into adulthood in regions of the forebrain, such 

as the striatum and frontal cortex (Henderson et al., 1991). In addition, 5-HT1A and 5-HT2 

receptor expression is also significantly decreased during early embryonic development, but 

then appears to normalize by late embryonic development (Lidow et al., 1999). In the 

adolescent brain, no changes in the 5-HT fiber density have been found following PCE 

(Wang et al., 1996b). Overall, 5-HT and its metabolite 5-HIAA appear to be decreased at 

P60, but then levels normalize by P180, indicating possibly transient effects of cocaine on 5-

HT content (Henderson and McMillen, 1993). A variety of other models have seen 

substantial changes in the 5-HT system that persist postnatally (Snyder-Keller and Keller, 

1993; Akbari et al., 1994; Meyer et al., 1996; Schrott and Sparber, 2001; Bolanos et al., 

2000; Cabrera-Vera et al., 2000; Bolanos et al., 2002; Johns et al., 2002; Yan, 2002; Chen et 

al., 2004; Williams et al., 2011).

There have been extensive studies on the role of dopamine in PCE. PCE produces increases 

in extracellular DA levels, resulting in sustained activation of the dopamine receptors 

(DARs), and subsequent impairment of receptor function. Specifically, PCE attenuates D1 

receptor (D1R) activity by uncoupling the D1R from its Gs protein partners (Wang et al., 

1995a; Friedman et al., 1996; Friedman and Wang, 1998; Jones et al., 2000; Zhen et al., 

2001; Harvey, 2004; Kubrusly and Bhide, 2010). This effect persists throughout adolescence 

and into adulthood. The reduction in D1R-Gs coupling results from D1R internalization, due 

to improper D1R trafficking to the cell membrane (Stanwood and Levitt, 2007). These 

alterations in DA signaling could have profound and lasting effects on the developing brain. 

Specifically, D1R loss of function and PCE both produce morphological changes in the 

apical dendrites of pyramidal neurons, disruptions in their laminar positioning, changes in 

neurite outgrowth, and altered GABA neuron migration in the cerebral cortex (Bhide, 2009; 

Frederick and Stanwood, 2009; Thompson et al., 2009).

PCE also alters DAR binding site densities, protein expression, and mRNA expression (Choi 

and Ronnekleiv, 1996; Fang et al., 1997; Kubrusly and Bhide, 2010). Decreased D1R 

expression in the dorsal forebrain was observed in our mouse model on embryonic day 15; 

however, these effects were transient such that expression returned to levels similar to those 

in saline-exposed controls by adulthood (Kubrusly and Bhide, 2010). In the postnatal brain, 

studies have found decreased D1R expression and increases in the D2R mRNA expression in 

the striatum (Leslie et al., 1994), whereas another study did not find such changes in D1R 

expression in the striatum but rather only increased D2R expression (Scalzo et al., 1990).
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Dopamine transporter (DAT) expression and function were also altered in the embryonic and 

adult brain following PCE (Leslie et al., 1994; Fang and Ronnekleiv, 1999; Kubrusly and 

Bhide, 2010). In addition, a transient reduction in the density of neurons containing tyrosine 

hydroxylase, the biosynthetic enzyme of DA and norepinephrine (NE), in the substantia 

nigra and ventral tegmental area were reported in the prenatally cocaine exposed embryos 

(Ronnekleiv and Naylor, 1995). In contrast, no changes in the overall DA content were 

found in the adolescent and adult forebrain areas (Wang et al., 1995b); however, on 

stimulation with K+, DA release was decreased in the frontal cortex and cingulate cortex in 

slice cultures from prenatally cocaine exposed embryos (Wang et al., 1995b). Moreover, this 

effect seems to be region specific, as no effect was found in the striatum following K+ 

stimulation (Wang et al., 1995b). In a separate study, subtle increases in DA release were 

found in the nucleus accumbens (NAc) following a tail pinch, whereas a robust increase in 

DA release was found following a cocaine injection in the NAc of young rats prenatally 

exposed to cocaine (Keller et al., 1996a). Overall, these changes in DA signaling in specific 

brain regions provide valuable clues regarding the potential mechanisms that may underlie 

many of the behavioral and cognitive deficits typically seen following PCE.

Neuronal Migration

PCE also alters tangential and radial migration of neurons in the developing rodent brain 

(Crandall et al., 2004; Lee et al., 2011; McCarthy et al., 2011) (Table 2). Specifically, rodent 

studies have shown that following PCE, fewer GABA neurons were present in the 

intermediate zone of the developing cortex during early and mid corticogenesis (Lee et al., 

2011; McCarthy et al., 2011). These effects were transient, however, because by E17, a 

period of late corticogenesis, the deficits were no longer apparent (McCarthy et al., 2011). 

Interestingly, PCE led to a significant reduction in the lateral to medial gradient of GABA 

numerical densities at E17, with fewer GABAergic neurons in the medial prefrontal cortex 

(mPFC), compared to the dorsal PFC. Thus, PCE prevented the flattening of the lateral-to-

medial gradient in the distribution of GABAergic neurons within the dorsal forebrain 

(McCarthy et al., 2011).

Once GABAergic neurons reach the dorsal forebrain via tangential migration, they begin to 

migrate radially until they settle in their final laminar positions within the dorsal forebrain. 

Whether PCE specifically affects the ability of GABAergic neurons to migrate radially on 

their arrival in the dorsal forebrain is not known; however, decreases in the numerical 

densities of GABA neurons within certain laminae of the cerebral cortex may suggest 

deficits in their radial migration. PCE alters the radial migration of the excitatory 

glutamatergic pyramidal cells in the embryonic brain (Lee et al., 2011; McCarthy et al., 

2011). Following PCE, there is an increase in the number of post-mitotic cortical projection 

neurons present in the ventricular zone/subventricular zone (VZ/SVZ), indicating an 

inability of these cells to migrate away from the proliferative zones of the VZ and SVZ and 

into the post-mitotic zones (Lee et al., 2011; McCarthy et al., 2011).

Although the specific molecular mechanisms associated with PCE-mediated delay in 

neuronal migration remain unclear, the delay in tangential migration could be due to a 

combination of factors, including cocaine's direct effects on DA signaling and function. In 
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fact, we have shown that the tangential migration of GABA neurons is influenced by DAR 

activation (Crandall et al., 2007). D1R activation promotes tangential neuronal migration, 

whereas D2R activation inhibits it. The second mechanism by which cocaine may be 

exerting its effects involves an increase in Nkx2-1 expression in the basal forebrain. Nkx2-1 

is a homeobox transcription factor that mediates tangential migration of GABA neurons 

from the basal to the dorsal forebrain, and neurons with higher Nkx2-1 expression are more 

likely to remain in the basal forebrain and not migrate out via tangential migration. We 

found higher Nkx2-1 expression in the basal forebrain during early brain development (E13 

and E15), thereby providing an alternative mechanism for this delayed tangential migration 

(McCarthy et al., 2011). Thirdly, 5-HT has been shown to directly influence GABA 

interneuron migration via the 5-HT6 receptor (Riccio et al., 2009). Due to cocaine's effects 

on the 5-HT system, this could potentially be another mechanism by which PCE is exerting 

its effects on the developing brain.

Lastly, cocaine's effects on neuronal migration may be a result of impaired brain-derived 

neurotrophic factor (BDNF) expression (see also Table 2). BDNF is a neurotrophin involved 

in neuronal migration, cell survival, growth, differentiation, neurite outgrowth, and 

synaptogenesis (Huang and Reichardt, 2003; Binder and Scharfman, 2004). BDNF is highly 

expressed in the fetal brain, particularly in the basal and dorsal forebrain (Meyer et al., 1996; 

McCarthy et al., 2011). BDNF protein expression is reduced in the basal forebrain of PCE 

embryos during a gestational period of peak tangential neuronal migration (McCarthy et al., 

2011), and application of exogenous BDNF to basal forebrain explants from PCE embryos 

rescued the migration defects, implicating BDNF as a molecular mediator of cocaine effects 

on tangential migration (McCarthy et al., 2011; McCarthy et al., 2014). (See below for 

additional discussion of possible roles for BDNF).

These effects on neuronal migration even persist throughout adulthood (Gressens et al., 

1992b; Kosofsky et al., 1994; Lidow, 1995; Lidow et al., 2001; Lidow and Song, 2001b; 

McCarthy et al., 2012b). Specifically, in a non-human primate PCE study, newly generated 

cortical neurons labeled with [3H]-thymidine during the fetal period (E65) did not reach 

their final position within the cortical plate of the visual cortex in both adolescent and adult 

rhesus monkeys. Specifically, in PCE monkeys, neurons born at this time were spread across 

cortical layers IV, V, VI, and the white matter rather than being restricted to layers IV and V, 

resulting in a neocortex lacking discernible lamination (Lidow, 1995; Lidow and Song, 

2001b). Mouse models of PCE have also reported a disruption in the final laminar position 

of these labeled neurons, ultimately resulting in the blurring of the laminar borders within 

the dorsolateral PFC (Gressens et al., 1992b; Kosofsky et al., 1994). Furthermore, these 

neuronal migration defects are not limited to the cortical regions: PCE has also been shown 

to disrupt the laminar position of pyramidal cells in the hippocampal CA1 cell layer 

(Baraban et al., 1999). Despite several different animal models suggesting long-term deficits 

in laminar positioning following PCE, other studies that used a lower prenatal cocaine dose 

failed to show similar results in regions of the mPFC and the anterior cingulate cortex (ACC) 

(Jones et al., 1996; Wang et al., 1996a; Morrow et al., 2005). In conclusion, it appears that 

deficits in migration following PCE appear to leave persisting deficits in the adult brain, and 

may contribute to deficits in cognitive function in exposed individuals.
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Cytoarchitecture: Cell Densities, Differentiation and Synaptogenesis

GABA neurons—Long-term repercussions of PCE have been found in the GABA and 

glutamate neurotransmitter systems. This should not be surprising, given the effects of PCE 

on the migration and laminar positioning of GABA and glutamate neurons during brain 

development. One study in particular found a reduction in the number of GABA neurons in 

the mPFC (McCarthy and Bhide, 2012). The reduction was more pronounced in the upper 

mPFC (layers II-III), and could be partially attributed to selective reduction in the numbers 

of parvalbumin (PV)-containing GABA neurons. PCE also produces a decrease in the 

GABA-to-projection neuron ratio in the mPFC (McCarthy and Bhide, 2012). In contrast, 

several studies have shown no detectable differences in the total number or numerical 

densities of GABA neurons in other brain regions, such as the PFC, piriform cortex, ACC, 

and entorhinal cortex (Wang et al., 1995c; Wang et al., 1996a; Stanwood et al., 2001a; 

Stanwood et al., 2001b; Morrow et al., 2003a,), which may be partially attributed to a 

different cocaine dose and animal model. Interestingly, Morrow et al. also examined the 

types of PV-containing GABA neurons in the mPFC based on their shape and found a 

decrease in the number of spindle shaped PV-immunoreactive (PV-ir) neurons in PCE rats, 

indicating that differences in cell numbers and densities may be particular to certain 

subtypes of cells (Morrow et al., 2005). Conversely, other studies have demonstrated 

increased expression of PV-ir in the dendrites of interneurons in the PFC, ACC, and piriform 

cortices (Wang et al., 1995c; Wang et al., 1996a; Murphy et al., 1997; Stanwood et al., 

2001a; Stanwood et al., 2001b). These effects were even seen at low doses of cocaine 

exposure (2–4 mg/kg) and were specific for periods of peak corticogenesis. Moreover, these 

effects are not limited solely to PV-ir cells. Others have shown a reduction in the GABAergic 

axo-axonic structures in the mPFC called candles, which are the axon terminals of 

GABAergic cells that synapse on the axons of excitatory pyramidal neurons, and are 

important for the inhibitory control of excitatory neurons (Morrow et al., 2003a). Overall, 

these deficits suggest alterations in neocortical connectivity that can contribute to the 

aforementioned behavioral and cognitive deficits following PCE.

Glutamatergic neurons—PCE has also been shown to produce long-lasting anatomical 

alterations in the glutamatergic system. In fact, one study found an increase in the numerical 

density of glutamatergic neurons (McCarthy and Bhide, 2012). Several studies in a rabbit 

model of PCE have also shown that PCE produces alterations in the morphology and 

distribution of glutamatergic pyramidal neurons (Jones et al., 1996; Jones et al., 2000; 

Stanwood et al., 2001a; Stanwood et al., 2001b; Ismail and Bedi, 2007), likely through a 

dopaminergic mechanism (Stanwood et al., 2005; Stanwood and Levitt, 2007). There is also 

an attenuation of AMPAR-mediated long-term depression within the mPFC following PCE, 

likely due to changes in the phosphorylation and activity of trafficking molecules important 

for AMPAR synaptic targeting (Bakshi et al., 2009). Furthermore, PCE has been shown by 

others to lead to decreased inhibition and increased excitation in the mPFC, by elevating 

neuronal excitability and activity-induced long-term potentiation (LTP) (Lu et al., 2009; 

Huang et al., 2011). In addition, increased excitability of hippocampal pyramidal neurons 

via a reduction in action potential threshold has also been found (Baraban and 

Schwartzkroin, 1997), possibly due to a reduction in the surface expression of GABAA 

receptor subunits, α1, β2, and β3 (Lu et al., 2009). Because LTP can result from a reduction 
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in the GABAA receptor-mediated inhibition of mPFC pyramidal neurons, PCE-induced 

excitability of these neurons is attributed to the reduction in GABAergic inhibition. Lastly, 

cocaine-exposed rats showed increased Fos expression in the mPFC after handling, 

compared to saline controls, but decreased footshock-induced Fos (Morrow et al., 2002a); 

also suggesting a disruption in the excitatory/inhibitory balance in the mPFC, which may 

contribute to the underlying behavioral and cognitive deficits following PCE.

Although PCE-induced deficits in neuronal migration may underlie the persistent alterations 

in GABA and glutamatergic neuron distribution and density, this is not the only plausible 

mechanism. Developmental processes, such as neurogenesis, proliferation, cell death, and 

differentiation may themselves mediate such changes; particularly as the cocaine exposure is 

ongoing during these critical windows of development (see below).

PCE also produces changes in cortical excitatory neuronal morphology. Normally, the apical 

dendrites of glutamatergic projection neurons ascend to the pial surface in long and straight 

bundles. In contrast, PCE has been shown to produce thinner and longer “wavy” apical 

dendrites in the ACC, PFC, and entorhinal cortex (Kosofsky et al., 1994; Jones et al., 1996; 

Murphy et al., 1997; Stanwood et al., 2001b). Interestingly, no changes were found in the 

somatosensory cortex, a DA-poor brain region, indicating that cocaine's effect on DA likely 

plays a role during dendritogenesis. In addition, PCE increased the number of excitatory 

synaptic inputs, also indicating cocaine's potential effects on regional excitability. This may 

represent another mechanism (in addition to decreased inhibition) by which PCE enhances 

the activation of frontal pyramidal neurons (Morrow et al., 2007). Interestingly, the onset of 

corticogenesis and cocaine's effects on modified neurite outgrowth is paralleled by the 

uncoupling of the D1R and its G protein signaling, as previously described (Stanwood and 

Levitt, 2007).

A number of other mechanisms have been proposed to explain the effects of PCE on cellular 

function. One such example is via the Wnt and cadherin signaling pathways. Cadherins are a 

family of transmembrane proteins that are involved in cell-cell adhesion and their activity is 

mediated in a Ca2+-dependent manner. It has been demonstrated that these molecules are 

important for cell motility and migration, specifically elongation, branching, and synapse 

formation of neuronal processes (Ranscht, 2000; Togashi et al., 2002; Yu and Malenka, 

2003; Poskanzer et al., 2003;), roles that are facilitated via a β-catenin-α-catenin bridge 

(Ranscht, 2000; Logan and Nusse, 2004). In fact, Wnt-/β-catenin-induced gene transcription 

is known to be involved in the regulation of cell proliferation and neuron-specific 

differentiation of progenitor cells. Interestingly, following PCE, there was an increase in β-

catenin protein levels throughout the frontal cortex of E18 mouse embryos (Novikova et al., 

2005b). In addition, the transcription of various genes involved in the Wnt and cadherin 

signaling pathways was also affected in these embryos, indicating that cocaine's effects on 

the Wnt-cadherin system likely plays an important role in mediating cocaine's effects on the 

cytoarchitecture and the subsequent behavioral and cognitive deficits.

Glial cells—PCE has been shown to affect not only neuronal cell densities but also glial 

cells. In fact, multiple studies have shown a reduction in the density of radial glial fibers in 

the embryonic brain and in the expression of glial fibrillary acidic protein (GFAP) in the 
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postnatal brain following PCE (Gressens et al., 1992b; Lidow, 1995). Specifically, the mouse 

model demonstrated these findings in the E17 embryonic brain (Gressens et al., 1992b), 

whereas, the primate model demonstrated reduced GFAP labeling in the upper cortical 

layers in 2-month old rhesus monkeys (Lidow, 1995). However, in the same primate model, 

by 3 years of age, no differences in the neocortical GFAP labeling could be detected, 

indicating a delay in gliogenesis following PCE (Lidow et al., 2001). In fact, defasciculation 

of radial glial bundles was demonstrated in a mouse model of PCE (Kosofsky et al., 1994) 

and may be the reason for undetectable differences in those studies that examine glial fiber 

densities in the postnatal brain (Jones et al., 1996).

Neurogenesis—PCE has been shown to alter neurogenesis in the developing brain. Many 

studies indicate that PCE produces significant effects on the proliferation of cells in the 

dorsal cerebral wall (Lee et al., 2008; Lidow and Song, 2001a; Lee et al., 2011), whereas a 

mouse model of PCE found no such differences (Crandall et al., 2004; McCarthy et al., 

2011). In one study, using a non-human primate animal model, PCE was shown to produce 

opposing effects on neurogenesis in the embryonic neocortex during cocaine exposure—

decreased neurogenesis shortly after cocaine exposure and increased neurogenesis 10 hr 

later in the short term and increased neurogenesis later (Lidow and Song, 2001a). Similar 

observations were made in neonatal rats (Anderson-Brown et al., 1990). Together, these 

findings indicate periodic fluctuations in cell proliferation within the fetal brain. This is 

likely due to the fact that cocaine has previously been shown to lead to the accumulation of 

dividing cells at the G1/S transition, such that when cocaine levels decline, cells are then 

able to enter S phase and continue their progression within the cell cycle (Di Francesco et 

al., 1990). Subsequently, Lidow and Song (2001a, 2001b) examined the long-term effects of 

PCE on neurogenesis and found no such differences. Therefore, the initial suppression of 

cell proliferation produced by cocaine administration in this study leads to a compensatory 

burst of proliferative activity which consequently normalizes the effects that PCE has on 

neurogenesis over time.

These results are difficult to interpret, however, without further analysis of cell cycle 

parameters and cell output rates. In one PCE study that did examine the cell output using 

Ki67-BrdU double-labeling to count the number of cells that became post-mitotic over a 24-

hr period, no significant differences were found (McCarthy et al., 2011). Interestingly, there 

was an increase in the number of postmitotic cells in the VZ and SVZ of the cerebral wall, 

compared to the intermediate zone and cortical plate, indicating a possible delay in the 

migration of these cells away from the proliferative zones (McCarthy et al., 2011). Overall, 

differences among the experimental techniques and animal models used in these studies may 

account for diverse results. These include using different thymidine analogs ([3H]thymidine 

versus BrdU), differences in the timing of the thymidine analog injection (1.5 vs. 10 vs. 24 

hr), differences in the gestational timing between animal models, the route of administration 

(oral administration versus subcutaneous injection), different doses used for each (10 mg/kg 

twice daily versus 20 mg/kg twice daily), along with differences in the pharmacodynamic 

profile of cocaine for each of these animal models.

A possible mechanism for these changes in the cell cycle was elucidated using cell cultures 

with neural progenitor AF5 cells. This study found that 24 hr of cocaine treatment reduced 
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the total number of cells within the culture and also reduced BrdU incorporation (Lee et al., 

2008). Specifically, cocaine exposure resulted in a dose-dependent increase in the number of 

cells in G1 phase of the cell cycle, whereas fewer cells were found in S phase, indicating, 

similar to the aforementioned findings, that cocaine had suppressed the G1-to-S phase 

transition. Subsequently, microarray, qRT-PCR, and western blot analysis all revealed a 

decrease in the expression of cyclin A2, a cell cycle-related gene following PCE. This effect 

of cocaine on cyclin A2 expression was also confirmed using human fetal cortical cells 

exposed to cocaine in vitro and tissue from the neocortex of rat embryos receiving PCE 

during early (E13–E14) and middle (E15–E16) periods of neurogenesis. In this same study, 

cocaine exposure during early and late neurogenesis also reduced the percent of BrdU-Ki67 

double labeling in the VZ, but not the SVZ (Lee et al., 2008), also indicating changes in the 

cell cycle. It should be noted that although changes in transcription factors or cell cycle 

regulatory molecules may occur following cocaine exposure, these effects may be transient.

Cell death—Once again, contrasting findings are reported regarding the effects of PCE on 

apoptosis in the brain (Nassogne et al., 1995; Nassogne et al., 1997; He et al., 1999; 

Novikova et al., 2005a; Lee et al., 2009; McCarthy et al., 2011). In a primate model that 

examined the effects of PCE on cell death during early corticogenesis (E50–E65), TUNEL 

labeling of DNA fragmentation (indicative of apoptosis) was increased in all neocortical 

regions examined, including the proliferative zones, the intermediate zone, and the cortical 

plate (including the marginal zone) (He et al., 1999). This study did not, however, 

distinguish between neurons and glial cells. When others did differentiate between neuronal 

and glial cell types, apoptosis was found to be specific to certain cell types. Using an in vitro 

culture system, embryonic cortical cells were exposed to cocaine for either 48 or 96 hr at 

various concentrations of cocaine (100–500 μM) (Nassogne et al., 1995; Nassogne et al., 

1997). Both studies found that by examining the cell numbers, morphological features, and 

TUNEL labeling of DNA fragmentation, increasing concentrations of cocaine and increased 

length of exposure each promoted apoptosis to greater extents. These studies also found that 

cocaine differentially affects neurons and not glial cells, as measured by MAP2 and GFAP 

immunostaining, respectively. In contrast, others have shown that PCE in the mouse embryo 

does not, in fact, induce detectable apoptosis in regions of the mPFC, ganglionic eminence, 

and striatum (McCarthy et al., 2011).

Previous reports have suggested that cocaine exposure regulates expression of various genes 

associated with cell death and cell survival in different cell populations of the neocortex 

(Novikova et al., 2005a; Lee et al., 2009). Specifically, using microarray and qRT-PCR 

analysis, one particular study demonstrated that PCE in the mouse upregulated 35 pro-

apoptotic and 8 anti-apoptotic genes and downregulated 4 pro-apoptotic and 6 anti-apoptotic 

genes (Novikova et al., 2005a). This study did not, however, distinguish between neuronal 

and glial cell types. Another study that did differentiate between the two found no changes 

in the expression of genes related to cell death or cell survival in neurons; whereas gene 

expression changes were found in glial cells (Lee et al., 2009). Specifically, the pro-apototic 

genes IL-1β and BAX were upregulated in microglia whereas the anti-apoptotic genes 

14-3-3ε and HVEM were upregulated in astrocytes following 24 hr of cocaine exposure in a 

culture containing human fetal cortical cells at 20 weeks of gestation (Lee et al., 2009). 
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Collectively, these findings suggest that cocaine affects multiple apoptosis-regulating 

pathways, and indicate that different cell types that comprise the developing neocortex 

respond to cocaine differently. Taken together, differences among cell types may partially 

contribute to the variability seen across the PCE literature. In addition, the cocaine dose, 

route of administration, animal model, pharmacodynamics profile of cocaine in each of these 

models, as well as genetic and nutritional factors likely play a large role.

BDNF—BDNF expression has been intimately associated with the mesolimbic dopamine 

pathway (McGinty et al., 2010; McCarthy et al., 2012a) and repeated exposure to cocaine 

leads to increased BDNF expression in the mesolimbic pathway (for review see (McGinty et 

al., 2010; McCarthy et al., 2012a; Li and Wolf, 2015). It is found within the dopaminergic 

neurons of the VTA, glutamatergic neurons of the PFC, and GABAergic neurons of the 

NAc. As changes in BDNF expression have been shown in the embryonic brain following 

PCE and both the GABA and glutamatergic systems are altered by PCE, changes in BDNF 

expression may also occur in the adult brain, and potentially underlie the cognitive deficits 

typically seen in children prenatally exposed to cocaine (Yan et al., 2004; McCarthy et al., 

2011; Tropea et al., 2011; Kabir et al., 2014). A role for BDNF has been found in rat pups 

that were prenatally exposed to cocaine, such that lower total BDNF protein content under 

basal conditions in the hippocampus was found, whereas, no differences were found in the 

frontal cortex or striatum (Yan et al., 2004) (Table 2). Interestingly, depolarization of 

neurons in the hippocampus, cortex, and striatum slices resulted in blunted BDNF 

expression in PCE pups compared to saline-treated controls (Yan et al., 2004), indicating 

activity-dependent changes in BDNF signaling. Other studies that examined BDNF 

expression under basal conditions in adolescent and adult mice found no change in BDNF 

protein expression in multiple brain regions at either age (Tropea et al., 2011, Kabir et al 

2013, 2014). At the gene level, there was a transient increase in mRNA expression of exon 

IV in the mPFC of adolescents whereas no changes were found in adult mice (Kabir et al., 

2013; Kabir et al., 2014). In addition, the mRNA and protein expression of egr1, a 

downstream signaling molecule of BDNF, was also increased in the adolescent mice 

following PCE (Kabir et al., 2013). These alterations in BDNF protein and mRNA 

expression were accompanied by increased acetylation of histone 3 lysine residues 9 and 14 

acetylation (acH3K9,14) of exon IV in adolescent mice and a possible decrease in methyl-

CpG-binding protein 2 (MeCP2) of exons I and IV of adolescent and adult mice, both of 

which are thought to be associated with an open histone configuration and an increase in 

gene transcription (Kabir et al., 2013; Kabir et al., 2014) (Table 2). The same group 

examined BDNF expression, with regard to fear extinction behavior in prenatally cocaine 

exposed mice, and found decreased BDNF protein expression in the mPFC of adult mice, 

compared to saline controls during fear extinction tasks (Kabir et al., 2013). Subsequently, 

BDNF microinfusion into the mPFC rescued these behavioral deficits in fear extinction, a 

cognitive behavior that is heavily dependent on mPFC BDNF levels (Peters et al., 2010; 

Kabir et al., 2013). Similarly, this group also completed a study that used a single nucleotide 

polymorphism commonly found in the BDNF gene (of which 20–30% of Caucasians carry), 

and found changes in BDNF expression in the hippocampus, a region important for learning 

and memory, as well as deficits in the fear extinction task following PCE (Kabir et al., 

2012). Collectively, changes in BDNF expression and signaling seem to persist throughout 
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adolescence and into adulthood, and are associated with behavioral deficits associated with 

learning and extinction memory. Thus, these long-lasting molecular and epigenetic changes 

may be playing a crucial role in BDNF-mediated cognitive outcomes.

Concluding Remarks

Our aim in this review was to provide evidence suggesting behavioral and cognitive deficits 

following PCE and to provide insights into the underlying cellular and molecular 

mechanisms. PCE has been shown to have serious consequences for the mother and the 

child. In addition, children prenatally exposed to cocaine exhibit long-term deficits in 

arousal and attention, emotional reactivity, and reward systems. Recent functional imaging 

studies reveal subtle, but significant, behavioral and cognitive effects. However, a detailed 

analysis of executive function, decision-making, emotional dysregulation, and propensity for 

risky behaviors have yet to be elucidated. Findings from longitudinal studies in young adults 

that were prenatally exposed are now becoming available and reveal persistent behavioral 

and cognitive deficits following PCE. Specifically, brain regions with DA-rich innervation, 

such as the PFC, ACC, or striatum, which are involved in attention and arousal, are thought 

to be impaired in PCE children, and yet these circuits do not fully mature until the third 

decade of life. Therefore, these longitudinal studies are crucial to fully understand cocaine's 

effects.

Importantly, preclinical animal models of PCE have provided substantial mechanistic 

evidence, suggesting that PCE does indeed alter brain developmental trajectories leading to 

long-term behavioral and cognitive deficits. These animal models allow us to control for 

confounding factors, such as maternal multidrug use, genetic variability, and postnatal 

environment, which are unavoidable limitations of human studies. In addition, animal 

models can tease apart the effects of cocaine on brain, behavioral, and cognitive 

development, based on factors such as gestation timing and the level of cocaine exposure. 

Recent and ongoing animal models studies have also allowed us to explore epigenetic 

changes and transgenerational effects of PCE through its effects on germ cells.

Taken together, both clinical and preclinical studies continue to provide valuable insight into 

the effects of PCE on early brain development, as well as its long-term behavioral and 

cognitive implications.
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Figure 1. Summary of neurobehavioral findings in children exposed to cocaine prenatally
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