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Abstract

The development of human cognition results from the emergence of coordinated brain activity 

betweeen distant brain areas. Network science, combined with non-invasive functional imaging, 

has generated unprecedented insights regarding the adult brain’s functional organization, and 

promises to help elucidate the development of functional architectures supporting complex 

behavior. Here we review what is known about functional network development from birth until 

adulthood, particularly as understood through the use of resting-state functional connectivity MRI 

(rs-fcMRI). We attempt to synthesize rs-fcMRI findings with other functional imaging techniques, 

with macro-scale structural connectivity, and with knowledge regarding the development of micro-

scale structure. We highlight a number of outstanding conceptual and technical barriers that need 

to be addressed, as well as previous developmental findings that may need to be revisited. Finally, 

we discuss key areas ripe for future research in order to 1) better characterize normative 

developmental trajectories, 2) link these trajectories to biologic mechanistic events, as well as 

component behaviors and 3) better understand the clinical implications and pathophysiological 

basis of aberrant network development.
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Introduction

The human brain is organized into multiple distributed functional brain networks that can 
be measured at multiple spatiotemporal scales

Coordinated neuronal activity between anatomically disparate regions is an essential feature 

of human brain function. Across all stages of postnatal development, brain activity to a large 

degree is consolidated within so-called “resting-state networks” (RSNs). RSNs are defined 

as distinct modules of regions that exhibit highly synchronized activity even in the absence 

of external stimuli. RSNs have proven to be highly reproducible in the adult brain (Doucet et 

al., 2011; Gordon et al., 2016; Power et al., 2011; Yeo et al., 2011) and have become an 

influential framework for interpreting functional and structural neuroimaging data. Patterns 

of functional connectivity (FC) within and between the major RSNs are increasingly 

understood as intrinsic properties of brain function, given that they strongly predict patterns 

of interregional co-activation across different tasks (Cole et al., 2014; Smith et al., 2009) and 

are associated with task-relevant behavioral performance (Cole et al., 2012; Lewis et al., 

2009).

Interregional FC arises from anatomical projection strengths (Messe et al., 2014; Shen et al., 

2012), correlated gene expression (Richiardi et al., 2015), and synaptic receptor densities 

(Turk et al., 2016; van den Heuvel et al., 2016b)–properties that, in turn, undergo 

experience-dependent and activity-dependent modulation over the lifespan (Huttenlocher, 

2002; Markham and Greenough, 2004; Scholz et al., 2009). This intricate structural-

functional interplay underscores that the ontogeny of functional networks likely reflects 

programmed neurodevelopmental events (e.g. neurogenesis, cell death, myelination, 

pruning, synaptic plasticity, and glial development) (Innocenti and Price, 2005; Stiles and 

Jernigan, 2010) and that FC aberrations may point towards the etiological bases of 

neuropsychiatric disorders (e.g. (Swartz and Monk, 2014; van den Heuvel et al., 2016a)). 

Thus, exploring the normal trajectory of functional network development and its 

relationships with these underlying biological processes should be a central mission of both 

basic and clinically relevant neurodevelopmental research.

Current views regarding network development have been heavily informed by resting-state 

functional connectivity MRI (rs-fcMRI), which measures the correlations in spontaneous, 

low-frequency activity between investigator-defined regions. This review will accordingly 

provide in-depth discussions of the developmental rs-fcMRI literature, its limitations, and 

unique insights gained from complementary approaches, especially electroencephalography 

and magnetoenceophalography (EEG/MEG). We will begin by discussing emerging themes 

in the analysis of functional network data. We will then synthesize current findings regarding 

FC changes from birth to adulthood, and place them within the context of co-occuring 

macro- and micro-scale structural modifications. Finally, we will discuss some of the 

implications with regard to neurodevelopmental disorders and highlight several crucial 

knowledge gaps that are likely to guide research efforts in the near future.
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Analytic approaches to functional connectivity are evolving rapidly

Correlated resting-state activity was first identified in bilateral sensorimotor cortex by 

(Biswal et al., 1995), followed soon after by similar findings of bilaterally correlated activity 

in early visual and early auditory cortex (Cordes et al., 2001; Kiviniemi et al., 2000; Lowe et 

al., 1998). These discoveries were made using “seed” regions outlined based on a priori 
anatomical boundaries. Correlations were then quantified between the seed region’s fMRI 

timecourse and all other voxels of the brain, producing an FC map. More data-driven 

approaches were developed based on the concept of independent components analysis 

(Beckmann and Smith, 2004), which decomposes brain activity into a set of spatial maps 

(i.e. components) that minimally overlap. ICA maps reproducibly reveal early visual, early 

auditory, and primary sensory/motor components, as well as other components comprising 

distributed portions of the frontal, parietal, and temporal association cortices (Damoiseaux et 

al., 2006).

Building upon these advances, the neuroimaging community has increasingly focused on 

interrogating the brain as an integrated complex system. In this context, graph theory has 

emerged as a powerful new approach. A ‘graph’ is simply a network of things, referred to as 

nodes, and the connections between those things, referred to as edges. The network’s 

behavior can thus be modeled as a set of properties that emerge from the network’s unique 

global structure and local features (Sporns, 2014). Graph theoretic studies typically construct 

functional brain networks using regions as nodes and correlations in activity as edges. Past 

reviews have already written eloquently about the rationales for applying this approach to 

study development (Power et al., 2010; Vertes and Bullmore, 2015), which we will only 

briefly summarize and expand upon here.

First, most individual cognitive abilities arise not solely from a particular brain area, but 

from networks of activity spanning multiple distributed regions (Petersen and Sporns, 2015). 

From social cognition in infancy (Eggebrecht et al., 2017) to cognitive control and decision-

making in adolescence (Dwyer et al., 2014; van Duijvenvoorde et al., 2015), specific 

cognitive capacities co-evolve with complex network effects within and between different 

RSNs, throughout postnatal development Second, structural connectivity shapes and 

constrains functional networks across the lifespan (Betzel et al., 2014; Hagmann et al., 2012; 

Vertes and Bullmore, 2015). Cross-modal network analysis is therefore crucial for 

elucidating normative mechanisms of cognitive development and the pathophysiology of 

neurodevelopmental disturbances. As a proof-of-principle, recent studies have found that 

even purely local, experimentally induced perturbations (e.g. exogenous stimulation or 

inactivation) result in widespread, complex neurophysiological changes, which are at least 

partly explainable as local interactions with global network structure (Andoh et al., 2015; 

Grayson et al., 2016; Gu et al., 2015a; Misic et al., 2015). By extension, one could reason 

that developmental modifications in brain FC, whether normative or pathological, are also 

best understood via an emerging network science that merges structural and functional 

connectivity data. Third, graph-based methods are flexible and generalizable. Networks can 

be measured at various temporal scales depending on imaging methodology, at various 

conditions (during rest or task completion), and can be compared with corresponding 

networks of structural connectivity or gene co-expression. A graph theoretic approach is 
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therefore well-suited for multimodal investigations linking brain function across temporal 

scales or examining structural drivers of functional development.

Graph theory techniques for defining network organization

Below we describe 3 broad themes that have emerged with regard to functional (and 

structural) network analysis in neuroimaging: the brain’s community structure (i.e. the 

spatial and topological organization of specialized systems), the significance of hub regions 

that integrate information within and between these systems, and global network properties 

that facilitate efficient and integrated information transfer.

Community Structure

A defining feature of human brain activity is “modularity,” which refers to an unexpectedly 

high level of within-RSN FC relative to between-RSN FC (Lohse et al., 2014). “Community 

detection” algorithms partition the brain into distinct communities, or modules, by 

maximizing this modularity quotient. The adult brain has several modules at the coarsest 

level that are remarkably reproducible despite slight methodological differences across 

studies (Doucet et al., 2011; Gordon et al., 2016; Power et al., 2011; Yeo et al., 2011). These 

modules include 1) segregated, non-distributed modules for sensory/motor activity, such as 

in early visual cortex and in somatomotor cortex, 2) the default-mode network (DMN), 

comprising the medial prefrontal, posterior cingulate/precuneus, angular gyrus, and medial 

temporal cortex; the DMN is considered “task-negative” as it has been linked to internal 

mentation and is known to deactivate during processing of external stimuli (Buckner et al., 

2008), and 3) three large, distributed modules for task-positive cognition: a) dorsal attention, 

involved in eye movements and attentional orienting, b) the cingulo-opercular salience 

module, involved primarily in attentional maintenance, and c) the frontoparietal executive 

module, important for task-switching. At finer resolutions, several other modules can be 

identified (Doucet et al., 2011; Gordon et al., 2016; Power et al., 2011; Yeo et al., 2011), 

including hierarchical visual subdivisions, topographical somatomotor subdivisions, an 

auditory module, a limbic module, a ventral attention module, and other smaller 

subdivisions of the executive, salience, and default-mode modules. See Figure 1A & B for a 

graphical summary.

The brain’s modular composition is believed to help segregate information processing 

between distinct sensory modalities or cognitive architectures. It remains a fundamental 

challenge to understand what other network properties help integrate disparate data streams 

in order to meet complex task demands (Cohen and D’Esposito, 2016; Petersen and Sporns, 

2015). As discussed throughout this review, the themes of segregation and integration are 

core concepts in understanding the brain’s maturational processes. Thus, further analytic 

exploration is needed to isolate the critical network components that facilitate segregation, 

integration, or efficiency. Below we briefly describe some local network measures toward 

this end.
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Node Measures

The most straightforward nodal description is its strength (Rubinov and Sporns, 2010), 

defined as the sum of a node’s connection weights. Other centrality measures quantify 

higher order measures of influence. For instance, betweeness centrality (Rubinov and 

Sporns, 2010) computes the frequency with which a node lies on the shortest paths that 

connect any other nodes, a property that theoretically enables efficient global 

communication. By far, strength and betweenness have been the most popular hub metrics 

within neuroimaging, although others such as eigenvector centrality (Lohmann et al., 2010; 

Zuo et al., 2012) and node communicability (de Reus and van den Heuvel, 2014; Mantzaris 

et al., 2013) have seen useful application as well. These metrics, however, require careful 

consideration of what the network’s edge weights signify (see (de Reus and van den Heuvel, 

2014; Grayson et al., 2016; Misic et al., 2015) for discussions about the neurobiological 

relevance of shortest paths). Investigators must especially consider whether connections are 

statistical or structural in nature. For example, a node with structural links to many different 

RSNs (and thus, high structural network centrality) may have weak statistical associations 

overall (and thus, low functional network centrality). It has therefore been proposed to 

consider functional hubs as nodes with integrative capacity across distinct modules (Power 

et al., 2013). This goal is accomplished in part by the participation coefficient (Guimera and 

Nunes Amaral, 2005), which computes the between-module connectivity and therefore is 

particularly useful for functional networks (see Figure 1C).

Another way of identifying nodal integration is to compare functional against structural 

networks (see Figure 1E). Structural networks in the mammalian brain exhibit an important 

phenomenon known as “rich-club” organization, whereby hubs (i.e. nodes with high 

strength) link disproportionately to other hubs. Rich-club nodes tend to span multiple RSNs, 

thereby facilitating integration between them (Sporns, 2013; van den Heuvel and Sporns, 

2013). Similarly, structural hubness has been linked to integration of global brain activity 

(Grayson et al., 2016).

Finally, node clustering coeffiicients and local efficiency (Rubinov and Sporns, 2010) are 

popular ways of measuring node specialization – i.e., integration specifically within a node’s 

local environment. The clustering coefficient quantifies the combined strength of 

connectivity between a given node’s immediately connected neighbors, whereas the closely 

related local efficiency computes the average (inverse) path length between a node’s 

neighbors.

Global Network Properties

A network’s capacities for globally efficient communication and integration can be defined 

formally as properties. The global efficiency is measured by averaging the (inverse) shortest 

path length between all node pairs. Greater global efficiency in structural and functional 

networks has been linked to higher IQ, attentional capacity, and working memory in healthy 

young adults (Cohen and D’Esposito, 2016; Kitzbichler et al., 2011; Li et al., 2009; Stanley 

et al., 2015; van den Heuvel et al., 2009), supporting the notion that it confers advantages for 

complex cognitive processing. When networks exhibit both high global efficiency and high 

average clustering coefficients, they exhibit “small-world” organization (Watts and Strogatz, 
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1998). This property, which is ubiquitous across vastly different scales of investigation in the 

brain, is thought to emerge from a biological need to balance the benefits of integration 

against the costs of long-range wiring (Collin et al., 2013; Vertes and Bullmore, 2015). 

Furthermore, these distinct network effects, i.e. segregated versus integrated neural 

processing, are interwoven features of cognition. Both effects in tandem are crucially 

involved in cognitive control (Dwyer et al., 2014) and executive functioning (Reineberg et 

al., 2015), and are differentially associated with performance on simple motor tasks versus 

complex working memory tasks (Cohen and D’Esposito, 2016). This review will highlight 

extensively these competing network influences in the context of development. Finally, 

network integration can also be defined alternatively. Similar to the participation coefficient 

of a given node, one can compute the network’s global integrative capacity by taking into 

account the network modules and the interdependencies between them (de Reus and van den 

Heuvel, 2014; Tononi et al., 1994).

Functional brain organization in infants and toddlers

Overall structural and functional organization

The human brain expands at an explosive rate during the first few years of life (see Figure 

2A), doubling in volume during the first year and reaching 80–90% of adult volume by age 3 

(Courchesne et al., 2000; Knickmeyer et al., 2008). This same time period is marked by 

rapid and widespread cortical synaptogenesis, followed by a protracted period of synapse 

elimination and cell loss which carries into adulthood (Huttenlocher, 2002; Innocenti and 

Price, 2005). The brain’s major fiber pathways become consolidated through myelination, 

though their presence is largely established prenatally (Stiles and Jernigan, 2010). It is also 

worth noting that both progressive and regressive changes in structure occur simultaneously 

during infancy (Gilmore et al., 2012; Scott et al., 2015), despite overall growth in volume 

and connectivity. These first few years of life, therefore, coincide with the formation of the 

brain’s foundational anatomical circuitry, paralleling the genesis of an intricate functional 

architecture.

RSNs are already present during infancy, and potentially to some extent in utero (Thomason 

et al., 2013). Seed-based and component-based approaches demonstrate the existence of 

robust, bilateral segregated networks for somatomotor, primary auditory, primary visual, and 

extrastriate visual cortex (Fransson et al., 2007; Gao et al., 2015a; Kiviniemi et al., 2000; Lin 

et al., 2008; Liu et al., 2008; Smyser et al., 2010). These sensory networks undergo subtle 

refinements and strengthening over the first two years of life, and by age two bear 

substantial resemblance to their adult counterparts (Gao et al., 2015a; Lin et al., 2008). 

Distinct components throughout heteromodal association cortex have also been described in 

infants, and are believed to represent prototypical elements of distributed, higher-order 

cognitive networks identifiable in adults (Graham et al., 2015). For instance, in adults the 

DMN is a tightly integrated circuit comprising several distinct and distant areas of cortex (as 

described in Community Structure). In neonates and very young infants, these individual 

compartments demonstrate locally correlated activity, but fail to synchronize into a coherent 

network (Damaraju et al., 2014; Fransson et al., 2007; Gao et al., 2009; Smyser et al., 2010; 

Wylie et al., 2014). Over the course of the first two years of life, these regions undergo a 
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precise evolution to gradually bring the network ‘online’ (Damaraju et al., 2014; Gao et al., 

2013; Gao et al., 2009). By two years of age, the network bears adult-like qualities, although 

coupling between distant anterior and posterior nodes of the network remain relatively low. 

Similar spatial and temporal properties characterize the emergence of distributed 

connectivity in the dorsal attention (Gao et al., 2013), salience (Alcauter et al., 2015a; Gao et 

al., 2015a; Gao et al., 2015b) and frontoparietal executive (Gao et al., 2015a; Gao et al., 

2015b) networks. Collectively, these findings suggest that sensory networks become 

established at a much earlier age relative to those implicated in higher-level cognition (Gao 

et al., 2016). These trends are consistent with the presence of basic somatosensory and 

visual functions at birth, and help contextualize findings that primary sensory regions are 

generally the first cortical areas to reach plateaus or peaks in growth (Geng et al., 2016; 

Gilmore et al., 2012; Lyall et al., 2015; Scott et al., 2015).

Development of community structure from birth

Despite these insights, network topology in early development remains poorly understood. 

What is the collective community structure of the brain at birth? How does it evolve during 

early and late infancy, and how is it distinguished from the now well-described adult 

community structure?

The current nascent literature on infant network topology (see Figure 2B) suggests that a 

robust community structure does exist, albeit in a primitive form. In neonates, two 

independent rs-fcMRI studies found evidence for modules comprised largely of 

anatomically proximate areas (De Asis-Cruz et al., 2015; van den Heuvel et al., 2015b). One 

recent report compared community structure in adults against that in 1–2 year olds using 

closely matched methods (Eggebrecht et al., 2017), providing the first direct evidence for 

numerous anatomically localized modules in the infant brain and their relationship to adult 

functional organization (Figure 2C). Many of these modules clearly reflect anterior/

posterior/temporal subdivisions of the adult salience, frontoparietal, DMN, dorsal attention, 

and ventral attention modules. Another distinction seen is that infant modules tend to group 

together anatomically proximate ROIs that have divergent roles in adulthood. Community 

structure assessed at two years of age (Alcauter et al., 2015b; Gao et al., 2015b) indicates the 

presence of distinct modules encompassing early auditory, early somatomotor, and early 

visual areas, and potentially, other prototypical modules similar to the canonical salience, 

frontoparietal, and DMN seen in adults. These latter modules also exhibit substantial growth 

of distributed synchronization and homotopic coupling from birth through the first two years 

of life (Gao et al., 2015b; Homae et al., 2010), concomitant with decreasing between-

module connectivity (i.e. greater functional specialization). Taken together, these studies 

point towards several trends that are consistent with results from seed and component based 

approaches – 1) modular patterns at birth take a coarse, primitive form that is heavily 

influenced by local anatomy, 2) this structure undergoes rapid postnatal refinement, leading 

to progressively stronger coupling between distributed links that facilitate modular 

specialization, and 3) these enhancements result in the establishment of stable, primary 

sensory networks well before networks involved in higher-level cognition appear 

substantially adult-like.
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Regional hub metrics

Hub configurations are robustly evident after birth (De Asis-Cruz et al., 2015; Fransson et 

al., 2011; Gao et al., 2011), but undergo substantial changes postnatally. Multiple reports 

have found that high strength and betweenness hubs in adulthood are largely located within 

within the default mode, attentional, sensorimotor, and visual areas (Cao et al., 2014; 

Fransson et al., 2011; Grayson et al., 2014; Hwang et al., 2013), whereas neonatal hubs 

primarily involve early sensorimotor, visual, and limbic regions (De Asis-Cruz et al., 2015; 

Fransson et al., 2011; Gao et al., 2011). The first two years of life reflect a gradual decrease 

in the hubness of sensorimotor areas and increased involvement of various association 

cortical areas, especially the medial frontal and parietal portions of the default mode (Gao et 

al., 2011). This pattern of hub strengthening bears substantial spatial and temporal overlap 

with the pattern of increasing within-module synchronization. This is consistent with the 

notion that node strength and betweenness in functional networks may serve, at least to 

some extent, as proxies for modular size and synchronization (Power et al., 2013). Thus, 

there continues to be much less known regarding what regions become more involved in the 

integration of different information processing streams (e.g. sensory, cognitive, and 

emotional) over time. Such anatomical areas are likely critical for the development of 

complex cognitive and social abilities, and are potentially uniquely susceptible to early 

environmental influences (Graham et al., 2015). It is also clear that several prenatal factors 

(e.g. immune and endocrine systems) strongly affect postnatal network trajectories (Canetta 

et al., 2016; Scheinost et al., 2016b). Future work examining node participation coefficients 

in functional networks and other centrality measures in structural networks (see network 
measures) promises to shed greater light on the emergence of network integrators and their 

potential susceptibility to pre- and post-natal factors.

Global network metrics

Other important topological properties are also robustly evident at birth. Small-worldness 

(De Asis-Cruz et al., 2015; Fransson et al., 2011; Gao et al., 2011), as well as its constituent 

properties of global efficiency and average clustering coefficient, are already high in 

neonates. These properties only appear to marginally increase during the first year of life, 

plateauing thereafter until at least the end of the second year (Gao et al., 2011). 

Concomitantly, long-distance links are preferentially strengthened during the first year of 

life, leveling off thereafter (Gao et al., 2011). Rich clubs are also evident in both structural 

and functional networks in neonates along with both high functional modularity and 

integration capacity between modules (Ball et al., 2014; Scheinost et al., 2016a; van den 

Heuvel et al., 2015b). These findings suggest that the development of a small-world 

architecture, as well as the capacity for globally efficient communication and integration, 

largely occurs during the first year of life and prenatally, a finding that is supported by 

multimodal structural and functional network analysis in preterm infants (Ball et al., 2014; 

van den Heuvel et al., 2015b). This (very) early developmental trajectory stands in contrast 

to the more protracted progression towards increasingly segregated and refined modular 

architecture which continues into early childhood and beyond.
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Considerations in infant rs-fcMRI

A crucial caveat to the above observations is the potential for unidentified sources of artifact 

in infant studies (also see Methodological challenges and recommendations). In the case of 

identified networks in infants it is important to note that different community detection 

algorithms can provide unique results and all are not appropriate for any given experimental 

condition (Gates et al., 2016). Other considerations include early postnatal changes in 

cerebral vasculature, and altered state of consciousness when scanning very young 

participants. fMRI relies on hemodynamic measurements (usually BOLD), and there is good 

reason to suspect that infancy is accompanied by specific changes in neurovascular coupling 

(Hagmann et al., 2012). Human and animal studies indeed indicate differences in stimulus-

evoked neurovascular coupling between infants and older individuals, but whether these 

differences impact rs-fcMRI measurements has yet to be determined (Graham et al., 2015). 

Infant imaging studies are also predominantly done during natural sleep (e.g. (Liu et al., 

2008)) or sedation (e.g. (Fransson et al., 2007)). A natural benefit is the attenuation of 

micromovements and their attendant signal artifacts. However, altered state of arousal and 

consciousness might pose important confounds when comparing network findings to those 

seen in conscious children or adults. This concern is partly mitigated by findings of similar 

global functional network topology in conscious versus unconscious state in adults 

(Spoormaker et al., 2010), but key differences have been found in corticocortical (Heine et 

al., 2012; Horovitz et al., 2009; Spoormaker et al., 2010) and thalamocortical (Spoormaker 

et al., 2010) connectivity. Different sleep stages also correspond with different 

neurophysiological phenomena, which impact rs-fcMRI measurements (Laumann et al., 

2016; Spoormaker et al., 2010). Until additional work can more definitively tease apart 

artifactual vs. neural contributions to the fMRI signal or awake versus sleep affects in these 

early postnatal years, developmental changes in modular partitions and other network 

changes must be viewed with at least some caution.

Developmental refinements of network structure into adulthood

General observations

Many of the network changes seen during infancy reflect long-term trajectories that extend 

into childhood and adolescence. As with the infant literature, much of the literature in 

children and adolescents has focused on the regions that define the adult DMN. Seed and 

component approaches have consistently found that connectivity between these areas (and 

indeed, connectivity within other cognitive RSNs) continues to strengthen from early 

childhood throughout development, especially with respect to long-range anterior-posterior 

links (de Bie et al., 2012; Fair et al., 2008; Sato et al., 2014; Sherman et al., 2014; Supekar et 

al., 2010).

More generally, one of the more reproducible findings of child and adolescent development 

(until very recently) had been an apparent shift from a local to global organization. Prior to 

2012, multiple studies had found that functional connectivity between anatomically 

proximate ROIs gradually decreased, whereas long-range functional connections, especially 

anterior-posterior links, gradually increased until adulthood (Dosenbach et al., 2010; Fair et 

al., 2009; Kelly et al., 2009; Supekar et al., 2009). In addition, it appeared that the modular 
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assignments of regions shifted. In childhood, regional assignments appeared to strongly 

depend on local anatomy. With age, regions gradually became more defined by their 

respective functional roles (Power et al., 2011; Power et al., 2010). These trends pointed to 

coherent changes that involved a dampening of non-specific local spread of activity and 

strengthening of long-range links, facilitating cognitive development through modular 

specialization and selective cross-network integration (Bunge and Wright, 2007; Fair et al., 

2009; Uddin, 2011; Uddin et al., 2011). Distance-dependent effects were even strong enough 

to enable reasonably accurate predictions of an individual subject’s age on the basis of a 

single resting-state scan (Dosenbach et al., 2010).

However, recent concerns about the influence of head-motion artifact have raised some 

doubts about the interpretability of such broad trends. In particular, it has been revealed that 

motion increases non-specific local coupling and decreases long-range coupling in ways that 

are similar to differences found between children and adults (Fair et al., 2012b; Power et al., 

2012; Satterthwaite et al., 2012; Yan et al., 2013). When processing techniques intended to 

remove motion artifact are applied, developmental effects of this type – both in terms of 

overall local versus distributed coupling and in terms of changing modular assignments – are 

substantially attenuated, though still present to a limited extent (Fair et al., 2012b; Power et 

al., 2012; Satterthwaite et al., 2012). As motion-denoising strategies continue to evolve, such 

findings will need continual re-evaluation. It is likely, however, that functional network 

maturation follows more precise spatiotemporal trajectories than previously understood. 

Indeed, there are now at least 3 reports that suggest the network structure in children as 

defined by community detection (see Figure 3) are largely similar to the adult (Fair et al., 

2012b; Marek et al., 2015; Power et al., 2012). Despite this “adult like” level of 

organization, refinements within and between systems does appear to occur over time, 

although details to this end are still being worked out (Fair et al., 2012b; Gu et al., 2015b; 

Marek et al., 2015).

Much of this new work is finding that systems with different functional roles are 

characterized by substantially different trajectories (Gu et al., 2015b; Marek et al., 2015). 

For example, (Gu et al., 2015b) found that sensorimotor systems, already well-segregated in 

childhood, displayed little change into adulthood. On the other hand, networks involved in 

task-positive cognitive function (e.g. salience, frontoparietal executive, and attentional 

networks), being generally well-connected with other systems, became increasingly 

segregated and exhibited increasingly variable spatial structure. The DMN was found to 

exhibit both increasingly synchronized within-network and between-network connections. 

The authors contend that their results are consistent with notions that network development 

facilitates the ability to traverse through more diverse cognitive states in order to accomplish 

increasingly complex task demands (Bassett et al., 2011; Braun et al., 2015). Similar, albeit 

not identical developmental findings, are observed by (Marek et al., 2015)), who found 

increased cross-network integration between the cingulo-opercular/salience and 

somatomotor modules over the age of 10–26, which they showed to be associated with the 

development of cognitive control. In agreement with these data, two additional reports also 

had findings that suggested that functional restructuring over this timespan 

disproportionately involves the cingulo-opercular and somotomotor modules (Fair et al., 

2012b; Grayson et al., 2014), and potentially specific links between them (Grayson et al., 
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2014) (see Figure 4). Therefore, there is recent convergence of data suggesting that network 

structure continues to evolve after late childhood in ways that are not primarily distance-

dependent; rather, complex but specific changes may coincide with the development of 

specific cognitive abilities. Additional follow-up work using up-to-date methods for artifact 

prevention and removal, and more sensitive longitudinal designs, will be crucial for 

expanding on these important new findings.

EEG/MEG findings

Resting-state networks obtained using electrophysiological recording (EEG or MEG) 

provide greater temporal resolution (<100Hz) relative to rs-fMRI (<0.1Hz) and therefore 

offer complementary insights about functional development. One of the classical and well-

reproduced findings is that spectral power (i.e. amplitude of activity within different 

temporal frequency bands) decreases continually from 5–30 years of age across most 

frequency bands, but particularly in the slow-wave (0.5–7Hz) (Miskovic et al., 2015; 

Rodriguez-Martinez et al., 2015; Smit et al., 2012; Whitford et al., 2007). There is also a 

progressive shift in peak amplitude towards higher frequency activity (Miskovic et al., 2015; 

Rodriguez-Martinez et al., 2015; Smit et al., 2012; Whitford et al., 2007). Interestingly, 

frontal and parietal cortical gray matter (but not white matter) volume decreases across this 

same age bracket, and exhibits curvilinear trajectories that are closely correlated to the loss 

of slow-wave power in these same areas (Buchmann et al., 2011; Smit et al., 2012; Whitford 

et al., 2007). These coincident trajectories have provided key support for the hypothesis that 

developmental changes in baseline electrophysiological signatures may primarily be 

subserved by reduction of neuropil and progressive synapse elimination (Buchmann et al., 

2011; Smit et al., 2012; Whitford et al., 2007).

EEG/MEG functional connectivity networks can also be constructed from synchronized 

activity within different frequency bands. Reports of resting-state EEG/MEG networks in 

infancy are scant (although see later section on temporal dynamics), but a number of 

network studies have been conducted regarding later development. It is important to note 

that these studies are generally unable to map activity to precise brain areas due to 

challenges in source localization, and often treat the scalp sensors as the network nodes. 

Nonetheless, there are several noteworthy findings. From roughly 5 years of age until 

adulthood, theta (~4Hz), alpha (~10Hz), and beta (~20Hz) oscillation networks exhibit 

concurrent increases in clustering coefficient (Boersma et al., 2011; Smit et al., 2012) and 

strength of long-range anterior-posterior and interhemispheric connections (Barry et al., 

2004; Miskovic et al., 2015; Smit et al., 2012; Srinivasan, 1999). There is also consensus 

that network structure becomes increasingly non-random across this timespan (Boersma et 

al., 2011; Miskovic et al., 2015; Smit et al., 2012). Somewhat unexpectedly, two reports 

found path length to also increase with age (Boersma et al., 2011; Smit et al., 2012), 

although more recent work demonstrates age-related reductions (Miskovic et al., 2015). 

While this work is in its infancy, these studies thus far suggest some consensus between 

electrophysiological and MRI-based findings, implying that changes in brain organization 

are at least partially preserved across temporal scales of investigation.
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Regional hub metrics

Returning to the MRI literature, there is convergent evidence that the locations of high-

strength and high-betweenness hub regions appear to be stable after 5 years of age (Cao et 

al., 2014; Grayson et al., 2014; Hwang et al., 2013; Wang et al., 2012; Wu et al., 2013; Zuo 

et al., 2012). However, there is also evidence for regional refinement of hub properties. Node 

strength and centrality of subcortical regions have both been reported to decrease in late 

childhood and adolescence (Sato et al., 2015; Supekar et al., 2009). Among cortical areas, 

some have reported increasing hubness of frontal nodes (Cao et al., 2014; Wu et al., 2013) 

while in other lobes there have been mixed reports of increasing (Cao et al., 2014; Grayson 

et al., 2014) and decreasing (Wu et al., 2013; Zuo et al., 2012), or stable (Hwang et al., 

2013) hubness. At first glance, these mixed or non-significant findings might suggest that 

regional properties of cortical hubs are largely established during very early development. 

However, given that different networks display varying trajectories for within-network and 

between-network connectivity (Gu et al., 2015b; Marek et al., 2015), renewed examination 

of nodal hub-like properties such as the participation coefficient (which quantifies within vs. 

between module strength) may be warranted (e.g. see (Marek et al., 2015)). More detailed 

network analyses have revealed that specific connections to cortical hub regions increase 

during childhood and adolescence (Grayson et al., 2014; Hwang et al., 2013) resulting in 

increased rich club coefficients in adulthood (Cao et al., 2014; Grayson et al., 2014). 

Regional properties have also been found to exhibit nonlinear relationships with age (Wang 

et al., 2012), emphasizing the importance of mapping trajectories with more detailed 

temporal precision.

Development of temporal dynamics

Here we will briefly discuss the topic of temporal dynamics in brain function, a rapidly 

emerging theme in the functional neuroimaging literature. First, we will point out that brain 

functional dynamics can relate to changes that occur over decades (e.g., myelination) or over 

fractions of a second (e.g. receptor turnover). Thus far, network changes in infancy, 

childhood, and adolescence have been discussed. This section discusses the growing 

literature of dynamics that occur over seconds and minutes measurable via rs-fcMRI.

Mounting evidence suggests that the functional connectome exhibits temporal instability that 

allows it to flexibly switch between multiple different configurations within a scanning 

session (Allen et al., 2014; Chang and Glover, 2010; Kang et al., 2011; Shen et al., 2015). 

There is evidence that this property is important for executive functioning, learning, and 

switching between challenging task demands (Bassett et al., 2011; Braun et al., 2015; Chen 

et al., 2016). Over development, rs-fcMRI networks show increased within-subject 

variability (Hutchison and Morton, 2015; Marusak et al., 2016; Qin et al., 2015), consistent 

with EEG studies showing that signal complexity increases over development (McIntosh et 

al., 2008; Vakorin et al., 2011). Recent simultaneous EEG-fMRI work (Fransson et al., 

2013) links developmental differences (infants versus adults) in rs-fcmri network dynamics 

with differences in EEG power spectra, consistent with the notion that temporal variability in 

very low frequency correlations is an emergent, hidden property of higher frequency power 

spectra (Chang et al., 2013; Tagliazucchi et al., 2012), which is known to change 
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continuously throughout development (Miskovic et al., 2015; Rodriguez-Martinez et al., 

2015; Smit et al., 2012; Whitford et al., 2007). Given that different EEG frequency 

components have unique neurophysiological underpinnings (Miskovic et al., 2015), 

changing frequency spectra and temporal dynamics may point to clearer mechanistic 

substrates for network development.

Unfortunately, we have to repeat a recurring theme here and make yet another note of 

caution. Laumann et al. (Laumann et al., 2016) has recently provided strong evidence that 

much of the observed dynamics in rs-fcMRI networks primarily reflects noise (especially 

movement). The authors note that instability is not absent, but that it exists in the form of 

measurable state transitions (e.g. from awake to sleep, or eyes open verus closed), and that 

there is considerably less evidence for intrinsic dynamics otherwise. Other work has called 

into question some of the common statistical approaches to assessing dynamic FC (Hindriks 

et al., 2016; Leonardi and Van De Ville, 2015), which may not test against null models that 

properly account for random noise. It is also not clear whether the BOLD measurements are 

simply less sensitive to dynamic changes because of the sluggish nature of the signal. 

Altogether, these findings warrant more work, especially using simultaneous EEG-fMRI and 

animal models, to determine the potential role of network dynamics in development.

Structure-function relationships over development

What are the underlying substrates of functional network development? This question is 

informed, in part, by previous studies investigating the correspondence between structural 

connectivity (SC) and FC. In humans, SC networks can be estimated using diffusion-

weighted imaging (DWI), which allows for virtual reconstructions of white-matter tracts (a 

method known as tractography). There is an abundance of research demonstrating a 

correlation between DWI-tractography connection weights and FC in adults (Hagmann et 

al., 2008; Hagmann et al., 2010; Honey et al., 2009). More generally, SC networks can be 

combined with various modeling approaches to predict FC networks, allowing for detailed 

exploration of how the structural connectome gives rise to complex neural interactions. 

Models can involve highly parameterized simulations of regional activity (Hansen et al., 

2015; Messe et al., 2014; Sanz-Leon et al., 2015), or sparser analytic predictions of FC using 

graph metrics of mutual communication (Goni et al., 2014; Grayson et al., 2016) (although, 

both approaches appear to be comparably effective; see Figure 1D). Predictive models have 

been extensively validated on both rs-fcMRI and EEG data (Chu et al., 2015), suggesting 

that SC strongly shapes and constrains activity across temporal scales.

A natural extension to this work would be to examine how structure-function 

correspondence develops, and whether optimized model parameters might evolve in tandem. 

Given that macroscale FC is modulated by both interregional connectivity strength as well as 

local population dynamics (Sanz-Leon et al., 2015), alterations in SC-FC coupling could 

potentially point to important shifts in the underlying drivers of various network phenomena. 

At least two reports have found abnormally low SC-FC correlation in epileptic patients 

(Chiang et al., 2015; Zhang et al., 2011), highlighting that aberrant SC-FC coupling may 

indeed indicate aberrations in neuronal physiology.
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The first foray into developmental work was conducted in 2010, when Hagmann et al. 

(Hagmann et al., 2010) reported that SC-FC correspondence was higher in older teens versus 

in young children. Although the cause remains unknown, this result is broadly consistent 

with the notion that large white-matter bundles increase their capacity for information 

transfer with age via mechanisms such as increased myelination and axon diameter 

(Hagmann et al., 2012). Unfortunately, follow-up work on this topic in humans has been 

relatively scant, and this work was prior to new information regarding tractography artifacts 

(Calabrese et al., 2015; Donahue et al., 2016; Reveley et al., 2015; Thomas et al., 2014), and 

prior to systematic motion artifacts being demonstrated in diffusion-weighted MRI (Kong, 

2014; Yendiki et al., 2014). The possibility for confounding artifactual contributions should 

therefore not be ruled out. However, new findings by Van den heuvel (van den Heuvel et al., 

2015b) show similar phenomena in preterm infants, such that neonates at 40 weeks 

gestational age have substantially greater SC-FC coupling than neonates born at 30 weeks. 

Another study found that age-related changes in FC disproportionately impacts polysynaptic 

connections (Betzel et al., 2014), although this study was performed across the lifespan and 

may reflect an effect of aging.

The role of animal models

The importance of animal work for understanding structure-function relationships over 

development, and developmental fMRI findings in general, cannot be understated. The non-

invasive measurements used to examine human populations are now readily available in 

rodent and monkey models where rich methodologies for studying genetic and 

pharmacologic manipulations exist. While clearly several cognitive domains in humans (e.g. 

language) and their relation to connectivity profiles are unlikely to be measured directly in 

animal models, network properties and structure-function relationships supporting sensory 

and cognitive function (see Figure 5) are attainable across species (Grayson et al., 2016; 

Miranda-Dominguez et al., 2014b; Stafford et al., 2014).

Why is this important? As is oft repeated in the current review, a very large portion of the 

current human developmental literature is in dire need of re-examination in light of recent 

developments regarding systematic artifacts in the imaging signals. Even with the current 

approaches aimed at optimizing signal versus noise, the question remains: What other 

lurking land mines are hidden in our data?

For example, structure-function modeling using MRI data suffers from a number of inherent 

limitations in DWI-tractography that have not been overcome by state-of-the-art acquisition 

and processing approaches (Calabrese et al., 2015; Donahue et al., 2016; Reveley et al., 

2015; Thomas et al., 2014). Invasive tract-tracer injections, a method that is only feasible in 

animal models, remains the “gold standard” for identifying and quantifying interareal 

connection weights. In the monkey, whole-brain tract-tracer connection networks and 

tractography networks demonstrate a significant, but only moderately high correspondence. 

Currently, the highest reported correlation stands at r = 0.59 (Donahue et al., 2016), though 

it is often much lower (van den Heuvel et al., 2015a). Future work could probably improve 

these relationships substantially by imposing rigorous anatomical constraints in the 
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tractography process (Smith et al., 2015), but such efforts have not seen extensive validation 

yet.

In the meantime, animal models are proving to be an important and necessary “bridge” for 

identifying ground-truth structure-to-function principles (Deco et al., 2014; Grayson et al., 

2016; Miranda-Dominguez et al., 2014b; Stafford et al., 2014). One interesting aspect of the 

work in (Grayson et al., 2016) is how tightly functional imaging conditions had to be 

controlled in order to reveal novel structure-function relationships and in order to maximize 

model performance (see supplementary materials of (Grayson et al., 2016) for an extensive 

exposition). First, motion had to be reduced to undetectable levels with head fixation; 

second, the MR coil was specially optimized to enhance SNR; and third, a contrast agent 

was used to boost the functional signal. Without these efforts (which are not feasible in the 

large majority of human studies), critical structure-function relationships were much 

degraded.

Along the same lines, other factors outside of macro-anatomical connectivity likely affect 

FC measurements. Even the best-performing SC-FC models generally account for less than 

50% of the variance in FC across the brain in both humans and non-human primates 

(Grayson et al., 2016; Messe et al., 2014; Misic et al., 2015). Identifying these other hidden 

factors will be of critical importance to understanding the drivers of FC development in a 

given age range and why FC networks may go awry in various developmental disorders. 

More to the point, macroscale FC is known to be modulated by interareal correlated gene 

expression, areal densities of excitatory and inhibitory receptors, and other features of 

microscale architecture that vary across brain structures (Richiardi et al., 2015; Scholtens et 

al., 2014; Turk et al., 2016; van den Heuvel et al., 2016b) and undoubtedly evolve with age. 

Thus, more empirical mapping of brain structure and integration into a coherent modeling 

framework is needed. Of course, probing cellular and molecular markers across the whole 

human brain at high-throughput is exceptionally difficult (Richiardi et al., 2015) and cannot 

be done under strict experimental conditions. Experimental animal models should therefore 

remain indispensable for this purpose the foreseeable future.

Clinical disorders of neurodevelopment

While this review has focused on studies of normative development, there is also a rich rs-

fcMRI and EEG/MEG network literature in neurodevelopmental disorders. Complex, 

distributed disruptions in resting-state networks are consistently implicated in Schizophrenia 

(Baker et al., 2014; Khadka et al., 2013; Satterthwaite et al., 2015), ADHD (Castellanos and 

Aoki, 2016; Fair et al., 2012b), and Autism (Kessler et al., 2016; Moseley et al., 2015; 

Supekar et al., 2013) - though a thorough examination of this literature is beyond the scope 

of this review. Rather, we turn our attention here to two crucial challenges that are likely to 

dominate future research efforts into these conditions.

The first challenge is the ever-expanding evidence that Schizophrenia (Meda et al., 2014; 

Satterthwaite and Baker, 2015), ADHD (Costa Dias et al., 2015; Fair et al., 2012a; Gates et 

al., 2014; Karalunas et al., 2014), Autism (Jeste and Geschwind, 2014; Rudie et al., 2012), 

and potentially other DSM defined disorders, each constitutes a highly heterogeneous set of 
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etiologies. Indeed, recent work suggests that Autism Spectrum Disorder is characterized by 

increased subject-to-subject variability relative to the general population (Hahamy et al., 

2015). Such findings are consistent with the notion that different pathologies in brain 

function may lead to related clinical outcomes, and underscore the importance of identifying 

individualized abnormalities.

Some recent work has already aimed at addressing this by attempting to identify brain-based 

subtypes within a diagnostic category, mostly through the application of various analytic 

clustering methods to multivariate neuroimaging or behavioral data. For an excellent review 

of recent progress, as well as promises and pitfalls in this area, we direct the reader to 

(Marquand et al., 2016). Another related approach to tackling heterogeneity would be to 

focus on deviations from typical brain organization at the individual-subject level, rather 

than performing classical between-group analyses. Cutting-edge work in resting-state fMRI 

acquisition and network analysis suggests that individual brains, even among typical 

subjects, are distinguishable via their functional connectomes (Finn et al., 2015; Laumann et 

al., 2015; Miranda-Dominguez et al., 2014b). Future work exploring the notion of the 

‘functional fingerprint’ or ‘connectotype’ (Miranda-Dominguez et al., 2014a) may help to 

identify what deviations from the canonical functional connectome lead to atypical 

behavioral outcomes, versus what deviations may be considered to fall within the typical 

range. This would also be strongly in line with the National Institute of Health’s new 

initiative for precision medicine (Collins and Varmus, 2015).

The second challenge is in understanding the pathophysiological basis of network-level 

disturbances that are distributed and complex. In other words, if one sees atypical functional 

profiles amongst a specific set of brain regions or connections, does that suggest that the 

substance of the pathology is co-located? There are several reasons from a theoretical 

standpoint (Pessoa, 2014), which are largely supported empirically, why this is not 

necessarily the case. As an example, simulation experiments using structure-function models 

have predicted that even purely focal and transient perturbations in activity should result in 

diffuse network reorganization that affects distant brain systems (Alstott et al., 2009; Honey 

and Sporns, 2008; Misic et al., 2015). In our recent paper, we presented experimental 

validation of these ideas through focal pharmacogenetic inactivation (Grayson et al., 2016), 

and similar findings were presented by (Andoh et al., 2015) using cortical transcranial 

magnetic stimulation. Both works demonstrate a causal effect on distributed resting-state 

connectivity and other neurophysiological signatures, driven by cascading neuronal 

interactions. These data empirically suggest that in a broad context, disease processes 

localized to one part of the brain can cause widespread neurophysiological disturbances in 

areas distant and unconnected from the pathology. This work also provides evidence that 

site-specific pathology can be deduced from distributed functional network disturbances 

(Grayson et al., 2016). However, in the absence of strong hypotheses regarding a ground-

truth, one must be mindful that multiple structural network configurations can theoretically 

give rise to the same apparent aberrations in function – this is essentially the ‘many-to-many 

mappings’ problem very nicely described in (Pessoa, 2014). In summary, reducing these 

sources of complexity in neuropsychiatric case-control studies is likely to require integrated 

multimodal imaging approaches, more widespread application of SC-FC modeling, and 
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breakthrough innovations in imaging tissue structural and functional properties that relate to 

functional connectivity.

Methodological challenges and recommendations

FMRI signal artifacts

Rs-fcMRI investigators must be mindful that the fMRI signal is susceptible to a number of 

spurious sources of variance due to hardware instabilities, respiratory and cardiac signals, 

and head motion artifacts (Jo et al., 2010; Power et al., 2016). Effects of respiratory and 

cardiac activity can be attenuated through the use of temporal filtering, ICA-denoising, or 

directly acquiring these signals and removing them post-hoc. There is ongoing debate 

regarding the adequacy of these techniques (Jo et al., 2010; Power et al., 2016), and more 

work may be warranted to determine optimal ways to account for age-related physiological 

confounds. In addition, head motion has become a substantial concern since 2012 when a 

trio of papers pointed to systematic motion-related artifacts in rs-fcMRI (Power et al., 2012; 

Satterthwaite et al., 2012; Van Dijk et al., 2012). Chief among these findings was distance-

dependent effects; head motion increases functional correlations between spatially proximal 

nodes and decreases correlations between distant nodes (Power et al., 2012). Motion tends to 

be greater in patient populations and younger children, posing a fundamentally important 

challenge for developmental research. Considerable work and debate is now ongoing to 

determine the optimal ‘denoising’ approaches during data processing (Patriat et al., 2016; 

Power et al., 2014). The most contentious debate probably concerns the use of global signal 

regression (GSR) – arguably the most effective motion-denoising technique currently 

available (Burgess et al., 2016; Power et al., 2015; Yan et al., 2013). Recent data reinforces 

concerns about artifactual contributions to the global signal in conventional 3T rs-fcMRI 

acquisitions sensitive to BOLD contrast (Grayson et al., 2016; Power et al., 2016), but also 

partly substantiates concerns regarding GSR under less conventional, high signal-to-noise 

scenarios where motion can be physically restricted (Grayson et al., 2016). Thus, GSR is 

likely to be a useful tool in developmental rs-fcMRI studies, where good control of such 

artifact is exceptionally important, but this debate may need to be revisted as methodologies 

in acquisition continue to advance. Moving forward, there is strong consensus about the 

importance of preventing head motion during acquisition and rigorously quantifying motion 

effects in study data (Goto et al., 2016; Power et al., 2015; Siegel et al., 2016).

We also wish to emphasize that future work using strict artifact removal are an increasing 

need for neuroimaging studies quite broadly – well beyond functional connectivity studies. 

Strong artifacts due to motion, in addition to their relevance for fMRI, have been noted in 

diffusion weighted imaging (Roalf et al., 2016; Yendiki et al., 2014) and cortical thickness 

measurements (Reuter et al., 2015; Savalia et al., 2017). Motion artifacts appear to be tightly 

related to clinical factors (Fair et al., 2012b) and a whole host of behavioral phenotypes and 

metrics (Siegel et al., 2016). Some of the techniques currently being used to remove these 

artifacts are non-optimal (Burgess et al., 2016; Goto et al., 2016). Thus, close examination of 

many of the developmental MR imaging findings is still warranted.
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Parcellation choice

Developmental network researchers also must make important decisions when defining the 

nodes (i.e. functional areas) under investigation. There is currently no consensus regarding 

an optimal set of criteria for defining an areal parcellation (Craddock et al., 2013; Glasser et 

al., 2016a; Gordon et al., 2016), and even less known about the stability of these 

parcellations at younger ages.

Parcellation density (i.e. number of regions) is a crucial consideration. Global topological 

metrics for structural and functional networks show stability across different parcellation 

schema of similar density, but vary considerably as a function of network size (de Reus and 

van den Heuvel, 2013; Fornito et al., 2010; Zalesky et al., 2010). In addition, with functional 

connectivity data some parcellation schemes can obscure known community structure. For 

example, regions or parcels that are overly large may encompass multiple distinct functional 

areas in ways that make community/network organization non-recognizable (Power et al., 

2011). Functional network analyses that strongly relate to known network organization may 

therefore find signal homogeneity within parcels to be a useful optimization criterion for 

choosing a parcellation (e.g. see (Gordon et al., 2016) and (Glasser et al., 2016a).

In our opinion, the primary guiding factors in choosing a parcellation are based in 

fundamental principles of neuroscience. The cerebral cortex is both anatomically and 

functionally organized at many physical scales - starting at the level of single neurons and 

extending up to functional systems (Churchland and Sejnowski, 1992). At one scale are 

discrete regions of the cortex, known as functional areas. Functional areas possess unique 

internal structure (e.g. architectonics and topography). They also contain distinct 

combinations of inputs and outputs, which in turn group related areas into specialized 

networks (Felleman and Van Essen, 1991). These areal boundaries appear very early in 

development (Kostovic et al., 1995) and each area is thought to make a distinct contribution 

to information processing (Cohen et al., 2008; Felleman and Van Essen, 1991; Fuster, 2002; 

O’Leary and Nakagawa, 2002; Sur and Rubenstein, 2005). Ideally, parcellations for 

functional connectivity studies would closely reflect these areal boundaries in order to more 

clearly link network effects to the brain’s underlying information processing architecture. In 

animal studies (rodents and non-human primates), this is feasible through the use of 

comprehensive, histologically and functionally defined whole-brain areal parcellations 

(Bezgin et al., 2012; Lein et al., 2007; Paxinos et al., 2000; Saleem and Logothetis, 2007; 

Swanson, 2015; Van Essen et al., 2012). In humans, there is much less clarity regarding 

potential areal boundaries (outside of elementary cytoarchitectonic divisions described, for 

example, by (Brodmann, 1909) and (Economo and Koskinas, 1925)) since a comparable 

amount of comprehensive data has not been readily available in a common reference space. 

Several groups, however, are finding ways to utilize today’s non-invasive imaging tools to 

bring us closer to realizing these goals (Behrens et al., 2003; Glasser et al., 2016a; Gordon et 

al., 2016; Wig et al., 2014a; Wig et al., 2014b; Zhang et al., 2010).

Atlas or template choice

A topic related to parcellation choice is how to spatially normalize individual subjects onto a 

common reference template. Cortical folding patterns change continually from birth into 
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adulthood, and especially during infancy. Infancy is also a time during which the image 

contrasts in various MR acquisitions changes dramatically. These changes pose challenges 

during template-based data processing steps such as spatial normalization and image 

segmentation, and are particularly problematic in studies that use template brains derived 

from only one age group and therefore rely on assumptions regarding similarity in shape 

characteristics of the brain across participant groups. The use of high-contrast, age-specific 

and study-specific template brain images for image registration is a well-validated approach 

to help overcome some of these confounds (Avants et al., 2010; Fonov et al., 2011), and is 

increasingly adopted in both structural and functional studies of (especially early) 

development (Eggebrecht et al., 2017; Fonov et al., 2011; Gao et al., 2015a; Scott et al., 

2015). Surface based registrations that take into account the sulcal and gyral anatomy also 

help mitigate these confounds, and may be the future direction of the field (Fischl, 2012; 

Van Essen, 2012).

On top of these issues, functional areal boundaries (see Parcellation Choice) of heteromodal 

association areas are variable with respect to sulcal and gyral anatomy (Fischl et al., 2008). 

New multimodal approaches that also anchor surface-based registrations to other structural 

or functional characteristics of an individual are likely to improve subject to subject 

registrations, and hence reduce intersubject variability, even more (e.g.(Glasser et al., 2016b; 

Robinson et al., 2014). Unfortunately, these advanced methods require more data acquisition 

time than is typically afforded for developmental studies. Nonetheless, a high quality 

anatomical image that is capable of being segmented properly into grey and white matter by 

itself is enough for the most basic suface-based registration tools.

Test-retest reliability

A final point regarding the use of rs-fcMRI for network mapping concerns its reliability as a 

measurement tool. Multiple studies have found evidence for limited test-retest reliability 

using a multitude of conventional rs-fcMRI network characteristics and analytic approaches 

(Braun et al., 2012; Wang et al., 2011; Wisner et al., 2013; Zuo et al., 2010; Zuo and Xing, 

2014). Recent evidence suggests that these effects may largely result from insufficient data 

acquisition. For instance, FC networks in one highly sampled individual converged as a 

function of the timeseries length used to extract correlations and were extremely 

reproducible using approximately 1 hour of motion-free data (Laumann et al., 2015). 

However, this length of scan time for each individual is likely prohibitive in most 

developmental rs-fcMRI studies, underscoring the importance of internal study replication. 

In addition, more work could be done to develop analytic methods with both high sensitivity 

to individual variation and high test-retest reliability (see (Miranda-Dominguez et al., 

2014a)).

Conclusions

This review has surveyed the development of correlated, resting-state activity and the 

emergence of network organization from birth until adulthood. Across all stages of postnatal 

development, functional brain networks exhibit non-trivial properties such as community 

structure, hub organization, cross-module integration, and global efficiency. Community 
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structure at birth is coarse and primitive, but gradually evolves into a denser, more spatially 

structured, and distributed organization. The most dramatic changes appear to occur in the 

first two years of life, though network refinement continues through childhood and 

adolescence, strengthening connections particularly among functional hubs. While the past 

decade has seen remarkable growth of network neuroscience and its application to 

development, there is still ample work that needs to be done. The field will benefit from 

resolving technical issues with acquisition and artifact removal, and from gaining a better 

understanding of the heterogeneity that exists across typical and atypical populations. 

Finally, we believe there is an urgent need to establish stronger links between different 

functional imaging modalities, between structural and functional connectivity, and between 

micro- and macro-scales of investigation via animal models.
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Highlights

Reviews development of functional connectivity networks from birth until 

adulthood.

Reviews trends in resting-state functional MR imaging (rs-fMRI) and network 

analysis.

Synthesizes developmental rs-fMRI findings with structural connectivity and 

EEG/MEG.

Suggests strategies to overcome limitations of rs-fMRI in developmental studies.

Suggests approaches to interrogate neurodevelopmental disorders.
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Figure 1. Crucial network properties of resting-state activity in the normal adult brain
A) Group-averaged community structure of resting state brain activity, densely sampled 

across the cortical surface, in three independent studies (Gordon et al., 2016; Power et al., 

2011; Yeo et al., 2011). Different colors correspond to different modules with highly 

correlated activity, i.e. functional connectivity (FC). Several canonical modules appear in all 

three studies, including early visual, early somatomotor, default mode, dorsal attention, 

frontoparietal, and cingulo-opercular modules. Community structure is highly reproducible 

across these studies. The color scheme in Power and Gordon matches the legend, but differs 

in Yeo. A novel areal parcellation is also defined in Gordon, as evidenced by interareal 

boundaries. B) Community structure and areal parcellation of an individual subject 

(Laumann et al., 2015), obtained via repeated scanning sessions in the same individual. 

Community structure strongly resembles that of the group, although idiosyncracies are also 

clearly observable (see (Laumann et al., 2015)). C) Group-average resting-state network 

organization defined using 264 spherical nodes situated within different functional modules. 

On the left, the location and modular assignment of these nodes are pictured on the brain, 

next to a spring-embedded layout of the thresholded functional matrix. The network layout 

depicts nodes with stronger links (i.e. stronger correlations in activity) as closer together. 

The layout illustrates that network organization is heterogeneous – some modules are highly 

segregated from the rest of the network, whereas others are more integrated. On the right, 

the participation coefficient is quantified for each node. The participation coefficient 
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signifies the extent to which a node integrates activity across multiple modules. Comparing 

the network layouts, integrator nodes tend to exist within the modules reflecting task-

positive cognition, i.e. the frontoparietal, cingulo-opercular, and dorsal attention modules. 

See (Power et al., 2013). D) Structural connectivity shapes and constrains FC. As an 

example, this plot illustrates the correspondence between empirical FC (y-axis) and 

predicted FC (x-axis) based on modeling communication via the structural connectome. 

Dots represent region pairs that either are (blue) or are not (red) directly connected via fiber 

pathways. See (Goni et al., 2014). E) Structural hubs tend to interlink to each other and 

across functional modules, providing an anatomical substrate for integration between 

otherwise segregated domains of information processing. The schematic on the left 

illustrates this hypothesis, where the modules on top are functionally defined and the 

connections shown on the bottom reflect neuroanatomical links. The “rich club” nodes 

(shown in blue) reflect structural hubs that disproportionately connect to each other. On the 

right, evidence that the rich club serves an integrative function, as functional network nodes 

with high participation coefficient (i.e. high between-module integration) overlap 

significantly with the brain’s structural rich club. See (van den Heuvel and Sporns, 2013).
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Figure 2. Infant brain structural and functional development
A) Visualizations of infant brain cortical surfaces at birth, 1 year, and 2 years of age. Large 

growth is clearly visible in terms of total brain size, cortical surface area, and cortical 

thickness Adapted from (Li et al., 2015). B) Resting-state functional connectivity network 

visualizations at birth, 1 year, and 2 years of age. The different lobes containing each region 

are labeled. Increasing separation of regions into functional modules spanning multiple 

lobes is apparent over this timespan. Adapted from (Gao et al., 2011). C) Community 

structure of 230 functional ROIs in 1–2 year olds (top) and in adults (bottom) using closely 

matched methods. Labeling of infant modules was informed via the adult set: Vis (visual), 

tDMN (temporal default mode network), pcDMN (posterior cingulate DMN), aDMN 

(anterior DMN), SMN (somato-motor network), SMN2 (somato-motor network 2), DAN 

(dorsal attention network), pFPC (posterior frontal parietal control network), aFPC (anterior 

frontal parietal control network), SubCtx (subcortex), CO (cingulo-opercular), pCO 

(posterior CO), and Sal (salience). Adapted from (Eggebrecht et al., 2017).
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Figure 3. Development of functional architecture from childhood to adulthood: similarities in 
community structure across age
A) Illustration shows community structure of functional networks in childhood (top) and 

adulthood (bottom), with (right) or without (left) denoising of scans via removal of high 

head-motion frames (i.e. “scrubbing”). Nodes are 264 spherical ROIs, colored according to 

community assignments. Circles illustrate areas that show apparent age-related differences 

prior to motion denoising, but which do not demonstrate age effects after denoising. 

Numbers next to arrows indicate the mutual information (a graph theoretic measure of 

similarity) in the two community structures. Motion exaggerates age-related differences in 

community structure. From (Power et al., 2012). B) Similar community structure is obtained 

in adults and children when using strict criteria to minimize the influence of motion artifact. 

Overall network structure looks remarkably similar as well. From (Fair et al., 2012b). C) 
Similar community structures are identified in late childhood, early adolescence, late 

adolescence, and adulthood. On the other hand, there is evidence for refinement within this 

modular framework (see Figure 4). From (Marek et al., 2015).
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Figure 4. Evidence for disproportionate involvement of the cingulo-opercular and somatomotor 
systems during development from late childhood into adulthood
A)Regions that are most predictive of age, from late childhood to young adulthood, via age-

related changes in functional connectivity. Nodes are sized according to predictive strength 

in a support-vector machine. Adapted from (Fair et al., 2012b). B) On the left, average 

functional community structure is shown for healthy young adults. On the right, differences 

in functional connectivity between adults and older children are shown. Adults have greater 

functional connectivity of selected links within and between the somoatomotor and cingulo-

opercular modules. Regions on the cortical surface with high functional connectivity overall 

are highlighted in warm colors, illustrating that developmental differences also involve hub 

regions. Adapted from (Grayson et al., 2014). C) Developmental trajectories are illustrated 

for five networks. Average participation coefficient for nodes within each network are 

plotted over age. The cingulo-opercular network exhibited the most substantial increase over 

development. These changes mediated age-related increases in cognitive control and were 

especially driven by increased connectivity between cingulo-opercular and somatomotor 

nodes. From (Marek et al., 2015).
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Figure 5. Functional network organization, hierarchies, and structure-function relationships in 
the monkey brain gleaned through contrast-enhanced resting-state imaging
A) Community detection performed on an 80-region parcellation of the rhesus monkey 

brain. Resting-state networks were obtained under anesthesia using enhanced imaging 

methodologies that included exogenous contrast, a surface coil with high SNR, and head 

fixation. Reported modules show clear homology with those seen in the human literature. B) 
Spring-embedded graph layout visualizing correlations between individual regions. 

Integrated versus segregated activity is visible, as are hierarchies within different sensory 

modalities. For instance, dorsal attention nodes are situated centrally, suggesting globally 

integrated processing. In contradistinction, primary visual, auditory, and somatosensory 

cortex are the most peripheral nodes within their respective modules, followed by secondary 

sensory cortices, suggesting both segregation of sensory streams and hierarchical 

relationships within them. Nodes are sized by their correlation with the global signal, 

illustrating that more central nodes have higher global signal correlation. C) Plot illustrates 

the correspondence between empirical FC (y-axis) and predicted FC (x-axis) based on 

modeling communication in the structural connectome. Dots represent region pairs that 

either are (blue) or are not (red) directly connected via fiber pathways. D) Structure-function 

relationships are also observable at the node level. Regional correlation with the global 

signal (y-axis) is associated with total communication capacity to and from the rest of the 

brain (x-axis). Dots show global signal correlations before (closed) and after (open) 

regressing out the global signal from each region’s timecourse. Adapted from (Grayson et 

al., 2016).
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