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Visualization of Synthetic 
Vascular Smooth Muscle Cells in 
Atherosclerotic Carotid Rat Arteries 
by F-18 FDG PET
Kisoo Pahk1,2, Chanmin Joung1, Se-Mi Jung1, Hwa Young Song1, Ji Yong Park3,4, Jung Woo 
Byun3, Yun-Sang Lee   3,5, Jin Chul Paeng6, Chunsook Kim7, Sungeun Kim2 & Won-Ki Kim1

Synthetic vascular smooth muscle cells (VSMCs) play important roles in atherosclerosis, in-stent 
restenosis, and transplant vasculopathy. We investigated the synthetic activity of VSMCs in the 
atherosclerotic carotid artery using 18F-fluorodeoxyglucose (FDG) positron emission tomography 
(PET). Atherosclerosis was induced in rats by partial ligation of the right carotid artery coupled with an 
atherogenic diet and vitamin D injections (2 consecutive days, 600,000 IU/day). One month later, rats 
were imaged by F-18 FDG PET. The atherosclerotic right carotid arteries showed prominent luminal 
narrowing with neointimal hyperplasia. The regions with neointimal hyperplasia were composed of 
α-smooth muscle actin-positive cells with decreased expression of smooth muscle myosin heavy 
chain. Surrogate markers of synthetic VSMCs such as collagen type III, cyclophilin A, and matrix 
metallopeptidase-9 were increased in neointima region. However, neither macrophages nor neutrophils 
were observed in regions with neointimal hyperplasia. F-18 FDG PET imaging and autoradiography 
showed elevated FDG uptake into the atherosclerotic carotid artery. The inner vessel layer showed 
higher tracer uptake than the outer layer. Consistently, the expression of glucose transporter 1 was 
highly increased in neointima. The present results indicate that F-18 FDG PET may be a useful tool for 
evaluating synthetic activities of VSMCs in vascular remodeling disorders.

Vascular smooth muscle cells (VSMCs) play important roles in the pathophysiological processes of various vascu-
lar disorders, such as atherosclerosis, in-stent restenosis, and transplant vasculopathy1. Based on their functions 
such as contraction, migration, or pro-inflammation, VSMCs can be subdivided into contractile or synthetic 
phenotypes2, 3. In the normal state, the majority of VSMCs in blood vessels exhibit the contractile phenotype as 
opposed to the synthetic phenotype2, 3. However, in vascular injury or in the inflammatory state, VSMCs switch 
from the contractile to the synthetic phenotype2, 3. Synthetic VSMCs migrate to the intima and form neointimal 
hyperplasia with inflammatory characteristics2, 3. Thus, targeting synthetic VSMCs is an attractive therapeutic 
strategy for treating vascular remodeling disorders1.

Several molecular imaging studies have reported significant increases of VSMC and macrophage populations 
in neointimal regions in patients with atherosclerosis4, 5 and in a rabbit model of atherosclerosis6. However, none 
of these studies examined VSMC phenotype. Pyla et al.7 reported that synthetic VSMCs exhibit high expression of 
facilitative glucose transporters (GLUTs), including GLUT1, a well-known FDG transporter8. Thus, measurement 
of glucose uptake may be a useful tool for distinguishing synthetic from contractile VSMCs.

Partial carotid artery ligation is a well-established technique for generating an animal model of atheroscle-
rosis9. Wei et al.10 reported that the neointima in rats subjected to partial carotid artery ligation exhibited a high 
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population of VSMCs. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is an established 
noninvasive image modality for measuring vascular glucose consumption4. In the present study, therefore, we 
investigated synthetic VSMC activities using F-18 FDG PET in an atherosclerotic rat model of partial carotid 
artery ligation.

Results
Histopathology.  The atherosclerotic right carotid arteries presented prominent luminal narrowing with 
neointimal hyperplasia, while the normal carotid arteries showed no neointimal hyperplasia (Fig. 1A and B). 
The maximal intimal thickness of atherosclerotic arteries and normal arteries were 137.72 ± 54.46 (mean ± SD; 
standard deviation) µm and 8.04 ± 0.87 (mean ± SD) µm, respectively (p = 0.021, Fig. 1C). The maximal media 
thickness of atherosclerotic arteries and normal arteries were 39.2 ± 5.63 (mean ± SD) µm and 35.86 ± 5.74 
(mean ± SD) µm, respectively (p = 0.49, Fig. 1C).

Normal artery was composed of smooth muscle myosin heavy chain (SM-MHC) and α-smooth muscle actin 
(α-SMA)-positive VSMCs in media (Fig. 2). The neointima in atherosclerotic right carotid artery exhibited many 
α-SMA-positive VSMCs, whereas SM-MHC-positive VSMCs, CD68-positive macrophages or myeloperoxidase 
(MPO)-positive neutrophils were scantly observed (Fig. 3). The neointimas exhibited significant collagen type III 
deposition (Fig. 4), which has been shown to be mainly excreted by synthetic VSMCs11. Furthermore, the thick-
ened neointima showed increased expression of cyclophilin A and matrix metallopeptidase-9 (MMP-9) (Fig. 4), 
both of which are established hallmarks of synthetic VSMC activity12, 13.

F-18 FDG PET.  Increased FDG uptake was observed along the atherosclerotic (right) carotid artery (Fig. 5A 
and B). The corresponding maximum SUV was 3.28 ± 0.43 (mean ± SD). As shown in the transverse view in 
Fig. 5B-a, the inner circular layer of the right carotid artery showed higher tracer uptake than the outer layer. In 
the normal control group, no FDG uptake was apparent in either the right or left carotid artery (Fig. 5A and B). 
The corresponding maximum SUV was 0.86 ± 0.1 (mean ± SD). Atherosclerotic carotid artery showed signifi-
cantly higher maximum SUV than the normal control group (p = 0.029, Fig. 5C).

Autoradiography and glucose transporter 1 (GLUT1).  Consistent with the in vivo PET imaging, auto-
radiography showed much higher radioactivity in the right carotid artery than in the left carotid artery (Fig. 6A). 
Furthermore, higher radioactivity was observed in the inner layer compared to the outer layer. Western blotting 

Figure 1.  Hematoxylin and eosin (H&E) staining of harvested carotid artery (CA). (A) Normal CA. (B) 
Atherosclerotic CA. (C) Comparison of maximal wall thickness in atherosclerotic and normal CA. *p < 0.05 vs. 
normal control (n = 4 for each group). Scale bar, 100 µm. Magnification, ×100.
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showed increased GLUT1 expression in atherosclerotic right carotid artery (Fig. 6B). Immunohistochemistry 
further demonstrated that GLUT1 expression was increased by synthetic VSMCs in neointimal region of athero-
sclerotic right carotid artery (Fig. 6C).

Discussion
In the atherosclerotic rat model used in the present study, the neointima became hypertrophic and exhibited a 
large VSMC population. However, few inflammatory cells such as macrophages or neutrophils were observed. 
Our findings are similar to those previously found in a high fat diet-induced atherosclerotic rat model10. Using 
F-18 FDG PET, we found that VSMCs from the neointima exhibited the synthetic phenotype rather than the 
contractile phenotype.

When blood vessels are damaged, VSMCs can switch from the contractile to the synthetic phenotype2, 3. 
During the process of neointimal hyperplasia, SM-MHC which is a well-known marker of contractile VSMC is 
decreased in neointima whereas α-SMA expression is preserved 14–16. Our results are consistent with these pre-
vious studies. In the present study, we further found that surrogate markers of synthetic VSMCs such as collagen 
type III, cyclophilin A, and MMP-9 were increased in the neointima. Therefore, synthetic VSMCs appear to con-
stitute the majority of the neonitmal hyperplasia region.

In general, glucose uptake is retained in normal VSMCs17 and is increased by inflammatory stimuli18. As 
expected, F-18 FDG PET imaging and autoradiography revealed prominent uptake of FDG in the right carotid 
artery of atherosclerotic rats. However, FDG uptake was not observed in the right carotid artery of normal rats. 
Interestingly, FDG distribution appeared to be stratified in the atherosclerotic right carotid artery, with higher 
FDG uptake in the inner circular layer compared to the surrounding outer layer. These findings were further sup-
ported by the increased expression of GLUT1 in synthetic VSMCs of neointima region. Although further studies 
are warranted to clarify the mechanisms underlying this stratified distribution, we hypothesize that the synthetic 
activity of VSMCs may be greater in the early phase of neointimal hyperplasia than in the later phases.

F-18 FDG PET is a potentially useful tool for evaluating the activity of synthetic VSMCs in a wide range of 
vascular remodeling diseases. In atherosclerosis, synthetic VSMCs induce neointimal hyperplasia, narrow the 
lumen, and provide substrates for lipoprotein retention, thereby accelerating the progression of atherosclero-
sis19. In addition to synthetic VSMCs, inflammatory responses also play a key role in vascular wall damage in 
atherosclerosis20. In particular, macrophages appear to significantly contribute to foam cell formation and plaque 
rupture20. While neointimal hyperplasia is also formed in in-stent restenosis and transplant vasculopathy, inflam-
matory responses appear to play only a minor role in these vasculopathies19. Recently, Kim et al.21 reported that 
68Ga-labeled NOTA-neomannosylated human serum albumin (MSA) could target macrophages in atherosclero-
sis. Using a combination of FDG and MSA, the molecular basis of synthetic VSMC and macrophage activities in 
atherosclerotic lesions could be easily obtained.

Figure 2.  Characterization of harvested normal artery (n = 4). Images of arteries immunostained with 
antibodies against smooth muscle myosin heavy chain (SM-MHC) or α-smooth muscle actin (α-SMA). Nuclei 
were stained with DAPI. Scale bars, 100 µm. Magnification, ×100.
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Conclusion
The activity of synthetic VSMCs was successfully visualized by F-18 FDG PET. Therefore, F-18 FDG PET is 
a promising noninvasive imaging modality for evaluating synthetic VSMCs, especially in vascular remodeling 
disorders.

Materials and Methods
Animals.  Eight male Sprague-Dawley (SD) rats (7 weeks old, 200 g body weight) were purchased from Orient-
Bio (Seongnam, Korea). 4 rats were enrolled in atherosclerotic group and 4 rats were in normal control group. 
All rats were maintained under a 12-h/12-h day/night cycle with ad libitum water and meals. All experimental 
protocols and procedures were approved by the Ethics Committee and the Institutional Animal Care and Use 
Committee of Korea University College of Medicine (Approval No. KOREA-2016-0041). All experiments were 
performed in accordance with the approved guidelines and regulations.

Induction of atherosclerosis.  After a 1-week adaptation period, right partial carotid artery ligation was 
performed as previously described9. Briefly, anesthesia was induced with 3.5% isoflurane with a 2:1 N2O/O2 mix-
ture in a vented anesthesia chamber and then maintained by the administration of 2 to 2.5% isoflurane with a 2:1 
N2O/O2 mixture through a nasal cone. The right external carotid artery, right internal carotid artery, and right 

Figure 3.  Characterization of harvested atherosclerotic right carotid arteries (n = 4). Images of arteries 
immunostained with antibodies against α-SMA, SM-MHC, CD68, or myeloperoxidase (MPO). Nuclei were 
stained with DAPI. Scale bars, 100 µm. Magnification, ×100.
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occipital artery were ligated with a 6-0 silk suture. After ligation, vitamin D3 (6 × 105 IU/kg) was intraperitoneally 
injected for 2 consecutive days22, with the exception of the normal control group. Rebsamen et al.23 reported that 
vitamin D3 facilitates VSMC migration in the SD rat aorta. The atherosclerotic group was fed daily with a com-
mercially available atherogenic diet (D12336, Research Diets, NJ, USA) for 4 weeks. The normal group underwent 
a sham operation without ligation of carotid arteries or vitamin D3 injections. Normal rats were fed a diet of 
normal chow for 4 weeks.

18F-FDG PET imaging and analysis.  Images were acquired using a small animal PET/CT (computed 
tomography) scanner (eXplore Vista DR PET/CT, GE Healthcare, Milwaukee, WI, USA). Rats were not fasted 
before examination and were anesthetized with 2% isoflurane at 1 L/min oxygen flow during the PET/CT scan. 
Rats were placed in the prone position under the scanner. PET image acquisition started 40 min after the injec-
tion of 37 MBq/0.2 ml of F-18 FDG via the tail vein. Static PET scans were acquired for 20 min in a single bed 
position covering the carotid artery region. The axial field of view (FOV) of the PET scanner was 48 mm in 
length. CT scanning (40 kV, 250 µA) was initiated after PET scanning of the same area. Images were reconstructed 
using Fourier rebinning and the ordered subsets expectation maximization (OSEM) algorithm with decay, atten-
uation, random, and normalization corrections. The voxel size was 0.3875 × 0.3875 mm; axial slice thickness 
was 0.775 mm. Maximum intensity projection (MIP) images, axial views, sagittal views, and fusion images were 
processed after reconstruction. Following image reconstruction, image analysis was performed with A Medical 
Image Data Examiner Software (AMIDE, version 1.0.4)24. On each image, regions of interest (ROI) were drawn 
over the carotid artery region and the standardized uptake values (SUVs) were measured. The SUV was calculated 
as activity concentration (ROI; MBq/ml)/injected dose (MBq)/total body weight (g).

Autoradiography.  Immediately after completion of PET/CT scanning, the carotid arteries were harvested, 
fixed in 4% paraformaldehyde (PFA), and mounted on glass slides. The prepared tissues were exposed to imaging 
plates and images were acquired using a BAS-200 system (FLA-2000, FUJIFILM, Tokyo, Japan).

Immunohistochemistry.  Harvested carotid arteries were fixed with 4% PFA and preserved in 30% sucrose 
solution. Tissues were embedded in Optimal Cutting Temperature (OCT) compound (Scigen Scientific, Gardena, 
CA, USA). Axial sections of 4-μm thickness were cut using a cryostat microtome (Leica CM 3050 S, Leica 

Figure 4.  Surrogate markers of synthetic vascular smooth muscle cells in atherosclerotic right carotid arteries 
(n = 4). Images of arteries immunostained with antibodies against collagen type III, cyclophilin A or matrix 
metallopeptidase-9 (MMP-9). Nuclei were stained with DAPI. Scale bars, 100 µm. Magnification, ×100.
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Microsystems, Wetzlar, Germany). The molecular profiles of the carotid artery lesions were investigated by immu-
nofluorescence. To this end, sections were blocked in 5% goat serum in phosphate-buffered saline (PBS) with 
0.1% Triton X-100 for 60 min and incubated at 4 °C with the following antibodies: anti-α-SMA (1:200 dilution, 
ab7817 or ab5694, Abcam, Cambridge, MA, USA), anti-SM-MHC (1:200 dilution, ab683, Abcam, Cambridge, 
MA, USA), anti-CD68 (1:200 dilution, MCA341R, Serotec, Oxford, UK), anti-myeloperoxidase (1:800 dilution, 
A0398, DAKO, Glostrup, Denmark), anti-cyclophilin A (1:100 dilution, ab41684, Abcam, Cambridgem MA, 
USA), anti-MMP-9 (1:200 dilution, AB19016, Merck Millipore, Billerica, MA, USA), anti-collagen type III (1:200 
dilution, ab7778, Abcam, Cambridge, MA, USA), and anti-GLUT1 (1:200 dilution, ab652, Abcam, Cambridge, 
MA, USA). Alexa Fluor 555-conjugated goat anti-mouse IgG (1:400 dilution, A21424, Invitrogen, Carlsbad, CA, 
USA) and Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:400 dilution, A11034, Invitrogen, Carlsbad, CA, 

Figure 5.  F-18 FDG PET images. (A) Maximum intensity projection (MIP) views of (a) an atherosclerotic 
rat and (b) a normal rat. (B) Three-plane views of (a) an atherosclerotic rat and (b) a normal rat. The arrow 
indicates FDG uptake of the right carotid artery and the arrow head indicates FDG uptake of the spinal 
bone marrow. R; right, L; left, V; ventral, D; dorsal. (C) Comparison of maximal standardized uptake values 
(SUVmax) in atherosclerotic and normal carotid arteries (CAs). *p < 0.05 vs. normal control (n = 4 for each 
group).
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USA) were used as secondary antibodies. Cell nuclei were counterstained with DAPI. Histopathologic evaluation 
was performed by staining with hematoxylin and eosin. All images were acquired on a confocal microscope 
(LSM800, Carl Zeiss, Oberkochen, Germany) or an upright light microscope (BX51, Olympus, Tokyo, Japan).

Western blotting.  Harvested carotid arteries were homogenized in RIPA buffer (GeneDepot, Barker, TX, 
USA) and centrifuged at 13,000 rpm for 15 min at 4 °C. The protein concentration of supernatant was determined 
using bicinchoninic acid reagent (Thermo Fisher, Waltham, MA, USA). Proteins were separated using an 8% 
sodium dodecyl sulfate polyacrylamide gel electrophoresis gel and transferred to a polyvinyldine fluoride mem-
brane (PVDF, Merck Millipore, Billerica, MA, USA). The membranes were blocked for 1 h with 5% skim milk 
in TBS-T (20 mM Tris-HCl (pH 7.6) containing 0.8% NaCl and 0.1% Tween 20). Then, the membranes were 
incubated with antibodies against GLUT1 (1:500 dilution, ab15309, Abcam, Cambridge, MA, USA) and glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) (1:2000 dilution, MAB374, Merck Millipore, Billerica, MA, 
USA). After washing with TBS-T, it was incubated with goat anti-rabbit or anti-mouse horseradish peroxidase 
conjugated secondary antibodies (1:30000 dilution, A16110 or 31430, Thermo Fisher, Waltham, MA, USA). To 
obtain protein bands, PVDF membranes were detected with X-ray film.

Statistical analysis.  The Mann-Whitney U test was used as a statistical method using SPSS software version 
17.0 (SPSS Inc, Chicago, IL, USA). A p-value < 0.05 was defined as statistically significant.

Figure 6.  (A) Autoradiography scans of harvested carotid arteries (CAs). In merged images (represented 
as CA/Autoradiography), radioactivity signals were inversely adapted for better visualization. Scale bars, 
1 mm. (B) Increased GLUT1 expression in atherosclerotic right carotid artery. Full-length blots are presented 
in Supplementary Figure 1. (C) Increased GLUT1 expression in synthetic VSMCs in neointima region of 
atherosclerotic right carotid artery. Nuclei were stained with DAPI. Scale bars, 100 µm. Magnification, ×100.
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