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Pediatric Sarcoma Data Forms a 
Unique Cluster Measured via the 
Earth Mover’s Distance
Yongxin Chen   1, Filemon Dela Cruz2, Romeil Sandhu3, Andrew L. Kung2, Prabhjot Mundi4, 
Joseph O. Deasy1 & Allen Tannenbaum5

In this note, we combined pediatric sarcoma data from Columbia University with adult sarcoma data 
collected from TCGA, in order to see if one can automatically discern a unique pediatric cluster in the 
combined data set. Using a novel clustering pipeline based on optimal transport theory, this turned out 
to be the case. The overall methodology may find uses for the classification of data from other biological 
networking problems.

The present note describes a novel method for data clustering applied to the classification of pediatric sarcoma 
data. Namely, in this work, we combined two data sets: the first consisting of the gene expression of predomi-
nantly pediatric sarcoma patients, and the second consisting of the gene expression of adult sarcoma patients 
taken from the The Cancer Genome Atlas (TCGA) database. We then wanted to see if one could discern some 
quantifiable difference between the pediatric and adult cases.

Accordingly, we applied a method based on the L1 Earth Mover’s Distance (EMD) to the data; see Sections and 
below for all the details. In what follows EMD will always refer to the L1 version of the Earth Mover’s Distance. 
Briefly, the proposed pipeline constructs a weighted graph based on the network topology inferred from the 
Human Protein Reference Database (HPRD), and then treating the graph as a Markov chain, constructs the 
invariant (stationary) measure, computes the pairwise distances via EMD among all the networks, and then 
represents the resulting distance matrix as a heat map. (We note that a heat map is a graphical representation of 
data in which the individual values contained in a matrix are represented as colors.) Other than an outlier (see 
Section below), our method was able to segregate the pediatric cases from the adult cases, i.e., we found two rather 
distinct clusters.

We should note that ideas based on the L1 Earth Mover’s Distance (also known as the Wasserstein 1-metric1–3) 
have already been applied in studying various properties of cancer networks. In particular, the Wasserstein 
1-metric leads to a notion of curvature4 that turns out to be positively correlated with network robustness5–7. 
This geometric network approach to studying cancer, led to some work indicating that cancer networks are more 
functionally robust than their normal counterparts6, 7.

The EMD (and more generally optimal mass transport theory) is very natural for studying the properties of 
various weighted graphs modeling biological networks, since it gives a natural metric between probability distri-
butions. Its use has become very widespread in recent years being employed for problems in communications, 
finance, engineering, and biology1–3, 8. This work continues this line of research, by using the distance to cluster 
biological data.

Finally, we believe that the overall pipeline can be more generally applied in clustering many different types of 
network data (represented as a weighted graph). We note that we associate the invariant measure to each individ-
ual network in the class of data to be classified, and then apply the EMD. This is a distinct advantage since no pre-
processing is necessary, other than normalizing the weighted graphs to ensure that they define a Markov process9.
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Results
Data.  The gene expression data sets used in the present work, consist of two parts. The first part includes the 
gene expression of 27 patients diagnosed with pediatric-associated sarcoma and treated at Columbia University 
Medical Center (CUMC). Informed and signed consent for clinical and research sequencing was obtained in 
the context of the pediatric precision medicine program (PIPseq) established at CUMC and under the CUMC 
Institutional Review Board (IRB)-approved protocol AAAN840410. The second part was downloaded from The 
Cancer Genome Atlas (TCGA) database, covering the gene expression data of 265 adult patients. We have one 
sample per patient for both of them, so 292 samples in total. The data sets were normalized utilizing one of the 
standard methods for treating RNA-Seq counts data via the variance-stabilizing transformation (VST) in the 
DESeq2 package for R11. This normalization was done amongst all of the 292 sarcoma samples.

The network topology (graph adjacency matrix) was constructed using interaction information from the 
Human Protein Reference Database (HPRD)12. Specifically, we took the intersection of the genes that appear in 
both HPRD data and the gene expression data, and then kept the largest connected component. After discarding 
the redundant genes, we arrived at a gene regulatory network with 8844 nodes (genes) and 34926 edges (interac-
tions). The average and median degrees are 7.9 and 4, respectively.

Weighted graph and invariant measure.  We constructed a weighted graph for each sample using the 
mass action principle13. In particular, for given gene expression {xi > 0|1 ≤ i ≤ n} the weight pij on the edge (i, j) 
is defined as

=
∑ ∈

p
x

x (1)ij
j

k N i k( )

for any j∈N(i). Here n = 8844 is the number of nodes and N(i) denotes the set of neighbors of the node i. Note by 
construction the matrix = =P p[ ]ij i j

n
, 1 is a stochastic matrix and satisfies that pij = 0 if the edge (i, j) doesn’t exist. 

Biologically speaking, mass action is similar to well established methods of differential gene co-expression14 uti-
lized to develop specific profile for metastatic states13. Here, similar to differential co-expression or correlation for 
analyzing co-regulation patterns in cellular pathways, mass action is based on the assumption that intensity of the 
interaction between two interactive genes is likely to be larger if both of them have higher expression level. For 
example, often in drug studies15, 16, one studies co-regulation patterns via the differential expression of genes that 
are induced through a knockdown of separate gene (e.g., PI3K inhibition of BYL719 induces expression of estro-
gen receptor function in breast cancer15). Here, the same underlying principles are used when employing mass 
action with the added advantage that one can construct patient/sample specific networks without the usage of 
multiple samples needed for correlation.

The stochastic matrix P defines a Markov chain9 on the gene regulatory network. Different properties such as 
entropy and curvature have been considered for this object to study robustness of cancer network6, 7, 17. Here we 
consider the invariant measure (stationary distribution) of this Markov chain. The Markov chain describes the 
information flow between genes. When the underlying network is connected, the system will eventually reach an 
equilibrium and this equilibrium is described by the invariant measure. Mathematically, it is a probability vector 
π satisfying

π π= .P (2)

Thus π is a left eigenvector of P with non-negative entries that sum to 1. The value πi at node i reflects the 
portion of contribution of that node to the entire network. In other words, the invariant measure π is a centrality 
measure of the significance of different genes.

In general, to obtain the invariant measure, one needs to solve the linear equation (2). However, for the specific 
stochastic matrix in (1), π has the explicit structure

∑π =
∈Z

x x1

(3)
i i

j N i
j

( )

where Z is a normalization factor (partition function) forcing π to be a probability vector.
The expression (3) is very interesting. Note that the value of πi at node i reflects the significance of gene i in the 

gene regulatory network. It consists of two components: the gene expression level xi of gene i and the total gene 
expression of its neighbors ∑ ∈ xj N i j( ) . In other words, the invariant measure captures the key property that a gene is 
important if its expression level is high and it interacts with many other genes.

Optimal transport on graphs.  Consider a connected undirected graph = ( , )G V E  with n nodes in   and 
m edges in  . Given two densities ρ ρ ∈, n0 1  on the graph, the original formulation of the optimal transport 
problem seeks a joint distribution µ ∈ ×n n of ρ0 and ρ1 minimizing the total cost µ∑cij ij, that is,
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Here cij is the cost of moving unit mass from node i to node j and is taken to be the minimum of the number 
of steps to go from i to j, namely, c is the ground metric on the graph. For example, if the edge (i, j) exists, then 
cij = 1. The minimum of this optimization problem defines a metric W1 (the Earth Mover’s Distance) on the space 
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probability densities on . An alternative formulation (see Methods) is defined on the fluxes ∈u m given on the 
edges. Let ∈ ×D n m be the oriented incidence matrix of , then

∑ρ ρ ρ ρ=
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Note that the incidence matrix = ∈ ×D d[ ]ik
n m is defined by associating an orientation to each edge ek =  

(i, j) = (j, i) of the graph: one of the nodes i, j is defined to be the head and the other the tail, and then we set 
dik = +1(−1) if i is the head (tail) of ek and 0 otherwise. Compared to (4), which has n2 variables, the above for-
mulation has only m variables. It may greatly reduce the computational load when the graph  is sparse, i.e., 
m n2. This is the case in our data sets, where n = 8844 and m = 34926. In implementation, we used the stand-

ard convex optimization package CVX18 written in Matlab, in order to numerically solve (5). We should also note 
that there is some very nice recent work on the fast computation of the Earth Mover’s Distance19 based on (5).

Clustering of sarcoma data.  We define a distance function between different gene expression data sets 
using optimal transport theory on graphs. More specifically, we define the distance between two gene expression 
data sets to be the W1 optimal mass transport distance between the two invariant measures induced by the gene 
expressions as in (3). This distance W1 can be computed through convex programming1, 8. We computed the W1 
distances between each pair of all the 292 samples (27 pediatric sarcoma and 265 adult cancer). The heat map of 
the resulting distance matrix is as shown in Fig. 1. The samples clearly split into two clusters; one cluster for the 27 
pediatric sarcoma samples and one cluster for the 265 adult cancer patients.

To visualize more clearly the two clusters, we truncate the distances using some threshold: set the value to be 
zero if the distance is less than the given threshold and one otherwise. The results with threshold value 0.075 and 
0.1 are depicted in Figs 2 and 3, respectively. Note that there is a small gap between these two clusters, which indi-
cates that the last sample in the pediatric sarcoma is an outlier. Figure 4 is a 3D plot of the distance matrix, from 
which we can see an obvious difference that distinguishes this outlier from the rest of the sarcoma samples. The 
clusters and the outlier can be also seen based on the histograms. Figures 5, 6 and 7 are the histograms of the dis-
tances within the pediatric sarcomas, within the adult sarcomas, and between these two age groups, respectively. 
Apparently the distances within the two groups (pediatric, adult) are smaller than the distances between them. 
In particular, the average distances within the two groups are 0.0891, 0.0665 while the average distance between 
them is 0.1366. The distance between the outlier and the other samples is shown in Fig. 8, with mean value 0.2424, 
which is significantly larger than the average. See our discussion in the next section for further analysis of these 
results.

Discussion
Sarcomas represent a heterogeneous group of malignant solid tumors of connective tissue. Sarcomas comprise 
approximately 1.5% of all malignant tumors diagnosed in adults and over 7% of cancers in children20. Although 
the diversity of sarcoma subtypes can be encountered across the age spectrum, there exists a pattern of sarcoma 
subtypes that significantly distributes between adults and children. For example, osteosarcoma and Ewing sar-
coma (malignant bone tumors) are predominant in children and early adults, whereas undifferentiated pleomor-
phic sarcoma (previously called malignant fibrous histiocytoma), liposarcoma and leiomyosarcoma are extremely 
rare in children21, 22.

In addition to the observation that particular sarcoma subtypes predominate in either childhood or in adult-
hood, there are also differences in the clinical outcomes of adult and childhood sarcoma patients that extend 
beyond the differences in treatment regimens between adult and childhood sarcomas21, 23–25. With the emergence 

Figure 1.  Heat Map Showing Pediatric Cluster.



www.nature.com/scientificreports/

4Scientific REPOrTS | 7: 7035 | DOI:10.1038/s41598-017-07551-8

of next-generation sequencing technologies, we are afforded the opportunity to evaluate the biologic differences 
between pediatric-associated and adult-associated sarcomas.

In our analysis of 27 sarcoma cases treated at CUMC, only 26 of the 27 original cases would be categorized 
as a pediatric-associated sarcoma. Interestingly, one case originally included in the pediatric set segregated as 

Figure 2.  Heat Map Showing Pediatric Cluster with Threshold Value 0.075.

Figure 3.  Heat Map Showing Pediatric Cluster with Threshold Value 0.1.

Figure 4.  3D Plot Showing Pediatric Cluster.
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an outlier. This case represents a 25 year old female with a history of multiply relapsed, metastatic alveolar soft 
part sarcoma (ASPS). ASPS is a rare sarcoma subtype comprising 0.2–0.9% of all soft tissue sarcomas26. ASPS is 
extremely rare in childhood, and is more commonly diagnosed in adolescence and young adulthood (15–35 years 
of age)20.

A second adult case included in the pediatric cohort is from a 38 year old male with metastatic synovial sar-
coma. In contrast to the previous adult cases of ASPS, this case segregated with the pediatric cohort. Synovial 
sarcoma is a soft tissue sarcoma with a peak incidence in the 3rd decade of life, and with about 1/3 of cases occur-
ring within the pediatric age range27. Synovial sarcoma is more common than ASPS and is the most frequent 

Figure 5.  Distances within the Pediatric Cluster.

Figure 6.  Distances within the Adult Cluster.

Figure 7.  Distances between Pediatric Cluster and Adult Cluster.
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non-rhabdomyosarcomatous soft tissue sarcoma in adolescents and young adults28. Although historical differ-
ences in the approach to therapy between pediatric and adult oncologists have existed for the treatment of sarco-
mas and other tumors, there has been acknowledgement in the adult oncology community of the clinical utility 
of pediatric-based regimens for the treatment of sarcomas occurring in adulthood29, 30. However, despite use of 
more dose-intense chemotherapeutic approaches to the treatment of sarcomas in adulthood, pediatric-associated 
sarcomas diagnosed and treated in adulthood continue to have inferior outcomes compared to treatment in 
childhood31, 32.

These observations suggest that there may exist age-dependent differences in the biology of sarcomas. 
However, it is unclear what the thresholds for age may be that would contribute to differential responses to treat-
ment and clinical outcome as the cutoffs for age and the definition of “adult age” has varied in the literature. The 
results from this analysis suggest that the sarcoma subtype may supersede, in this instance, the contribution of age 
to the biologic behavior and genomic signature. So from this classification scheme, it seems that there are indeed 
biologic differences between sarcoma subtypes that are generally associated with childhood (such as synovial 
sarcoma) versus those more commonly associated with adulthood (such as ASPS), and provides a rationale for 
the use of pediatric regimens for the treatment of these diseases regardless of the patient’s age.

Genomic characterization of a larger cohort of pediatric-associated and adult-associated sarcomas will be 
imperative in specifically clarifying the genomic lesions that result in the clinical differences in behavior of sarco-
mas across the age spectrum. In any event, we did manage to cluster 26 out of the 27 CUMC cases from the TCGA 
data using our methodology.

In our Supplemental Information file, we have two other examples. The first illustrates the methodology 
applied to clustering breast cancer data (triple negative and normal). The second using synthetic “gene expres-
sion” networks shows the importance of topology in clustering. EMD has the nice feature of explicitly utilizing the 
topology of the network under consideration.

We should finally note that the pipeline sketched in Fig. 9 is quite general and may be quite useful in cluster-
ing various biological networks. These typically may be represented as weighted graphs, and thus after suitable 
normalization as Markov chains for which there exist the corresponding stationary measures. Optimal mass 
transport theory realized by the Earth Mover’s Distance seems to be an ideal tool for capturing distances among 
these measures, and thus leads to a natural clustering/classification framework. Several interesting biological 
graphs as suggested by one of the reviewers could include those based on evolutionary distance between genes, 

Figure 8.  Distances between the Outlier (PIP13-81192) and the other Samples.

Figure 9.  Overall Sketch of Method.
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structural similarity in within same fold family, percent of shared functional sites, even predicted, and percent of 
shared protein domains.

Methods
Overall sketch.  Figure 9 illustrates the overall pipeline of the clustering methodology described in the previ-
ous sections. The basic idea is that once one has defined the network topology (in this case via the Human Protein 
Reference Database), and the weights connecting the nodes (derived here from the mass action principle), one 
can use in a straightforward manner an invariant of each network, and then compute the distance matrix defined 
by the EMD or Wasserstein 1-metric. In the next section, we will review the definition and properties of this cen-
tral mathematical object underpinning our analysis.

Earth Mover’s Distance.  In this section, we briefly review the mathematics of the Earth’s Mover’s Distance 
(EMD) from optimal mass transport theory, the key method on which all the previous results were based. The 
classical Earth Mover’s Distance was formulated by Monge in 1781 to solve the problem of moving a pile of soil to 
a excavation site with the least amount of work relative to some cost. This is illustrated in Fig. 10. For full details 
as well as long lists of references, see the monographs1–3.

Mathematically, we let ρ0 and ρ1 denote two probability densities on m. This means that  ρ →:i m  with ρi 
≥ 0 for i = 0, 1, such that

 ∫ ∫ρ ρ= = .x dx x dx( ) ( ) 10 1
m m

Then the Earth Movers’ Distance (also called the Wasserstein 1-metric, W1) between them is

 ∫ρ ρ µ= −
µ ρ ρ∈Π ×

W x y dx dy( , ) : min ( , ),
(6)1

0 1

( , ) m m0 1

where Π(ρ0, ρ1) denotes the set of couplings between ρ0 and ρ1. The Wasserstein-1 distance has the dual 
formulation8

∫ρ ρ ρ ρ= − | ≤ .{ }W f x x x dx f( , ) sup ( ) ( ( ) ( )) 1
(7)f

Lip1
0 1 0 1

m

Here

=
−
−

.
≠

f f x f y
x y

: sup ( ) ( )
Lip

x y

Clearly when f is differentiable, ≤f 1Lip  is equivalent to ∇ ≤f 1x . So formally, the above can be rewritten 
as

∫ρ ρ ρ ρ= − | ∇ ≤ .{ }W f x x x dx f( , ) sup ( ) ( ( ) ( )) 1
(8)f

x1
0 1 0 1

m

One can then take the dual once again, i.e., starting from (8), one sees that

∫ρ ρ ρ ρ= | − + ∇ ⋅ ={ }W u x dx u( , ) inf ( ) 0 ,
(9)u

x1
0 1 0 1

m

of W1 with flux u being the optimization variable.
The above “dual of the dual” method can be applied to transport problems on graphs to show the equivalence 

between (4) and (5) by replacing the metric ⋅  by c and the divergence operator ∇⋅ by D. In so doing, one gets a 
tremendous saving in computational burden since equation (4) involves solving systems on the order of the 
square of the number of nodes, while equation (5) is of the order of the number of edges. In our specific case, we 
had 8844 nodes (genes) and 34926 edges (interactions), that is, we save in this manner ∼ ×8844 /34926 2 102 3 in 
the number of variables treated.

Figure 10.  Classical Earth Mover’s Problem: The dashed arrow indicates the transport map between the 
densities ρ0 and ρ1.
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