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Genetic encoding provides a generic construction scheme for
biomolecular functions. This paper addresses the key problem of
coevolution and exploitation of the multiple components neces-
sary to implement a replicable genetic encoding scheme. Extending
earlier results on multicomponent replication, the necessity of
spatial structure for the evolutionary stabilization of the genetic
coding system is established. An individual-based stochastic model
of interacting molecules in three-dimensional space is presented
that allows the evolution of genetic coding to be analyzed explic-
itly. A massively parallel configurable computer (NGEN) is used to
implement the model, on the time scale of millions of generations,
directly in electronic hardware. The spatial correlations between
components of the genetic coding system are analyzed and found
to be essential for evolutionary stability.

The genetic code, as a wonder of ancient biological engineer-
ing, has excited much recent study (1). Its structure, origin,

uniqueness, and information-processing capabilities have been
the focus of biochemical and theoretical analysis. Its emergence
has often been identified (2) with the origin of life itself in the
long-standing debate as to whether genes or proteins came first.
Genetic coding of function remains a central issue in an RNA
world, in which RNA catalysts could act singly or jointly as
polymerases to replicate other RNA as genes. It has long been
realized that some form of effective compartmentation is nec-
essary to allow the selection of the functional multicomponent
replicable systems needed to implement a genetic code, and this
has added an additional complexity to models of the evolution
of such systems. Possibly for this reason, there have been few
explicit models of the evolution of genetic coding. In this paper,
we show that a multicomponent replication–translation system
can evolve a stable genetic code in a continuous medium with no
explicit compartmentation or control thereof.

The model framework is simple and abstract, compared with
our detailed understanding of the cellular translation process.
However, it appears to capture the essential organizational
problem associated with the simultaneous evolution of a generic
coding mechanism and self-replicating entities. The basic as-
sumptions of the model are:

(i) Two distinct combinatorial families of chain molecules
(catalysts and templates) are formed at a slow rate by
random synthesis.

(ii) Catalytic molecules (like proteins) are mostly not capable
of self replication, whereas template molecules (like RNA)
can be transcribed (or replicated) and translated generi-
cally.

(iii) At least one rare polymer sequence exists that catalyzes the
replication of templates; no recognition of specific tem-
plate sequences is assumed.

(iv) Rare polymer sequences exist that catalyze the translation
of templates to potentially catalytic molecules according to
one of a number of ‘‘conflicting’’ codes; no specific rec-
ognition of template sequences is assumed.

(v) Molecular reactions are limited by diffusion in a three-
dimensional medium.

The basic structure of the model is then given by two reaction
mechanisms:

G ¡
R

G 1 r~G!

G ¡
T

G 1 t~G!,
[1]

where G stands for a ‘‘genetic’’ template, R for a replicase catalyst,
and T for a catalyst of translation. The product templates r(G) and
translation-derived polymers (potential catalysts) t(G) depend on
the mappings (encodings) r and t that are implemented by the
catalysts R and T, respectively, which in turn are a function of their
polymer sequences. We must emphasize that the two types of
reactions in Eq. 1 are considered separately for each member of a
large combinatorial family of templates G [ {Gi} with different
sequences, giving rise to a wide range of products via the mappings
r() and t(), in particular R 5 t(GR) and T 5 t(GT).

A number of less fundamental assumptions are made for
modeling convenience: sequences have a constant length; cata-
lytic activity of translation-derived sequences falls off exponen-
tially with the number of mutations (hamming distance) from a
specified catalytic center in the polymeric sequence space; the
fidelity of copying and translation is assumed to be a constant
property of the catalytic sequence; and the molecular population
is treated on an individual basis in three-dimensional space with
a single common diffusion coefficient.

In a spatially homogeneous system, even the simplest cases of
generic functionality are exploited to extinction. This fact has
been established in the simpler gene and replicase system (3, 4)
(which we refer to as GR). For the current gene-replicase-
translatase (GRT) coding system, exploitation in the spatially
homogeneous case is demonstrated in Appendix 1. Several
authors have seen the solution to this type of problem in
compartmentation. An alternative is pattern formation induced
by finite diffusion. Boerljist and Hogeweg (5, 6) showed that a
hypercycle with more than five catalysts and diffusion in two
dimensions exhibited self-organization into spiral patterns that
persist in the presence of exploiting parasites. (For a thorough
discussion of hypercycles, see ref. 7.) A significantly simpler
route to stable evolutionary multimolecular self-organization
has been recognized (8, 9). It involves the self-replicating spot
patterns that emerge (10) in systems that incorporate the
Scott–Gray mechanism. Self-replicating spots may also provide
exploitation-resistant evolution in three dimensions (11), but no
demonstration of exploitation resistance for a multicomponent
system such as translation has yet been forthcoming in any
number of spatial dimensions. We have adopted three dimen-
sions as arguably the most difficult and physically the most
relevant case.

Abbreviations: GR, gene and replicase system; GRT, gene-replicase-translatase.
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The simulation of the evolution of molecular functions entails a
large number of different molecular sequences of which some
species may occur only in single copies. These two features conspire
to make an analysis in terms of concentrations (by partial differ-
ential equations) both misleading and unfeasible. Rather, molec-
ular interactions have to be processed individually. Spatial effects
can be simulated by placing the molecules on a finite grid and
allowing only local reactions. The treatment of sequence-specific
reactions of a million molecules over some millions of generations
(which is necessary to capture evolutionary phenomena) is a
computationally extremely time-consuming task. The custom-
configurable discrete simulation computer NGEN (12, 13) (see also
www.gmd.deyBIOMIP) was designed for the study of such systems.
The machine is based on field-programmable gate arrays and is
particularly suited for parallel and systolic computations.

Although the GRT system comprises only a minimal set of
functions, it is potentially universal, because further functionality
can be implemented simply by adding genetic sequences; the
apparatus to express and replicate those sequences is already
present. Consequently, this system, once established, can evolve
without reorganizing its basic structure. The central feature that
this model explores is distributed functionality (among different
molecules). The basic problem is the generic exploitation of
molecular catalysts by any ‘‘selfish’’ gene that does not contribute
to their reconstruction.

Dyson (2) presented a stochastic model of the origin of replica-
tion and translation in which the problem was simplified to a
one-dimensional (biased) random walk in the number of correctly
placed monomers in chemical islands with limited size. This pro-
vocatively simple model is characterized by the manner in which the
correct monomer placement increases towards full functionality. It
does not account for the problem of exploitation correctly, nor for
the influence of interchanges between island populations. These
absent features are essential to a proper understanding of the
emergence of coding, as we shall argue below. Our model corrects
these deficiencies and is also spatially simpler in that no explicit
island structure is necessary: the molecules self-organize, producing
the local correlations necessary to stabilize the coding function.

Wills (14) formulated a more explicit model of the self-
organization of proteins to form a translation system, assuming a
constant set of genes. However, the code does not emerge by using
random genes and is not stable if the correct genes are allowed to
mutate during the process of self-organization. In this work, we
simplify the translation process of Wills, which involved separate
codon-assignment proteins (like amino-acyl transferases) by linking
a set of codon assignments on a single catalyst, which we call a
‘‘translatase.’’ However, we allow conflicting sets of codon assign-
ments to exist for different translatase sequences, so we do study the
emergence of a coding system in the presence of interfering codes
as Wills did, but now letting the genes evolve as well.

The paper is organized as follows. Methods deals with the
details of the implementation and the relevant features of the
customizable computer NGEN. Simulation results are presented
in Results and analyzed by using correlation functions. The paper
concludes with a discussion of the significance of these results.

Methods
Individual Molecule Implementation in Configurable Hardware. To
capture evolutionary time-scales and to obtain statistically signifi-
cant results, it is necessary to trace diverse and large spatially
distributed populations. We observed about one million individuals
over several million generations, using the reconfigurable computer
NGEN (12, 13). Biochemical reactions on chain molecules (espe-
cially transcription and translation) can be understood as bit serial
processes, so the choice of a systolic architecture, as on NGEN (15),
is both conceptually appropriate and efficient. In contrast, cellular
automata (even probabilistic ones) are much less suited to describ-

ing the complex processing of the large-state spaces demanded in
any representation of an evolving complex chemistry.

All the reactions of the model can be separated into unimolecular
and bimolecular steps. Bimolecular reactions are simple functions
of the two sequences involved, and the unimolecular reaction steps
may depend on external reference sequences, which define the
centers of catalytic reactivity in the sequence space of translation
products. In this way, both reaction types can be handled uniformly
as binary reactions, which is also of technical advantage when using
a computing device based on field-programmable gate arrays.
Likewise, diffusion can be modeled as a binary interchange reac-
tion, and we integrated this one step further, as in the two-
dimensional Margolus algorithm (16), using local rotations to
implement diffusion in three dimensions.

Reformulated as a uniformly bimolecular scheme with the
introduction of destruction processes and resources (voids) F,
the elements of the sequence-dependent mechanism of the
model represented by Eq. 1 are given in Table 1 and Fig. 1.

Different possible genetic codes are executed by alternative
translatases Ti, ATi, and AR, being the central catalytic sequences
for translation (via Ti with code i) and replication (via R), with
G representing either GP, GR, or GTi

. A superscript on G
denotes the formation of the gene-replicase or gene-translatase
complex, GR or GTi. The first two pairs of reactions describe
rapid transcription or translation of the template, followed by a
slow release of product. The function r(GR) stands for the newly
produced gene sequence and includes all details, such as errors
in the replication process. Analogously, t(GTi) denotes the result
of a translation process and may be regarded as an as-yet-inactive
(unfolded) protein P. DG,P mediate the destruction of catalysts
and templates with stochastic rate coefficients.

Recognition of a translation product as a catalyst reflects the
sequence-dependent folding process determined by the physical
chemistry of the macromolecules in a specific chemical context
(such as pH, temperature, and ligands). We assume it is sufficient
to model the complex sequence dependence of the recognition
function s(P,A) by a single peak landscape, which involves a
multiplicative reduction (by a constant factor 22a) for each

Fig. 1. Flow chart of the reaction network given in Table 1. The unimolecular
decay processes are not shown.

Table 1. Uniformly bimolecular reaction scheme for coding
system

Reaction Kinetic equation

Replication complex formation and
replica release

G 1 R3 GR 1 R
GR 1 F3 G 1 r(GR)

Translation complex formation and
translate release

G 1 Ti3 GTi 1 Ti

GTi 1 F3 G 1 t(GTi)

Recognition as a catalyst P 1 AR,TiO¡
s~P,A!

R,Ti 1 AR,Ti

Destruction of translated-polymers,
templates, and complexes

P,R,Ti 1 DP3F 1 DP

G, GR, GTi 1 DG 3 F 1 DG
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monomer difference between P and the central catalytic se-
quence A and may be implemented by a simple systolic algo-
rithm. Moreover, we do take into account that the genetic
proximity of translation systems (translatases) implementing
conflicting codes may affect their independent evolvability (see
Fig. 2). Following Wills (14), this sequence dependence is
determined by the positioning of the catalytic centers for the
different encodings in sequence space. Only non-neutral se-
quence positions are considered in this analysis (see ref. 17) for
proteins. Note that any given catalytic sequence has nonzero
probability for folding to each of the possible catalytic functions.
More complex sequence dependencies will affect the emergence
times (see below) more than the evolutionary stability, which is
the key issue here.

In the basic version of the model analyzed here, catalytic centers
for three conflicting codes are assumed. The self-organization and
stability of a code can be investigated with a single code, but
interference between alternative codes is potentially a significant
barrier to self-organization. The first set of codon assignments, T1,
is direct (protein monomer corresponding to gene monomer),
whereas in the complementary code, T2, translation results in a
sequence of protein monomers complementary to the genetic
sequence. Finally, T0 executes a random assignment.

In summary, the model is implemented with a total of eight
parameters that can be grouped in three classes. First, activation
and decay are controlled via the numbers of the different
reference and decay sequences, resulting in stochastic rate
coefficients aR,Ti

and dG,P. Activation is reduced exponentially,
with parameter a, according to the Hamming distance from a
catalytic center. Second, the diffusion rate determines the scale
of spatial correlations that stabilize the system. Third, the
stability of the system depends on the fidelity of the copying
process, specified by a mutation rate.

Results
The main problem this article addresses is the evolutionary stability
of spatially resolved genetic replication and translation. The model
was simulated by distributing individual molecular sequences in a
three-dimensional space with periodic boundary conditions. In Fig.
3 a–c, the typical temporal evolution of three classes of genetic
molecules is portrayed: those coding for replicase, translatase T1,
and nonfunctional proteins. A randomly distributed initial popu-

lation of genes and proteins with random sequence was seeded with
a small region composed of functional proteins (replicase and
translatase T1) and the genes encoding them. Four time domains
may be distinguished: (i) initial nonfunctional decay, (ii) spread of
the code to saturation, (iii) wide-spread exploitation, and (iv)
spatially heterogeneous cycles of expansion and exploitation. This
sequence of evolutionary phases was observed repeatedly over a
range of parameters. For all results presented, time is measured in
population updates (G), meaning one stochastic reaction trial for
every molecule in the population. Length is measured in units of the
lattice spacing (L).

The variation in the number of active proteins and the genes
coding them in the fourth time domain suggests that the translation
system may be evolutionarily stable. However, population stability
might in principle be simply the result of sequence longevity caused
by slow neutral drift in the absence of selection for functionality. To
check that this was not the case, and to quantify the extent of genetic
turnover, special marker sequences were introduced that could be
copied but were nonfunctional. The comparatively rapid decay of
these marker sequences demonstrates the selective advantage of the
genes coding for functional proteins (Fig. 3b). The rapid extinction
of GC proves that nonfunctional sequences do have a selective
disadvantage. Although they are amplified with the other sequences
in the expansion phase (time domain ii), they are eliminated in later
phases by selection. On the other hand, genes coding for replicases
or translatases persist despite decay and mutation (Fig. 3a).

Fig. 2. Catalytic centers in sequence space. (Upper Left) The catalytic center
in sequence space for R is given by the sequence 1111 (in practice, longer
sequences are used). Assuming a sequence length n, the n!/r!(n 2 r)! se-
quences with hamming distance r from the catalytic center have a probability
22ar of being activated into a R. The Lower Right stresses the fact that any
sequence has a nonvanishing probability of being activated into any function
represented by a catalytic center in the sequence space: replication, R, or one
of two different translation schemes; direct, T1, and bit inversion, T2. The
triangle is equilateral, implying that the hamming distances between all
catalytic centers are equal. This is not exactly the case, but the hamming
distances and a are big enough to make any difference negligible.

Fig. 3. Time evolution of relevant gene population in the GRT model. The
molecules are enclosed in a pool with 88 3 88 3 128 cells. The y axis shows
normalized gene densities. The sequences have a length of 26 bits. As param-
eters, we set: diffusion rate D 5 0.02, mutation rate m 5 229 (per bit), and
decay rates for genes and proteins dG 5 dP 5 0.001 (per generation). Both
decay rates are equal; this means that the decay may as well be understood as
outflow. The probability of accepting a wrong bit in the activation process is
set to p 5 224, and the activation rate of translatases and replicases is a 5 0.01
(per generation). All activation and independently all decay rates are set
equal, despite the fact that the translatase population could be stabilized at
a higher value by tuning these parameters individually. (a) The long-time
behavior of the genes coding for replicases (GR) and translatases (GT). (b) A
double-logarithmic plot of the same curves showing the four time domains
defined in the text. The fate of a subpopulation GC of nonfunctional genes is
also shown. (c) The time evolution of genes coding for general nonfunctional
proteins (GP) and translatases is given in higher time resolution. (d) The
average number of genes coding for replicases as function of the diffusion
constant D. Filled circles indicate populations that persist in all calculations (at
least 15 million generations). Open symbols stand for populations that may
attain a fully reproducing state of organization over several million genera-
tions but eventually become extinct. One standard deviation of the average
replicase gene number is given by the error bars for D 5 0.02 and D 5 0.023.
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The behavior of the model differs fundamentally in kinetics from
the quasispecies theory of macromolecular self-organization (7). As
in hypercycle theory, the deterministic form of the model exhibits
unbounded growth for finite times in the absence of saturation
effects (see Appendix 2). However, the selection is not ‘‘once
forever’’ (preventing further optimization) because of the generic
character of gene recognition by replicases and translatases.

The persistence of the gene population, together with the
impossibility of homogeneous solutions (see Appendix 1), indi-
cates the crucial role of spatial heterogeneity for the stabilization
of the translation system. This claim is supported by Fig. 4, where
a three-dimensional plot of the active proteins is shown at a time
point during the final phase (iv) when there is a comparably low
concentration of active molecules (Fig. 3c at t 5 2.3 3 106 G).
Chemical activity is indeed concentrated in clusters. Some of
these clusters survive periods of general decay and eventually
spawn new clusters of functional molecules, ensuring system
survival. These dynamics are analyzed further below. Whether
cluster formation can stabilize the code depends on the diffusion
constant, D. A series of simulations with increasing diffusion
coefficients were performed for a period of several million
generations. For D . 0.02, stabilization of the code is no longer
possible, and the system dies out (Fig. 3d).

How is the spatially inhomogeneous coding system regulated?
Fig. 4 shows an image of the spatially clustered population taken in
time domain iv, demonstrating the generic feature of population
clusters of active replicases and translatases. In Fig. 3c, a detailed
view of the time evolution of two gene populations is shown. A clear
synchrony is apparent between these densities; however, a more
detailed analysis, based on the calculation of the time correlation
functions, exhibits phase shifts that shed light on the underlying
dynamics (Fig. 5, a and b). A variation in the translatase density is
tracked 2,000 G later by a corresponding variation of the densities
of replicases, nonfunctional proteins, and genes coding for trans-
latases, and 3,000 G later by the variation in densities of genes
coding for replicases and nonfunctional proteins. The local density

of translatase is crucial to coding system stability, because the
density of translatase is smaller by at least one order of magnitude
than that of the replicase or those of the various genes. Conse-
quently, the translation functionality in the coding system is more
vulnerable to statistical fluctuations than replication. However, the
ratio between translatases and replicases is not dictated by any
exterior condition but is adjusted by the system itself. That trans-
latase or replicase may diffuse between clusters ensures an efficient
utilization of genetic resources, but at the risk of exploitation.

The question then arises whether the translatase fluctuations are
a purely temporal phenomenon, acting to return the whole system
to abundant resources (voids), or whether the structures of the
clusters themselves give rise to the variations in (local) translatase
density. Spatial correlation functions are tools well suited for
analyzing this, as shown in Fig. 5c. The autocorrelation functions are
averaged over two different sets of sample times in the fourth time
domain: when the number of translatases nTi

is increasing and
decreasing, respectively. During periods of growth, the correlation
is significantly stronger, so the fluctuations in nTi

(see Fig. 3) are

Fig. 4. Three-dimensional plot of the replicase (blue) and translatase (red)
distribution in the spatially resolved simulation. Simulation parameters were
as in Fig. 2. The image was taken after 2.3 3 106 G during the time domain iv
after allowing initial transients to subside. The clustering shown is generic to
this time domain.

Fig. 5. Correlation analysis. a shows the time correlation between translata-
ses and genes coding for replicases. The x axis gives the time in units of 105 G.
b presents a more detailed look at the (temporal) translatase autocorrelation
(�), the translatase-replicase correlation (F), and the translatase-parasite
correlation (Œ). Open symbols stand for the respective translatase–gene cor-
relations. c gives the spatial translatase correlation during time intervals in
which the number of translatases is (in total) increasing (solid) or decreasing
(dashed). The curves shown are an average over 15,000 individual correlation
functions. The correlation functions used take into account the discrete lattice
structure. For each cell, there is a finite number c(rj) of other cells with distance
rj and a discrete set of possible distances. Defining ni as the number of
molecules of type i and N as the total number of cells, the normalized
correlation function used is

C~rj! 5
N

n1n2c~rj!
O

cell1

S ~ O
cell2

d~urW1 2 rW2u 2 rj!! 2
n2c~rj!

N D .

The subscript under the summation sign indicates a summation over the cells
occupied by molecules of type i. The coordinates of a cell are given by rWi. This
definition is based on Grassberger’s approach to the correlation dimension
(24). An efficient algorithm to evaluate it is described in ref. 25. In d, the
correlation for mutant gene sequences in sequence space is presented for two
different catalytic falloff parameters a 5 4 (solid) and a 5 1 (dashed). The
genes in the population are divided into classes Sx, containing the genes that
have x 1 1 as minimal hamming distance to a catalytic center. The plot shows
the size of Sx divided by the number of possible sequences having a minimal
hamming distance x 1 1 to one of the reference sequences (cs). The
intersequence correlation is exponential in this Hamming distance to a good
approximation.
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connected with the loss and re-establishment of spatial translatase
correlations. Although the difference between the two curves might
be caused by different population sizes, this is unlikely, because the
average translatase numbers for the two curves differ by only 2%
and are higher in the case of decreasing populations. The slight
shoulder for low distances is caused by finite size effects of the grid.
We emphasize that a global increase in translatases nTi

does not
imply ubiquitous growth; it just means that the effect of growing
clusters is stronger than that of shrinking ones. Nevertheless, for the
finite system size here, periods of average decrease or increase
retain a significant difference in the globally averaged correlation
functions, reflecting stronger differences at the level of individual
clusters.

Because different codes may emerge in different regions,
competing translation schemes pose a potential threat to stabil-
ity. In a competition between the codes T0 2 T1,2, the prolif-
erative advantage of spatial regions with GT1,2

and T1,2 predom-
inating ultimately leads to the extinction of T0 and its gene. Note
that T0 and R alone cannot form a stable system; a T0 translation
scheme could persist only as a parasite of T1,2. For interference
between T1 2 T2, the situation is different, because both
schemes may operate independently. In all simulations, regions
containing clusters built up from molecules belonging to one
translation scheme merged together. No persistent coexistence
of different translation schemes in the same region was observed.
Regions or super clusters containing different schemes were
separated by layers of low chemical activity. Eventually, one
translation system always died out completely. This behavior was
observed for a 5 4 (the value taken for the results given in Figs.
2–5c) as well as for a 5 1. Fig. 5d shows the spread of the active
proteins in sequence space for these two values of a.

For the sake of completeness, an analysis of the probability of
emergence in the current model is presented in Appendix 3.

Conclusion
The above results demonstrate that it is possible to evolve a
stable coded construction system in free space, despite the
formidable obstacles posed by the exploitability of such a system.
We have deliberately specified the basic functions of the model
to be generically utilizable, as this allows ongoing evolution and
the generic acquisition of new functions simply by adding new
genes. We have focused on the simplest case of sequence-
dependent functionality (single-peak landscapes) and collected
the various components necessary for translation into a single
translatase complex. A physical rescaling of the model in time,
density, and population size is necessary to match conditions
available physically at the origin of life. However, the model does
demonstrate that it is possible to simulate such complex evolu-
tion at the basic level of individual molecules. In contrast with
Wills’ earlier results on the self-organization (14) of the genetic
code, the current model does not require the genes to be fixed
at their correct sequences. Computationally, it turns out that the
problem of evolutionary stabilization as investigated here is the
harder part of the problem. In future, the results will be extended
to include more realistic sequence dependencies, the conse-
quences of codon assignment embeddings in sequence space (see
ref. 18), separate molecules for codon assignments (splitting the
translatase into subcomponents), the acquisition of novel genes,
and a seamless simulation of the entire process of emergence.

Spatial structure, stability, selectivity, and exploitation are closely
related, and therein lies a major difference between our approach
and Dyson’s mean-field assumption (2). Dyson’s model seriously
underestimates the importance of proliferation and exploitation at
the origin of life, which can be understood only in a spatially
resolved multicomponent context. For example, Dyson’s conclu-
sion about genetic and protein alphabet sizes is not correct, because
proliferation and exploitation have been neglected. A binary–
binary code is possible as the current work shows [extension to

larger alphabets has been discussed previously (18)] and probably
advantageous at the origin (see ref. 19). The difference between
high-dimensional simplex and three-dimensional space is perhaps
not so critical (20), but Dyson also ignores the exchange of
molecules between islands and thus interisland proliferation and
exploitation. In contrast, in the current model, a region that has
been degraded has a finite probability of becoming repopulated
again by migration, and this is important for viability and stability.

Although the model prescribes certain sequences as the
centers of functional activity, this is purely for modeling trans-
parency and could be replaced in the simulation by the solution
of any combinatorial optimization problem for which the solu-
tion is not known in advance. Given a suitable such description
of diverse protein functional activities impacting on chemical
kinetics, the model should allow the study of open-ended
evolution with the acquisition of new functions. As such, the
solution of the coding problem does take us over the threshold
toward more realistic models of life, because the mechanism of
proliferation is ensured for arbitrary gene-encoded catalysts.

The evolution of a genetically coded system in three dimensions
is of relevance not only because of possible insights into problems
connected with the origin of life. The advances of supramolecular
chemistry open ways toward truly molecular machinery (for a
review, see ref. 21) that operate on the borderline between chemical
reaction and mechanical manipulation. The stability of evolving
multicomponent molecular machines faces issues similar to those
addressed here. Mechanisms for proliferating nonreplicable com-
ponents, maintaining correlations between evolving functional
parts, and limits to the amount of information that can be assembled
are consequently of present technological interest.

Appendix 1. No Stable Coding System for the Homogenous
Model
Here we demonstrate that the GRT model is unstable in the
deterministic well mixed case. In the simplest case with only one
type of translatase, three classes of genes are considered: GR coding
for a replicase R, GT coding for a translatase T, and GP coding for
inactive translation products P (parasites). The results may readily
be generalized. There are many more sequences of type GP than the
special types GR and GT, so back mutations from GP to GR,T can be
neglected. For future reference, reactions conserve the total num-
ber of molecules through utilization of a resource species F, which
may be regarded as a vacancy and so is also the product of all decay
reactions. The GRT coding system reactions are:

GP,R,T 1 F 5 O¡
Q

R
2GP,R,T

O¡
1 2 Q

R
GP,R,T 1 GP

GP,R,T 1 F ¡
k

T
P,R,T, 1 GP,R,T

P,R,T;GP,R,TO¡
g;d

F.

Replication takes place with a quality factor Q , 1. Time is
rescaled so that the rate coefficient for replication is 1, and the
total concentration is normalized to 1. The commas separate
corresponding reactants and products for similar reactions.
These reactions then lead to the system of equations:

ġP 5 @gP 1 ~1 2 Q!~gR 1 gT!#rf 2 dgP ṗ 5 kgPtf 2 gp
ġR 5 QgRrf 2 dgR ṙ 5 kgRtf 2 gr
ġT 5 QgTrf 2 dgT ṫ 5 kgTtf 2 gt
with gP 1 gR 1 gT 1 p 1 r 1 t 1 f 5 1.
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We are interested in the existence of a stationary state with t Þ
0. Stationarity demands kgTf 5 g, which implies gT Þ 0 and f Þ
0 for a nonzero death-rate coefficient g. Furthermore, gR 5
gryktf 5 rgTyt Þ 0, and so factoring out gR from the second
equation gives rf 5 dyQ, which after rearranging the first
equation implies gP 1 gR 1 gT 5 0, contradicting gT Þ 0 above,
because all concentrations must be non-negative. Thus no non-
trivial stationary solution exists.

Appendix 2. Hyperexponential Growth at Low Concentrations
The low-concentration behavior of the GRT system describes
the initial growth of unsaturated spots. The formalism given in
Appendix 1 is used, with vacancy density f set to a constant, and
parasitic proteins p and their genes gP ignored. Furthermore,
because the equations for ġR and ġT are identical, gR() and gT()
differ only by a constant factor, say c. Then

ġT 5 gT~r 2 d!

ṫ 5 t~kgT 2 g!

ṙ 5 cktgT 2 gr.

These equations set a lower limit for the local densities: if r , d,
gT , gyk, and t , gry(ckgT), no growth is possible. Further
neglecting decay and solving the phase plane ordinary differen-
tial equations drydt 5 c and dgTydt 5 cyk, a singularity for finite
time occurs, indicating faster than exponential growth.

Appendix 3. Random Emergence of a Coding System
The coding system GRT is stable once it is established, but the
question remains whether it will self-organize from random
initial conditions. In this appendix, analytical estimates are
derived for the formation of critical clusters. More precisely, we
calculate the probability that minimal clusters arise by chance,
then that they lead to a critical density of local activity, and finally
check that this nucleates a proliferating coding system with high
probability (under conditions reported above for which the
coding system is stable).

(i) A cluster of three molecules with appropriate sequences is
sufficient in principle to nucleate the coding system. A protein
activated as translatase together with genes that code for trans-
latase and replicase activity is all that is required.

(ii) If pA is the small probability that a random protein is
functional (or its gene leads to such a protein), then the
probability of an active triple cluster in a small volume V 5
4py3R3 is (pACV)3. The steady-state site occupation probability
C of random genes and proteins prior to emergence is C 5 kyd
for random synthesis (at rate k) and uniform decay (at rate d).
For the simple sequence dependence of our model:

pA 5 O
k 5 0

v

22kaSv
kDY O

k 5 0

v Sv
kD 5 S1 1 22a

2 Dv

.

(iii) For a region to support growth, it needs a certain density of
active molecules. The net production rate coefficient of active
molecules inside a ball must be greater than the losses caused by
destruction and surface outflux by diffusion. Simulations of
cluster growth from balls of radius R 5 3–8 showed growth to
a stable translation system with a significant probability (several
percent) if r is above a critical value (;15 genes of each type for
R 5 3). The critical concentration agrees well with a simple
analytical estimate based on nucleation theory xc 5 d 1 3DyR,
for the kinetics of the model (Appendix 1).

(iv) A single translatase will translate a neighboring replicase
gene with high probability. We need to calculate the probability
p(x) of attaining a large enough clone of x genes before the
replicase is lost. Given continued replication, a simple birth and
death process (for example, see refs. 22 and 23) with rates m and
l, respectively, gives x copies at time t with probability

p~x,t! 5 sS1 2 lym

1 2 s DS 1 2 lym

1 2 slym
DS 1 2 s

1 2 slym
D x

for x . 0,

where s 5 e2t(m2l). Without further translation, the probability
of a gene cluster of size x occurring before translatase loss is

p~x! 5 E
0

`

le2ltp~x,t!dt,

where l is the total death rate (including outflux of genes). For
values of d 5 0.005, R 5 3 and x 5 30 as above, this gives p(30) 5
3p10218, 3p1029, and 1025 for nR 5 1–3 replicases produced by
translation, and replication rate m 5 nRynV (where nV is the
number of cells in V).

(v) Combining these results, we obtain the probability for
emergence

pE $ pA
3 ~CV!3p~30!,

giving values of ;10224 (i.e., reciprocal Avogadro’s number) for
the parameters of the model. For lower d and a, the probability
increases sharply, and future calculations will address stability in
this domain where emergence should be accessible to direct
simulation.
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