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Abstract: Automatic car counting is an important component in the automated traffic system.
Car counting is very important to understand the traffic load and optimize the traffic signals. In this
paper, we implemented the Gaussian Background Subtraction Method and OverFeat Framework to
count cars. OverFeat Framework is a combination of Convolution Neural Network (CNN) and one
machine learning classifier (like Support Vector Machines (SVM) or Logistic Regression). With this
study, we showed another possible application area for the OverFeat Framework. The advantages and
shortcomings of the Background Subtraction Method and OverFeat Framework were analyzed using
six individual traffic videos with different perspectives, such as camera angles, weather conditions
and time of the day. In addition, we compared the two algorithms above with manual counting and a
commercial software called Placemeter. The OverFeat Framework showed significant potential in the
field of car counting with the average accuracy of 96.55% in our experiment.

Keywords: car counting; OverFeat Framework; Background Subtraction Method; Placemeter;
Convolution Neural Network

1. Introduction

In today’s world, properly maintaining the traffic system is a very tedious job. Every day,
the number of vehicles increases at exponential order [1]. We need to make our road transportation
system automated as much as possible so that traffic can move smoothly without much manual
intervention. Automatic car counting is one of the fundamental tasks for intelligent traffic surveillance
system. Traffic flow is required in the urban transportation system because its estimation is helpful in
evaluating traffic state for management. Automatic vehicle counting is a key technique to monitor and
estimate traffic flow. Therefore, car counting is important and helpful to optimize the traffic signaling
system [2,3]. In addition, it helps to redirect the traffic to alternate less congested roads on a demanding
day with special events. Understanding the physical traffic load is an important application of car
counting. This enables an opportunity for transportation engineers and decision makers to plan their
budget well before renovating an existing road or building a new road depending on the car density
statistics. Counting could be done by radar, infrared or inductive loop detectors, besides the use of
traffic cameras. Although some technologies have shown a viable performance to count cars, they
could also be intrusive and have a higher maintenance cost. A computer vision based system could be
a suitable alternative for car counting. However, current vision-based systems are limited to weather
condition and natural lights [3].
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Our purpose in this study is to develop an automated car counting system from traffic videos
that can perform well in both day and night, in sunny and cloudy weather conditions. We took
into account the vibration effect caused by cameras being installed on a bridge or similar conditions.
Background Subtraction Method (BSM) and OverFeat Framework [4] have been implemented in our
study. The performance measure of BSM and OverFeat Framework has been evaluated with manual
counting and Placemeter. The OverFeat framework has shown the best performance in terms of car
detection (Avg. accuracy 96.55%) for videos of poor resolution and taken in adverse daylight conditions.

2. Related Work

A brief survey of the related work in intelligent traffic monitoring system using traffic cameras is
presented in the section of Buch et al. [3]. Daigavane and Bajaj [5] presented a background registration
technique and segmentation using a morphological operator. In this study, a system has been developed
to detect and count objects dynamically on highways. The system effectively combines simple domain
knowledge about object classes with time domain statistical measures to identify target objects in the
presence of partial occlusions and ambiguous poses. Chen et al. [6] addressed the issues regarding
unsupervised image segmentation and object modeling with multimedia inputs to capture the spatial
and temporal behavior of the object for traffic monitoring. Gupte et al. [7] showed algorithms for
vision-based detection and classification of vehicles in monocular image sequences of traffic scenes that
are recorded by a stationary camera. Processing is done at three levels: raw images, region level and
vehicle level. Vehicles are modelled as rectangular patterns with certain dynamic behavior. Cheung
and Kamath [8] compared the performance of a large set of different background models on urban
traffic videos. They experimented with sequences filmed in weather conditions such as snow and fog,
for which a robust background model is required. Kanhere et al. [9] applied a feature tracking approach
to traffic viewed from a low-angle off axis camera. Vehicle occlusions and perspective effects pose a
more significant challenge for a camera placed low to the ground. Deva et al. [10] proposed a concept
to automatically track the articulations of people from video sequences. This is a challenging task but
contains a rich body of relevant literature. It can identify and track individuals and count distinct
people. Toufiq et al. [11] described background subtraction as the widely-used paradigm for detection
of moving objects in videos taken from a static camera that has a very wide range of applications.
The main idea behind this concept is to automatically generate and maintain a representation of the
background, which can be later used to classify any new observation as background or foreground.

Gao et al. [12] research showed that a set of Scale Invariant Feature Transform (SIFT) features
are extracted and matched in the follow-up image frames to improve tracking performance for more
accurate detection. The SIFT features are also detected, tracked and clustered in the foreground blobs
in Jun et al. [13]. Horizontal and vertical line features are extracted to build a 3D vehicle model at
Leotta and Mundy’s [14] work, assuming the vehicle is not occluded, by predicting and matching
image intensity edges to fit a generic 3D vehicle model to multiple still images. Simultaneous tracking
can also be done during the shape estimation in a video. Ma and Grimson [15] proposed a vehicle
classification algorithm that uses the feature based on edge points and modified SIFT descriptors.
Two classification tasks, cars versus minivans and sedans versus taxies, are tested with satisfactory
performance. Buch et al. proposed a 3D extended Histograms of Oriented Gradients (HOG) feature for
detection and classification of individual vehicles and pedestrians by combining 3D interest points and
HOG. 3D vehicle models are pre-reconstructed by the methods in Messelodi et al. [16]. Hsieh et al. [2]
further extracted region size and vehicle “linearity” to classify vehicles into four categories (e.g., car,
minivan, truck and van truck), assuming that individual vehicles have been separated after lane and
shadow detection. Alonso et al. [17] extracted image regions according to high edge density areas.
Shadows, symmetry measurement and Harris corners are then used in the hypothesis classification.
Lou et al. [18] extracted image regions of interest based on motion detection. Then, a 3D model is fitted
to the image region using a point-to-line segment distance metric. Occlusion is a major challenging
problem in the vehicle segmentation. Many methods have been proposed to deal with this problem.



Sensors 2017, 17, 1535 3 of 13

Features mentioned above could be considered as a set of “parts” that are tracked and grouped
together [9,18]. When the 2D/3D vehicle model could be fitted into image frames, it is also relatively
easy to detect occlusions [19,20]. Liang et al. [21] extracted a “cutting region” between two occluded
vehicles based on the motion field of consecutive image frames. Similarly, a “cutting line” is estimated
in a Traffic Scorecard [1] to separate two occluded vehicles based on the analysis of convex shape.
Image warping is not considered as a step or module to detect and track vehicles in Buch et al. [3].
There is some research using image warping as a pre-processing step to generate a horizontal or vertical
road segment to facilitate the detection and tracking (e.g., [13,22]). Four reference points are selected
to estimate a projective transformation in Jun et al. [13]. This transformation is applied so that all
motion vectors are approximately parallel to each other. The similar idea is applied in Salvi et al. [22]
so that lanes could be detected easily. However, image warping itself has not been applied directly to
detect unclassified vehicles. Liang et al. [21] applied a cascaded regression model to count and classify
vehicles directly. They have shown the algorithm can deal with the traffic with severe occlusions and
very low vehicle resolutions.

This paper is organized as follows. First, the implementation of BSM and OverFeat Framework is
discussed in Section 3. Section 3 also described the process of manual counting and information about
Placemeter. Section 4 contains the information about the dataset used. The experimental results, where
an analysis between the BSM, OverFeat Framework, Placemeter and manual counting performed to
verify the quality of our implemented method, are presented in Section 5. Finally, Section 6 is devoted
to the conclusions and discussion of future work.

3. Methodology

3.1. Background Subtraction Method

Background Subtraction Method is a simplistic but effective method of finding moving objects
from a frame. The basic concept of the algorithm is finding frame difference and applying a threshold
to get the moving object of interest. In Figure 1, B (x, y, t) denotes a background frame at time t
and I (x, y, t) denotes target frame at time t. After the frame differences are done, moving objects are
extracted depending on the threshold value.
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Figure 1. Basic approach of background subtraction method.

Mean filter and median filter are two other approaches of the background subtraction method.
Among the first n number of frames, mean background frame is calculated for the mean filter and
median background frame is calculated for the median filter. The advantages of these algorithms are
that they are very easy to implement and use. Furthermore, the background is dynamic. Nevertheless,
the accuracy of frame differencing depends on the object speed and frame rate. Mean and median
background models have relatively high memory requirements. Another major problem with these
approaches is that there is only one threshold and the threshold is not a function of time. These models
also do not work for the bimodal system. However, the Gaussian Mixture Model (GMM) can overcome
these issues.
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3.1.1. Gaussian Mixture Model (GMM)

We have implemented the GMM for our study after experiencing the drawbacks of the existing
background subtraction method. The steps to implement the GMM are as below [23]:

• model the values of a particular pixel as a mixture of Gaussians;
• determine which Gaussians may correspond to background colors-based on the persistence and

the variance of each of the Gaussians;
• pixel values that do not fit the background distributions are considered foreground until there is a

Gaussian that includes them;
• update the Gaussians;
• pixel values that do not match one of the pixel’s “background” Gaussians are grouped using

connected components.

Modeling pixel values can be done using the steps listed below. At time t, if there is k distribution
of Gaussian for each pixel, the value of k is determined by using information-theoretic criteria (Bayesian
information criterion (BIC)). BIC is a benchmark for model selection among a finite set of models;
the model with the lowest BIC is preferred. BIC is based on likelihood function.

Each Gaussian contains:

• ωi,t is an estimate of the weight of ith Gaussian in the mixture at time t (the portion of data accounted
for by this Gaussian). Initially, we considered that all the Gaussians have the same weights.

• µi,t is the mean value of the ith Gaussian in the mixture at time t.
• ∑i,t is the covariance matrix of the ith Gaussian in the mixture at time t.

The Gaussian probability density function is η (Xt, µ, ∑). The probability of observing the current
pixel value is:

P(Xt) = ∑k
i=1ωi,t × η

(
Xt, µi,t, ∑

i,t

)
. (1)

There are four stages to update the mixture model.

Stage 1:

• Every new pixel value, Xt is checked against the existing k Gaussian distributions until a match
is found.

A match is defined as a pixel value within 2.5 standard deviations of a distribution. Within the 2.5
standard deviation, almost 99.4% of data is used to define the pixels.

Stage 2—No match:

• If none of the k distributions match the current pixel value, the least probable distribution
is discarded.

• A new distribution with the current value as its mean value, and an initially high variance and
low prior weight is entered.

Stage 3:

• The prior weights of the k distribution at time t are adjusted as follows:

ωk,t = (1− α)ωk,t−1 + α(Mk,t), (2)

where α is the learning rate and Mk,t is 1 for the model where matched and 0 for the remaining models.
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Stage 4:

The µ and σ parameters for unmatched distributions remain same;
The parameters of the distribution that match the new observation are updated as follows:

µt = (1− ρ)µt−1 + ρ(Xt), (3)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)
T(Xt − µt), (4)

where σ2
t−1 is the last variance and ρ(Xt − µt)

T(Xt − µt) is the distance of the new pixel from the
updated mean.

3.1.2. Implementation of the Background Subtraction Method

BSM was applied to the experiment video frames with RGB color space. Then, morphological
operation was performed. An opening operation has been performed to remove small blobs from the
frames. The bright spots are the region of interest, so a threshold value has been applied to discover
bright pixels. Then, a find contour operation is done on binary frames, which returns the blocks of
bright pixels. For example, a binary frame might have twenty blocks of bright/change pixels including
small, medium and large blocks. We calculated the contour area applying a max-area and min-area
threshold depending on the car size to identify the car contours. The find contour operation then
returns five contours, which indicate cars only.

After the contours are computed, the centroid of each car is calculated. A count line has been
drawn to count the cars. When the centroid of the car crosses the count line, the car count increases by
one. The algorithm was implemented using Python 2.7 with an OpenCV 2.4.10 library because of its
cross-platform compatibility and strong image processing library.

3.2. OverFeat Framework

OverFeat Framework is a combination of Convolution Neural Network (CNN) and another
machine learning classifier (logistic regression (LR), support vector machines (SVM), etc.). The training
part of CNN is cumbersome [4]. It is slow and needs a large amount of training data. This is why CNN
has been used for feature extraction only. The extracted feature information was provided to another
machine learning classifier, which does not need a substantial amount of training data. We have
used LR for classification in our study. In the next section, the detailed implementation of OverFeat
Framework will be discussed.

3.2.1. Convolution Neural Network (CNN)

CNN is very effective in the field of image classification and recognition [24]. This special type of
Neural Network was limited due to hardware capacity before 2010, as CNN demands a large amount
of memory to process the huge amount of training data. Now, we have a solid-state hard drive with
high-end graphic cards and an extended amount of memory, which gives an extra edge to run CNN
algorithms efficiently.

CNN has several layers of convolution with nonlinear activation functions; like ReLu, tanh,
sigmoid, etc as described in Figure 2. Unlike a traditional Neural Network, which is fully connected,
CNN is regionally connected. A region of input is connected to a region of output. Different sets of
filters are applied to each layer of CNN to extract features. As we go deep into the layers, the number
of filters increase to extract more detail features. From raw pixels, the edges are detected at the first
level. Then, the shapes are detected from the edges and further detail information is detected that is
specific to a particular object, like the difference between trucks and vans.

There are four main operations in the CNN:

a. Convolution
b. Nonlinearity (ReLu)
c. Pooling
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d. Fully-connected layer (FC)
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Convolution

The convolution layer is the building block of CNN. Feature extraction is the main purpose of
this layer. This layer consists of distinct types of filters like the vertical filter, horizontal filter, ‘X’ shape
filter, ‘L’ shape filter, etc as described in Figure 3.
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As we have discussed, the filters are responsible for extracting the features. We use different types
of filters in the same region to extract the exact shapes. Figure 4 describes the concept more clearly.
Let us assume, convolving a small region of the image, which the filter size is 3 × 3, and, as there are
five filters, the dimension of the matrix after the operation will be 3 × 3 × 5.
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Nonlinearity (ReLu)

The next operation is to apply a nonlinear function for learning. There are lots of nonlinear
functions already available like sigmoid, tanh, etc. The rectified linear unit (ReLu) is used widely
among the neural network community because it has solved the vanishing gradient problem. ReLu is
a simple max function f (x) = max (0, x) applied after every convolution operation.

Pooling

The next layer is the pooling layer. The pooling reduces the spatial size of the input volume,
which helps to reduce the amount of parameters and computation in the network. Pooling helps to
control the overfitting problem. Figure 5 describes a max pooling with a 2 × 2 filter and stride 2.
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Fully-Connected Layer (FC)

FC is the final layer of this network, which is also a decision layer. This is the standard network
where every neuron of the previous layer is connected to every neuron in the next layer, as shown
in Figure 6.
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The OverFeat architecture used for the study is shown below.
Table 1 shows the Architecture of the OverFeat network. The framework has eight layers. The first

layer consists of 96 filters of size 11 × 11 and the pool size is 2 × 2. ReLu has been applied after each
convolution layer, which is not shown in Table 1. The second layer consists of 256 filters with size 5 × 5
and so on. We can notice that, as we go deep into the network, the number of filters increases and filter
size decreases. This is because the deep layers extract more detailed information. The final layer is the
fully connected layer. The architecture we have used is suggested by Zhang et al. [4] in their paper.
We used FC 1 only (i.e., up to layer 6) for our study, as we want to reduce the computation. In addition,
as soon as our desired accuracy (more than 95%) is achieved, we stop to minimize the computation.
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Table 1. Architecture of the OverFeat network.

Layer 1 2 3 4 5 6 7 Output 8

Stage conv + max conv + max conv conv conv + max full full full
#channels 96 256 512 1024 1024 3072 4096 1000
Filter size 11 × 11 5 × 5 3 × 3 3 × 3 3 × 3 - - -

Conv. stride 4 × 4 1 × 1 1 × 1 1 × 1 1 × 1 - - -
Pooling size 2 × 2 2 × 2 - - 2 × 2

Pooling stride 2 × 2 2 × 2 - - 2 × 2 - - -
Zero-Padding size - - 1 × 1 × 1 × 1 1 × 1 × 1 × 1 1 × 1 × 1 × 1 - - -
Spatial input size 231 × 231 24 × 24 12 × 12 12 × 12 12 × 12 6 × 6 1 × 1 1 × 1

3.2.3. Implementation of the OverFeat Framework

There are three steps for the OverFeat framework setup: feature extraction, training and testing.
The Convolution Neural Network has been used for feature extraction. The HDF5 data format has
been used to save the extracted features. Six different types of cars and road data have been used for
training. We have used up to six layers of deep level from Table 1, which shows the architecture of
OverFeat network. The feature extracted database is now ready to use for training purposes. Any
machine learning classifier could be used for the training. We have used logistic regression for our
study. There were 3072 different variables used in the logistic regression. In the logistic regression
method, we train weights (also known as hyper-parameters) to classify the cars. Logistic Regression
is being implemented via the LogisticRegression function by the scikit-learn library [25]. After the
hyper-parameters are trained properly, the testing or evaluation step is performed. This is the last step
where a live traffic camera can be used for car counting. We have selected a small portion of each lane
as a Region of Interest (ROI). The OverFeat Framework checks the ROIs for cars at every video frame.
If the car is found at the ROI, the count increases by one. Every ROI can detect one car at a time. This
is why we have tried to make the ROIs small enough to only fit a single car.

3.3. Commercial Software (Placemeter)

We used a commercial software named Placemeter to assess the performance of our approach.
Placemeter [26] was started in 2012 and acquired by Netgear (San Jose, CA, USA.) in December 2016.
In order to use Placemeter, we had to upload our video data to their web portal. Placemeter then uses
an in-house algorithm to count the vehicles. Much like we did, a count line or threshold is defined in
order to count the vehicles. This, in turn, generates a count file for the particular video. The user does
not have access to set initial settings or make any changes during the experiment.

3.4. Manual Counting

We have hired a student to count the cars manually for our project. The student has counted the
cars on a regular interval basis. For high traffic videos like camera 73, he has taken the one-minute
interval and for the lower traffic videos like camera 103, he has taken five-minute intervals. We have
calculated the accuracy of Placemeter, BSM and OverFeat Framework by using the manual counting
as a ground truth.

4. Datasets

This section contains the detailed description of the training and testing dataset. Training data is
very important for any neural network approach to get desired results.

4.1. Training Data

We used seven types of classes in this study for training purposes: six different car classes and
one road class (3698 images). The car classes are bus (1300 images), sports car (1300 image), taxi
(1300 images), truck (1568 images), fire rescue (1300 images) and frame car (398 images). Except for the
frame car, the rest of the training images are collected from Stanford Image-net library [27]. The frame
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car images are collected from the video frames, used in this study, with visual interpretation. We have
collected three thousand and fifteen (3015) car images form the data library and we have created one
hundred and ninety-seven (197) images from the video frames. During the implementation of the
algorithm, all six of the car classes are merged into a single class called “CAR”. As our target was
to detect the cars only without further classifying with sub classes, we kept two main classes “CAR”
and “ROAD”. We have noticed vibration effects with “under the bridge” camera and camera 73.
Therefore, during the training process, we have added sixteen frame cars (six from “under the bridge”
and 10 from camera 73) with vibrating effects into our training datasets. We had halation effects with
camera 66, especially during night time. To address this issue, we added forty-seven halation effected
training cars into our training datasets.

4.2. Testing Data

We used six traffic videos for our study. Figures 7 and 8 gives a glimpse of the videos. Camera 34
and 35 is placed at US441. It has three through lanes and one right lane. Camera 66 is placed at
Flamingo Road, which contains four through lanes. We have used night time clip for Camera 66.
Camera 73 is placed at an intersection of University Drive, which contains three through lanes, one right
turn and two left turns. This video was taken on a cloudy day and the weather was windy. This is
why there was a shaking effect at the clip. Camera 103 is a side view camera that is placed at the US1
Young Circle. It contains two lanes. Finally, we had a high-resolution camera which is placed under
a bridge [28], which contains five through lanes. All the aforementioned cameras have a downward
inclination and the sides and top are cover with a large camera housing. This prevents any major
complications with direct sun angles.

Sensors 2017, 17, 1535  9 of 13 

 

frame car, the rest of the training images are collected from Stanford Image-net library [27]. The frame 
car images are collected from the video frames, used in this study, with visual interpretation. We 
have collected three thousand and fifteen (3015) car images form the data library and we have created 
one hundred and ninety-seven (197) images from the video frames. During the implementation of 
the algorithm, all six of the car classes are merged into a single class called “CAR”. As our target was 
to detect the cars only without further classifying with sub classes, we kept two main classes “CAR” 
and “ROAD”. We have noticed vibration effects with “under the bridge” camera and camera 73. 
Therefore, during the training process, we have added sixteen frame cars (six from “under the 
bridge” and 10 from camera 73) with vibrating effects into our training datasets. We had halation 
effects with camera 66, especially during night time. To address this issue, we added forty-seven 
halation effected training cars into our training datasets.  

4.2. Testing Data 

We used six traffic videos for our study. Figures 7 and 8 gives a glimpse of the videos. Camera 
34 and 35 is placed at US441. It has three through lanes and one right lane. Camera 66 is placed at 
Flamingo Road, which contains four through lanes. We have used night time clip for camera 66. 
Camera 73 is placed at an intersection of University Drive, which contains three through lanes, one 
right turn and two left turns. This video was taken on a cloudy day and the weather was windy. This 
is why there was a shaking effect at the clip. Camera 103 is a side view camera that is placed at the 
US1 Young Circle. It contains two lanes. Finally, we had a high-resolution camera which is placed 
under a bridge [28], which contains five through lanes. All the aforementioned cameras have a 
downward inclination and the sides and top are cover with a large camera housing. This prevents 
any major complications with direct sun angles. 

 
C34/US441 C35/US441 

  
C66/Flamingo Road C73/University Drive 

Figure 7. Cont.



Sensors 2017, 17, 1535 10 of 13

Sensors 2017, 17, 1535  10 of 13 

 

 

C103/US1 Young Circle Under the bridge 

Figure 7. Background subtraction method results. 

 
C34/US441 C35/US441 

 

C66/Flamingo Road C73/University Drive 

 

C103/US1 Young Circle Under the bridge 

Figure 8. OverFeat network results. 

5. Result and Discussion 

We tested the BSM and OverFeat framework on six different traffic cameras. The results are 
shown in Figure 7 for BSM and in Figure 8 for OverFeat framework. The footages were collected at 

Figure 7. Background subtraction method results.

Sensors 2017, 17, 1535  10 of 13 

 

 

C103/US1 Young Circle Under the bridge 

Figure 7. Background subtraction method results. 

 
C34/US441 C35/US441 

 

C66/Flamingo Road C73/University Drive 

 

C103/US1 Young Circle Under the bridge 

Figure 8. OverFeat network results. 

5. Result and Discussion 

We tested the BSM and OverFeat framework on six different traffic cameras. The results are 
shown in Figure 7 for BSM and in Figure 8 for OverFeat framework. The footages were collected at 

Figure 8. OverFeat network results.



Sensors 2017, 17, 1535 11 of 13

5. Result and Discussion

We tested the BSM and OverFeat framework on six different traffic cameras. The results are
shown in Figure 7 for BSM and in Figure 8 for OverFeat framework. The footages were collected
at separate times of the day. BSM works well when the weather condition and camera resolution
is good. Table 2 shows the result set for the experiment where column one indicates the camera
name, column 2 indicates the time footage has been taken, column 3 indicates the manual counts,
column 4 indicates the result from a commercial software Placemeter, column 5 indicates the result
from BSM and column 6 indicates the result from OverFeat framework. Cameras 34 and 35 have
a similar kind of view. In addition, the results are consistent for both of the cameras. Placemeter
and BSM’s performances are average for these two cameras, but OverFeat framework has shown
excellent accuracy (>96%). The footage has been taken during the day and at night for camera 66.
During the daytime, the accuracy was acceptable for BSM; however, during the nighttime, it fails
completely. The reason behind the failure is the car lights. When there are multiple cars, the lights
of all the cars are moving simultaneously, and it produces an effect that looks like a moving cloud
of light. At that time, the BSM cannot identify the moving cars. However, the OverFeat framework
achieves impressive 99.96% accuracy. Camera 73 has a very complicated view. This camera has right
turn, left turn and go through also. The traffic stops sometime at the intersection because of the
signal. The footage that we obtained for this camera has cloudy weather. Thus, counting with camera
73 was very challenging. From the Figure 7, it reveals that, for camera 73 when a cloud is moving,
the background difference image contains moving shadows. Under the moving shadow, the algorithm
can’t differentiate the moving cars. This is why experiment with camera 73 was very challenging.
For this camera, Placemeter and BSM showed very average accuracy (57.77% and 52.92%, respectively),
but OverFeat framework has shown 94.44% accuracy, which is impressive. Camera 103 is a side view
camera. Because of that, a moving object stays longer at the field of view. An algorithm like BSM
will tend to generate multiple centroids in this situation, which will confuse the algorithm to create
multiple fake cars. In this situation, the OverFeat framework also showed an accuracy of 92.85%.
We used a high-resolution video under a clear weather condition and labeled “under the bridge” to
perform both the BSM algorithm and OverFeat framework. Both algorithms achieved 96.15% accuracy
for this footage. The accuracy formula that we used is:

Accuracy = 1−
(
|manual counts− algorithm′ s counts|

manual counts

)
. (5)

Table 2. Accuracy assessment of the algorithms.

Camera Time Duration
(Local Time) Manual Counts Placemeter BSM OverFeat

C34
10:00–11:00 879 582 (66.21%) 597 (67.91%) 910 (96.47%)
18:00–19:00 2075 1467 (70.96%) 1335 (64.33%) 2120 (99.97%)

C35 07:00–08:00 1862 1332 (71.53%) 2236 (79.91%) 1902 (97.85%)

C66
11:00–12:00 1978 1393 (70.42%) 1674 (84.63%) 1942 (98.17%)
23:00–00:00 549 335 (61.02%) 108 (19.67%) 566 (99.96%)

C73 11:00–11:10 (for 10 min) 270 156 (57.77%) 151 (52.92%) 255 (94.44%)

C103
07:00–08:00 210 145 (69.04%) 372 (22.85%) 225 (92.85%)
11:00–12:00 579 432 (74.61%) 463 (79.96%) 619 (93.09%)

Under the bridge 09:00-09:01 (1 min) 52 - 50 (96.15%) 54 (96.15%)

Average - - 67.69% 63.14% 96.55%

From Figure 9, we can see that when a car drives between the ROIs, both of the ROIs count the
same car. Therefore, the same car was counted twice. We will continue to improve this framework in
the near future. In addition, testing the car accounting system under rainy and heavy windy conditions
could be another challenge to resolve in the future.
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