Skip to main content
. 2017 Jul 8;17(7):1598. doi: 10.3390/s17071598

Table 5.

CNN architecture.

Layer Type Number of Filters Size of Feature Map (Width × Height × Channel) Size of Filter Stride Padding
Image input layer 119 × 183 × 3
1st convolutional layer 96 55 × 87 × 96 11 × 11 × 3 2 × 2 0 × 0
Rectified linear unit (ReLU) layer 55 × 87 × 96
Local response normalization layer 55 × 87 × 96
Max pooling layer 1 27 × 43 × 96 3 × 3 2 × 2 0 × 0
2nd convolutional layer 128 27 × 43 × 128 5 × 5 × 96 1 × 1 2 × 2
ReLU layer 27 × 43 × 128
Local response normalization layer 27 × 43 × 128
Max pooling layer 1 13 × 21 × 128 3 × 3 2 × 2 0 × 0
3rd convolutional layer 256 13 × 21 × 256 3 × 3 × 128 1 × 1 1 × 1
ReLU layer 13 × 21 × 256
4th convolutional layer 256 13 × 21 × 256 3 × 3 × 256 1 × 1 1 × 1
ReLU layer 13 × 21 × 256
5th convolutional layer 128 13 × 21 × 128 3 × 3 × 256 1 × 1 1 × 1
ReLU layer 13 × 21 × 128
Max pooling layer 1 6 × 10 × 128 3 × 3 2 × 2 0 × 0
1st fully connected layer 4096
ReLU layer 4096
2nd fully connected layer 1024
ReLU layer 1024
Dropout layer 1024
3rd fully connected layer 2
Softmax layer 2
Classification layer (output layer) 2