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Abstract
Background: The proteomics literature has seen a proliferation of publications that seek to apply
the rapidly improving technology of 2D gels to study various biological systems. However, there is
a dearth of systematic studies that have investigated appropriate statistical approaches to analyse
the data from these experiments.

Results: Comparison of the effects of statistical pre-processing on the results of two sample t-
tests suggests that the results of 2D gel experiments and by extension the conclusions derived from
these experiments are not independent of the statistical protocol used.

Conclusions: This study suggests that there is a need for well-conducted validation studies to
establish optimal statistical techniques to be used on such data sets.

Background
The effort to produce an index of all human proteins (the
human protein index, or HPI) began over twenty years
ago. This project pre-dates the human genome project by
more than a decade. However, the complexity of the task
of creating this index was underestimated and the relative
simplicity of the human genome with four known nucleic
acids arranged in a linear coding order allowed the proc-
ess of the sequencing of the human genome to progress
exponentially [1]. The successful completion of the
human genome project is now putting the focus back on
proteins. The emergence of new and improved protein
technologies from re-engineered two-dimensional (2D)
gel systems to mass spectrometry has made the mapping
and identification of the entire proteome of a cell (tissues)

a much more accessible goal. Over the past few years a
number of databases documenting the protein content of
a single organism, organ or organelle have been created
[2-6], and a number of papers describing results of exper-
iments using these new and improved techniques have
been published.

The advantages of 2D gel technology
Two-dimensional electrophoresis is an extremely power-
ful tool for the analysis of complex protein mixtures. Pro-
teins carry both positive and negative charges. The pH of
the medium they are in determines their net charge. The
pH that gives a zero net charge is the isoelectric point of
the protein (pI). In Isoelectric Focusing (IEF), protein
mixtures are electrophoresed in a gel containing a pH
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gradient. The proteins in the mixture migrate according to
charge density until they reach the part of the gel that cor-
responds to their pI. At this point, their net charge is zero,
and migration stops. This is the first dimension of separa-
tion in a 2D gel experiment. The electrophoresed gel is
then layered on top of a polyacrylamide gel and electro-
phoresed once again. The proteins now move from top to
bottom depending on molecular weight. The distance
covered by a protein is inversely proportional to its size.
This is the second dimension in a 2D gel. 2D is an effective
method for identifying qualitative and quantitative differ-
ences between proteins expressed in various tissues or
between tissues exposed to different experimental treat-
ments. Although the number of proteins displayed by 2D
is much lower than the estimated number of genes in a
particular tissue, 2D is currently the only available tech-
nique that enables the isolation and separation of thou-
sands of the individual proteins that constitute a tissue
proteome [7]. Anderson et al [1] point out that although
writing obituaries for 2D gels has become a popular past
time, the supply of unrelated parameters applicable to
protein separation is limited and nearly all other combi-
nations have been explored in the past.

Database for statistical analysis
Images of 2D gels are acquired into a database using an
image scanner. Image analysis software converts the gel
image into a digitised image in a computer, matches gels
and spots on gels across the different groups and creates a
database with information about spot intensity and spot
location. As mentioned above, the two variables – the pI
representing net charge of the protein and the molecular
weight of the protein – are not correlated. In geometric
terms this suggests that the two dimensions are orthogo-
nal to each other. The two dimensions in a two-dimen-
sional gel thus can be thought of as the two axes in a two
dimensional graph. The coordinate on the x-axis is a
measure of the isoelectric point (pI) of the protein, and
the coordinate on the y-axis is a measure of the molecular
weight of the protein

The information in the database includes a gel identifica-
tion variable, a spot identification variable, the x and y
coordinates of a protein spot and its intensity measured
by the amount of light transmitted by the spot. Depend-
ing on the software package, one can obtain other param-
eters in the database, including a measure of the quality of
the spot to various measures associated with spot inten-
sity, such as volume, area, peak height, etc.

The rationale for this study
The intensity of a protein spot is assumed to be directly
related to the amount of protein in the particular tissue
under investigation at that given time point. Changes in
protein intensity are therefore approximated by changes

in the intensities of protein spots in gel images. Changes
in protein structure associated with post-translational
modifications such as phosphorylation, oxidative modifi-
cation or glycosylations may result in changes in the pI or
molecular weight of the protein and are manifested in the
gel by a change in the vertical or horizontal position. The
object of 2D gel experiments is to detect differences in
protein intensity/complexity between two groups of gels.

A number of recent publications [8-10] have used statisti-
cal models generally known as classifiers to detect differ-
ences in protein intensity/complexity between two groups
of gels. Classifiers are increasingly being used in the anal-
ysis of hi-dimensional data sets derived from gene and
protein expression experiments. These models help one to
determine if the changes in protein intensity /complexity
are specific enough to enable a clear separation of the gels
into the right groups. They can also be used to provide a
good visual demonstration of the differences between
groups.

Classifiers
Classification is the process of assigning objects to a cate-
gory. An interest in classification permeates many scien-
tific studies [11]. There are two broad categories of
classification problems. In the first, e.g. discriminant anal-
ysis, one has data from known groups. Information that
distinguishes these groups (i.e. differences in protein
intensity/complexity) collected from an experiment is
used to assign samples (gels) to these known groups. In
the second case, e.g., cluster analysis, one has the informa-
tion but no preset classification. The data is mined to see
if there are naturally occurring clusters. These clusters are
then investigated to identify commonalities within and
differences between clusters. Stein and Zvelebil (12) and
Patel et al (13) describe using 2D gel data sets to build
supervised and unsupervised classifiers

Both types of classification problems have three stages,
input, algorithm and output. Most published literature
concentrates on the second of these. However, careful
thought about what variables to use and how to character-
ize or summarize them as inputs into an algorithm are
very important issues [11]. It is evident that the reliability
and reproducibility of a classification is a function of the
input, which in turn depends upon the process of data
normalization, data reduction, and variable selection, i.e.
the pre-processing of data. This paper focuses on the
effects of preprocessing on the selection of variables that
enters a classifier.

Pre-processing
In order to conduct a systematic analysis of 2D gel data,
one has to pre-process the data set. Pre-processing in the
case of 2D gel analysis includes: 1) normalizing intensities
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to remove effects of differential loading and staining; 2)
transformation of outcome variables to normally distrib-
uted variables; and 3) imputing values for missing spot
intensities. We are not aware of any other study that has
looked systematically at the effect of pre-processing 2D gel
data on the results of subsequent statistical analysis of the
data. In this paper, we present a protocol for the analysis
of 2D gel data and examine the effect of statistical pre-
processing of 2D gel datasets.

The effect of using two different formulas for normalizing
versus not normalizing, log-transformation versus no log-
transformation and single value imputation versus multi-
ple value imputation, and averaging spot intensities
across replicates versus keeping the replicate information
separate are compared using the results of two sample t-
tests. We also compare the results of two-sample t-tests
provided by the image analysis software PDQUEST to
results obtained after following the protocol described in
Figure 1. PDQUEST allows the user to normalize the data
but has no facility for testing the distribution of the out-
come variable and transforming it to fit a normal distribu-
tion. To the best of our knowledge, PDQUEST replaces
missing spot intensities with a zero.

The experiment
The data used in this study is from an experiment that
looked at the effect of a diet enhanced with grape seed
extract on the proteome of whole brain homogenates of
Sprague-Dawley rats [10]. There were five treated animals
and five control animals. Due to sample availability and
other issues related to the creation of 2D gels, each biolog-
ical replicate had different numbers of technical repli-
cates. The maximum number of replicates was four, and
the minimum was two. A number of changes in proteins
that were attributed to treatment differences in this study
have been identified with Matrix Assisted Laser Desorp-
tion Ionization – Time Of Flight (MALDI-TOF) Mass
Spectrometry. These changes have also been confirmed in
later experiments with transgenic mice. Thus the protein
changes detected by the statistical protocol used in this
study have been shown to be biologically valid and rele-
vant to the systems being studied.

Results
Variability in the resolution of protein spots in 2D gels
The resolution of protein spots in a 2D gel is highly varia-
ble. It can differ considerably between technical replicates
of the same biological sample. Samples 6, 7, 8, 9, and 10
were the five biological replicates in the treatment group.
Samples 22, 23, 24, 25, and 26 were the five biological
replicates in the control group. Table 1 demonstrates the
breakdown of the resolved protein spots in the different
samples and its replicates. Biological sample 7, for
instance, had 546 protein spots resolved in at least one of

its four technical replicates. 169 (31%) proteins occurred
in all the four replicates. An additional 130 (26%) were
present in at least three replicates out of four. A further
97(18%) were present only in two replicates out of four,
and 150 (27%) were present only in one of the four
replicates.

Low correlation between technical replicates
Table 2 displays the range of Pearson's correlation coeffi-
cients and Kappa coefficients between the technical repli-
cates of the same sample. The correlation coefficient here
is a measure of the association between the spot intensi-
ties on technical replicates. The correlation between tech-
nical replicates is not very high. The correlation
coefficients range from a high of 0.93 to a low of 0.47. The
r-square ranges from 87% to 22%. The Kappa coefficient
measures the degree of agreement between the spots
present on two replicate gels of the same sample. A zero
indicates no agreement and one indicates perfect agree-
ment. If the confidence interval spans zero then the
hypothesis that there is no agreement between the repli-
cate gels cannot be rejected. Ten of the sixteen separate
confidence intervals in Columns 5 and 6 of Table 2
include zero. This suggests no agreement between the rep-
licate gels of most samples.

Assessing the quality of a pre-processing technique
In Tables 3 to 10 the spot identification numbers in bold
represent proteins that were subsequently identified and
found to be biologically relevant to the system being stud-
ied (10). In all, eleven proteins that had significantly dif-
ferent intensities at alpha = 0.05 were identified. The
measure of the quality of a particular pre-processing tech-
nique in this study was the proportion of these eleven pro-
teins identified as statistically significant in a two-sample
t-test after the particular technique was used.

The effect of log-transformation and minimum values 
substitution on the distribution of intensities
Log – Transformation
Figures 3a and 3b are the QQ plots for the raw spot inten-
sity and normalized spot intensities for the 201 protein
spots on a representative gel from the control group.
These plots demonstrate that the normalization technique
used does not alter the basic distribution of the raw data.
They also demonstrate the highly non-gaussian distribu-
tion of the spot intensities. Figure 3c demonstrates that
the log transformation converts the distribution of the
intensities from a very non-normal distribution to a nor-
mal distribution. The points lie very close to the straight
line that represents a normal distribution. We have found
that the log transformation reduces the skew in the distri-
bution of the spot intensities if the image analysis is done
in PDQUEST® and most data sets produced by the soft-
ware PROGENESIS®. Only one out of seven 2D gel data
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Statistical protocol for 2D gelsFigure 1
Statistical protocol for 2D gels. The first protocol that we followed in the statistical analysis of data from 2D gel experi-
ments is demonstrated in the flowchart in Figure 1. This consists of: 1) testing for differences between the groups with respect 
to total protein expression; 2) normalizing protein intensities on a gel to the mean total intensity of its group (e.g. treatment or 
control); 3) expressing each normalized intensity as a fraction of the total protein intensity in the experiment in order to make 
fold change comparisons meaningful; 4) testing the distribution of normalized intensities and using appropriate transformations 
if necessary to convert distribution to a normal distribution; 5) selecting the subset of protein spots to analyse; 6) imputing val-
ues for missing spot intensities; 7) using 2-sample t-tests and f-tests to identify protein spots that can be used to build classifi-
ers; 8) building a linear (or quadratic) discriminant classifier; and 9) using Principal Components Analysis plots to demonstrate 
the separation between groups visually.

Testing for differences in 
total protein intensity 
between groups  
  

Normalizing intensities and 
adjusting for fold change   

Testing distribution of 
normalized intensities and 
transforming  

Selecting protein spots to 
analyze 
Present in all treat (cont),

      OR 
Absent in only one 
replicate gel of sample

Imputing values for missing 
spot intensities 

Using 2-sample t-tests and f-
tests to identify spots for 
classifier 

Building linear (or quadratic) 
discriminant classifier 

Using principal 
components analysis plots 
to visualize separation 
between groups 

Database 

Step 1

Step 2

Step 3

Step 5

Step 7 
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Step 6
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sets analysed by us so far did not respond well to this
transformation. A closer examination of this data showed
it had a large number of saturated spots, and thus needed
to be rerun. The transformation of the distribution of the
201 spots also worked reasonably well at the level of indi-
vidual spot intensities. This was important to confirm
since the two sample tests were done at individual spot
level. In cases where there was a considerable skew in the
distribution, e.g., SSP 1733, the log transformation made
the distribution of spot intensities normal. The Anderson-
Darling test for normality for SSP 1733 in the control
group, has a p-value = 0.03 before the transformation, and

p-value = 0.456 after the transformation. In general, this
was true of most spots we examined.

Table 3 compares the t-test results of non-log-transformed
normalized spot intensities where the missing spot inten-
sities were replaced with a zero; to the results using nor-
malized spot intensities that were log-transformed. In the
non-log transformed data without normalization, six of
the eleven spots known to be significantly different were
picked up. Six of the eleven proteins were picked after log
transformation of the non-normalized data as well. It is
important to note that the two lists of six proteins were

Table 1: The number of protein spots resolved in replicate gels of the same biological sample.

Sample No 
(Treatment 
group)

No. of 
Replicates

Total Proteins 
resolved 
(occurring in at 
least one 
replicate) (%)

Number 
resolved in all 
replicates (%)

Number 
resolved in all 
but one 
replicate (%)

Number 
resolved in all 
but two (%)

Number 
resolved in just 
one (%)

6 (GSE) 3 4064 (100) 309 (8) 563 (14) 3192 (78) -
7 (GSE) 4 546 (100) 169 (31) 130 (26) 97 (18) 150 (27)
8 (GSE) 4 954 (100) 186 (19) 120 (12) 105 (11) 543 (57)
9 (GSE) 2 904 (100) 342 (39) 562 (62) - -
10 (GSE) 2 396 (100) 229 (58) 167 (42) - -
22 (CONT) 4 924 (100) 234 (25) 89 (10) 109 (12) 492 (53)
23 (CONT) 4 950 (100) 161 (17) 151 (16) 102 (11) 536 (59)
24 (CONT) 2 879 (100) 312 (35) 567 (65) - -
25 (CONT) 3 957 (100) 272 (28) 117 (12) 568 (59)
26 (CONT) 2 432 (100) 183 (42) 249 (58) - -

The variability in the resolution of protein spots in technical replicates in a 2D gel experiments is one of the causes of the large number of missing 
spot intensities. The variability in the table above demonstrates the need for technical replicates as a quality control measure to identify spots that 
are most 'reliable' and common and therefore most useful to generalize to a larger population.

Table 2: Highest and lowest correlation among spot intensities between technical replicates in a 2D gel experiment; highest and 
lowest Kappa coefficients between technical replicates

Sample No of 
Replicates

Highest Correlation 
Coefficient (R-sq%)

Lowest Correlation 
Coefficient (R-sq%)

Highest Kappa 95% CI Lowest Kappa 95% CI

6 (GSE) 3 0.774 (60%) 0.547 (30%) 0.4962 (-0.1039,1.000) 0.1476 (-0.1374,0.4326)
7 (GSE) 4 0.907 (82%) 0.589 (35%) 0.4437 (0.1004,0.7870) -0.0767 (-0.114,-0.0350)
8 (GSE) 4 0.932 (87%) 0.617 (38%) 0.4445 (0.1027,0.7864) 0.0099 (-0.0855,0.1052)
9 (GSE) 2 0.747 (56%) 0.747 (56%) 0.1299 (-0.1384,0.3982) 0.1299 (-0.1384,0.3982)
10 (GSE) 2 0.837 (70%) 0.837 (70%) 0.1231 (-0.0486,0.2948) 0.1231 (-0.0486,0.2948)
22 (CONT) 4 0.805 (65%) 0.467 (22%) 0.6538 (0.3705, 0.9372) 0.2599 (-0.0566,0.5765)
23 (CONT) 4 0.845 (71%) 0.632 (40%) 0.3269 (0.0304,0.6235) 0.0322 (-0.0296,0.0941)
24 (CONT) 2 0.711 (50%) 0.711 (50%) 0.0743 (-0.1284,0.2770) 0.0743 (-0.1284,0.2770)
25 (CONT) 3 0.837 (70%) 0.524 (27%) 0.2843 (0.0073,0.5613) 0.2384 (-0.0629,0.5397)
26 (CONT) 2 0.578 (33%) 0.578 (33%) 0.1946 (0.0531,0.3361) 0.1946 (0.0531,0.3361)

The Pearson correlation coefficient is a measure of the linear relationship between two variables. R square, the square of Pearson's correlation is a 
measure of how much variability in one variable is explained by the variability in the other. Since technical replicates are expected to be identical, 
the r-squares are expected to be very high, at least 0.95. The table demonstrates the degree of variability between technical replicates after 
normalization. The Kappa coefficients with the 95% confidence intervals confirm the same thing. Ten out of sixteen confidence intervals span zero, 
indicating no agreement between technical replicates of the same sample in those cases.
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not identical. After normalization, in the log-transformed
data the t-test picks up all the eleven proteins, whereas, in
the non-log-transformed data seven proteins are picked
up (Table 4).

Effect of normalization
Table 5 compares the proteins that were found to be sig-
nificant (p = 0.05) in a t-test when the spot intensities
were not normalized, not log transformed, and the miss-
ing intensities were replaced with a zero (Column 1);
proteins that were found to be significant in a t-test (p =
0.05) when the spot intensities were normalized using
normalization 1 (see methods), not log transformed, and
the missing intensities were replaced with a zero (Column
2); proteins that were found to be significant in a t-test (p
= 0.05) when the spot intensities were normalized using
normalization 2 (see Methods), not log transformed, and
the missing intensities were replaced with a zero (Column
3); and the proteins that were found to have significantly
different intensities by the image analysis software
PDQUEST (Column 3), which normalizes (each intensity
divided by the total intensity of the gel) the data but does
not use a log transformation. As is evident from compari-
sons of Column 1 with Columns 2 and 3 in Table 1, nor-
malization has an effect on the number of proteins that
are detected. The difference in Columns 2, 3 and 4 sug-

gests that the protocol used for normalizations also has an
impact on the proteins that are picked up as significant. In
non-log transformed data, data sets with no normaliza-
tion, normalization 1 and normalization 2 picked up six
of the eleven proteins, and PDQUEST method picked up
seven of the eleven proteins. Over fifty percent of the pro-
teins picked up by PDQUEST occurred in very small num-
bers of gels, and hence did not meet our selection criteria
for inclusion into the analysis data set. A number of the
other proteins picked up by PDQUEST had skewed distri-
bution. After log-transformations these proteins were no
longer statistically significantly different. Tables 6, 7 and 8
again demonstrate that normalization 2 has a significant
impact on the number of proteins identified as signifi-
cantly different in intensity. In all of these tables, it is
important to note once again that the highlighted pro-
teins in each column vary with the pre-processing
technique.

Effect of imputation of missing spots
In Table 9, Columns 1, 2, and 3 offer a comparison of the
spots identified as significantly different (alpha = 0.05)
when the three different kinds of imputation of missing
spots were used. The three different kinds of imputation
did not make much difference to the spots identified as
significantly different in intensities at alpha = 0.05. In fact
in this case we have identical lists in all three columns of
table 9. The purpose of using multiple imputation instead
of single value imputation, however, has more to do with
getting a better estimate of the variance of a quantity than
with the correct estimation of the mean. Since the t-statis-
tic is a function of both the difference in means as well as
the variance of a variable, given a constant mean, under-
estimating variance would lead to false positives, and
overestimating variance would lead to false negatives.
This data set shows a good example of the degree of vari-
ability on the intensities. Table 10 demonstrates that sin-
gle value imputations tend to either underestimate (var =
0 for SSP 6452), or over-inflate the estimates of variance
(e.g. SSP 1509). The variance of SSP 1733, which has no
missing spot intensities, gives us a rough idea of the
degree of variability expected in spot intensities when
there are no intensities missing. The estimates of variance
for the proteins with missing intensities are much closer
to the values seen in SSP 1733 when one uses a multiple
imputation technique.

Averaging across replicates versus keeping replicates separate
Given the lack of association between technical replicates,
we used replicate information in two ways: 1) Spot
intensities were averaged across the replicates so that the
t-tests compared average spot intensities in the five treat-
ment samples versus five control samples, and 2) The rep-
licate gels of each sample were treated as independent
gels, and the t-tests compared spot intensities in the

Table 3: The effect of log transformation using non-normalized 
data.

No Log Transform No 
Normalization, Missing 
replaced with zero (55% of 
identified spots picked up)

Log Transformed No 
Normalization, Missing 
replaced with – 17.28 (55% of 
identified spots picked up)

SSP 1509 SSP 1509
SSP 1733

SSP 2307
SSP 3219
SSP 3806

SSP 4225
SSP 4435 SSP 4435
SSP 4438
SSP 4519
SSP 4724
SSP 5413
SSP 6314 SSP 6314
SSP 6452 SSP 6452

Column 1 has spots that have significantly different intensities (p = 
0.05) before normalizing and log transforming data. Column 2 has 
spots that are significantly different in intensity before normalizing 
data, but after using a log transformation. Spots in bold were later 
identified by MALDI-TOF. These were all spots that were biologically 
relevant to the system being studied. The percentages in parenthesis 
measure in the header indicate how many of the ten proteins known 
to be different were identified before log transformation.
Page 6 of 15
(page number not for citation purposes)



BMC Biotechnology 2005, 5:7 http://www.biomedcentral.com/1472-6750/5/7
Intensity plotsFigure 3
Intensity plots. (a) Plot of raw intensities before log-transformation and normalization. Probability plot of raw intensities of 
201 spots in the final data set; a normally distributed variable is expected to plot a line close to the straight line; the intensities 
are very skewed. (b) Plot of Normalized spot intensities. Probability plot of normalized spot intensities of 201 spots in the final 
data set. Comparison of 3a and 3b demonstrates that the normalization does not alter the distribution of the spot intensities. 
(c) QQ plot of log transformed intensities. Figure 3c demonstrates that the log transformation successfully transforms the 
highly skewed distribution of spots into a normal distribution.
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fifteen treatment gels to the intensities in the fifteen con-
trol gels. Columns 1 and 2 in Table 11 compare Method 1
above to Method 2. Six out of eleven proteins are picked
up using Method 1, whereas all ten are identified as signif-
icantly different if the replicates are kept separate.

Discussion
Normalization
Differential sample loading and stain absorption and
other process variables can contribute to variability in
measured protein intensity. In order to ensure that the
detected differences in protein intensity are not due to a
"technical" variability introduced by the process of gel cre-
ation, spot intensities are "normalized." Dividing the
intensity of each protein on a gel by the total protein
intensity of that gel is a widely used technique to reduce
the "individual gel effect" on protein intensities [14]. Nor-

malizing the data is an important step in many datasets,
but it becomes especially important in proteomics
experiments, which in general have many more variables
than samples. In this case a systemic error in processing
samples or gels that affects only one or two gels can have
a huge impact on the results. This study has demonstrated
that the results of statistical tests are not independent of
the normalization technique.

Testing for normality and transforming data
To the best of our knowledge, none of the image analysis
software packages available to date provide the tools nec-
essary test for the distribution of the data. All of them pro-
vide t-tests or the non-parametric Wilcoxon rank sum test
or ANOVA to test for differences in individual spot inten-
sities. The probability values (p-values) for differences
between groups are based on the assumptions of the nor-
mality of the distribution of spot intensities and equal var-
iances. In order to make an informed judgement about
the validity of the p-values of the tests above, it is impor-
tant to know if these assumptions are met [15,16]. If one
uses the averaged spot intensities across gels, the argu-
ment could be made that the central limit theorem
obviates the need for a log transformation. Given the
highly skewed nature of the raw spot intensities, the
dependence of the mean and the variance of intensities,
and the fact that even the non-parametric Wilcoxon test
assumes symmetry in the outcome variable [17], log
transformation of the data is still advisable.

Missing spot intensities
Despite the fact that 2D-gel technology offers many
advantages, one of the pitfalls associated with this tech-
nology is the need for several replicates for proper
validation of results. There are instances where one does
not observe reproducible spot patterns or individual pro-
teins even in replicate gels of the same sample. Missing
spot intensities are commonly observed in 2D gel data-
sets. Multivariate techniques such as Principal Compo-
nent Analysis and Discriminant Analysis (DA) are ideal
tools to use on databases that have multiple outcome var-
iables (protein intensities). However, SAS or any other sta-
tistical software that is used to analyse the data using
multivariate techniques such as PCA and DA requires data
sets with non-missing values. Gels with missing spot
information will thus be dropped from the analysis. Since
all gels will have some spot information missing, this will
result in no gels being available for data analysis. To the
best of our knowledge, all image analysis software pack-
ages substitute zeroes for missing intensity values. Missing
intensities may be caused by the fact that a protein spot
truly does not exist in one group compared to the other or
because the spot intensity is so low that it is not detected
by the image analysis software. In this study we treated all
missing spots as undetectable spots. The question we were

Table 4: The effect of log transformation using non-normalized 
data.

No Log Transform 
Normalized, Missing 
replaced with zero (63% of 
identified spots picked up)

Log Transformed 
Normalized, Missing 
replaced with – 17.28 (100% 
of identified spots picked up)

SSP 1134
SSP 1509 SSP 1509

SSP 1733
SSP 2309 SSP 2309

SSP 3219
SSP 3806
SSP 4203

SSP 4225 SSP 4225
SSP 4435 SSP 4435
SSP 4519

SSP 4724
SSP 5309
SSP 5329
SSP 5413 SSP 5413
SSP 6205 SSP 6205
SSP 6228
SSP 6304 SSP 6304
SSP 6314 SSP 6314
SSP 6321
SSP 6349
SSP 6443
SSP 6452 SSP 6452
SSP 7223 SSP 7223
SSP 7334
SSP 7750 SSP 7750
SSP 8613

Column 1 has spots that have significantly different intensities (p = 
0.05) after normalizing and log transforming data. Column 2 has spots 
that are significantly different in intensity after normalizing data (using 
normalization 2), but after log transformation. The percentages in 
parenthesis in the header measure how many of the ten proteins 
known to be different were identified after log transformation and 
normalization.
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trying to answer was "If a spot exists but is 'undetectable',
what is the best 'detectable' value to substitute as its inten-
sity?" The most intuitive value was the smallest "detecta-
ble" intensity in the experiment hence we used the lowest

intensity value in the experiment for the single value
imputation. However, substituting a single value for all
missing spot intensities would skew the distribution of
spot intensities considerably. Thus the second option was

Table 5: The effect of log transformation using non-normalized data.

No Log Transform No 
Normalization Missing 
replaced with zero (54% of 
identified spots picked up)

No Log Transform – 
Normalization 1 Missing 
replaced with zero (54% of 
identified spots picked up)

No Log Transform 
Normalization 2, Missing 
replaced with zero (54% of 
identified spots picked up)

No Log Transform 
Normalized-PDQUEST (64% 
of identified spots picked up)

SSP 03121

SSP 11121

SSP 1309
SSP 13211

SSP13311

SSP 1509 SSP 1509 SSP 1509
SSP 1733 SSP 1733

SSP 2307
SSP 2309 SSP 2309

SSP 32341

SSP 34371

SSP 35231

SSP 4225 SSP 4225 SSP 4225 SSP 4225
SSP 4435 SSP 4435 SSP 4435
SSP 4438 SSP 4438 SSP 44382

SSP 45171

SSP 4519 SSP 4519 SSP 4519 SSP 45192

SSP 46372

SSP 4724 SSP 4724 SSP 4724
SSP 47351

SSP 50111

SSP 5309
SSP 5329

SSP 5413 SSP 5413 SSP 5413 SSP 5413
SSP 6205
SSP 6304

SSP 6314 SSP 6314 SSP 6314
SSP 6321
SSP 6349
SSP 6443

SSP 6452 SSP 6452 SSP 6452 SSP 6452
SSP 7027

SSP 7231
SSP 7223
SSP 7334

SSP 74131

SSP 7750
SSP 8613

1 These are spots that were present in a very small number of gels, and therefore did not meet our criteria to be included.
2 These spots have highly skewed distributions or were very poor quality spots. Log transformation made out the distribution closer to normal and 
p-values were no longer significant.
Column 1 has spots that have significantly different intensities (p = 0.05) normalizing and log transforming data. Column 2 has spots that are 
significantly different in intensity after using normalization 1, but before using a log transformation. Column 3 has spots that are significantly different 
in intensity after using normalization 2, but before using a log transformation. Column 4 has the results from the image analysis software PDQUEST, 
which has an option for normalizing but no log transformation. Columns 1 and 2 are subsets of the 201 spots in the final data set that met our 
criteria for inclusion. Column 3 is a subset of all possible spots in the experiment. Spots in bold were later identified by MALDI-TOF. These were 
all spots that were biologically relevant to the system being studied. The percentages in parenthesis in the header measure how many of the ten 
proteins known to be different were identified after the different normalization techniques.
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to use a random process to substitute missing spot inten-
sities with a plausible set of "detectable" intensities. We
created a set of lowest 'detectable' intensities from the
lowest intensity on each of the thirty gels. These values
were used to impute missing intensity values as described
in the methods section. Although we have used the terms
"imputation" and "multiple imputation", these terms are
not to be equated with multiple imputation advocated by
Rubin [18]. Rubin's techniques assume the missing inten-
sities to be Missing at Random (MAR). By our assump-
tion, the spots are undetectable because of the intensity
level, or the probability of missing is a function of the
intensity. This by Rubin's definition would make the
missing spot intensities Non-Ignorable Non-Response.
His multiple imputation techniques thus would not be
valid in this context.

The issue of missing protein intensities is one that has not
been addressed at all in the literature describing 2D gel
studies. In this study we treated all missing intensities as
the same. However, all missing intensities in 2D gels are
not equal. Some missing intensities are missing because
they truly do not exist in one group versus the other,
whereas others are missing because of the inherent varia-
bility in the process of creating 2D gels. This suggests that
one needs to approach the filling of missing values

differently based on the probability of a spot being a truly
missing protein or one that is missing due to the process
of gel creation. One way to do this would be to assume
that spots that occur in two out of three replicates (or
three out of four replicates) of a sample are true spots.
These missing intensities would then be replaced by the
mean value of the remaining two (three) spots. On the
other hand, the assumption that those proteins that are
missing in all control gels or all treatment gels are proteins
that are turned on or off is justifiable. This in turn suggests
that for this set of proteins the random imputation of
missing values with a set of plausible minimum intensity
values, acting as placeholders so that the non-missing data
can be used in analyses, can also be justified.

Which method should one use?
In the last few years, published reports of 2D gel analysis
have concluded that heart failure was associated with pro-
tein modifications in three cellular systems [19], identi-
fied proteins expressed in six different regions of brains of
Alzheimer's disease patients [7], had been used to estab-
lish genetic relationships in the Brasscacae family [20], to

Table 6: T-Test results of log transformed intensities pre-and 
post normalization – Imputation Method 1

Normalization 1 Missing 
replaced by = -.17.28 Log 
transformed (36% of 
identified spots picked up)

Normalization 2 Missing 
replaced by = -17.28 Log 
transformed (100% of 
identified spots picked up)

SSP 1134
SSP 1509 SSP 1509

SSP 1733
SSP 2309
SSP 3219

SSP 3806 SSP 3806
SSP 4203
SSP 4225

SSP 4435 SSP 4435
SSP 4724 SSP 4724

SSP 5413
SSP 6205
SSP 6304

SSP 6314 SSP 6314
SSP 6452 SSP 6452

SSP 7223
SSP 7750

The table shows the results of two sample t-tests on log-transformed 
intensities, pre and post normalization, when all missing intensities 
were replaced by the lowest intensity value in the experiment (-
17.28). Spots in bold were later identified by MALDI-TOF. These 
were all spots that were biologically relevant to the system being 
studied.

Table 7: T-Test results of log transformed intensities pre-and 
post normalization – Imputation Method 2

Normalization 1 Missing 
replaced by Random sample 
of minimum from 15 gels in 
each group Log transformed 
(36% of identified spots 
picked up)

Normalization 2 Missing 
replaced by Random sample 
of minimum from 15 gels in 
each group Log transformed 
(91% of identified spots 
picked up)

SSP1134
SSP 1509 SSP 1509

SSP 1733
SSP 2309

SSP 3806 SSP 3806
SSP 4203
SSP 4225

SSP 4435 SSP 4435
SSP 4724 SSP 4724

SSP 5413
SSP 6205
SSP 6228
SSP 6304

SSP 6314 SSP 6314
SSP 6452 SSP 6452

SSP 7223
SSP 7334
SSP 7750

The table shows the results of two sample t-tests on log-transformed 
intensities, pre and post normalization, when each missing intensities 
in GSE (control) gel were replaced by randomly selecting one of the 
15 lowest spot intensity values from the 15 gels in the GSE (control) 
group. Spots in bold were later identified by MALDI-TOF. These 
were all spots that were biologically relevant to the system being 
studied.
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classify human ovarian tumours as malignant and benign
[8], in the detection of polypeptides associated with the
histo-pathological differentiation of primary lung cancer
[21], and to identify eight protein feature changes that dif-
ferentiated breast cancer cell lines that did or did not form
tumours in nude mice [9]. These are all important studies
that will be used as springboards to launch ever more
expensive and sophisticated experiments. We have
demonstrated that protein changes that are large (e.g. SSP
6452 present in controls and absent in all treatment gels)
are independent of the statistical protocol used. The iden-
tification of more subtle changes can vary widely depend-
ing on the statistical algorithm used to pre-process and
analyze the data. Our experience with the GSE data and a
couple of subsequent experiments we have been involved
in suggests that the algorithm we have developed is more
sensitive with respect to identifying biologically relevant
proteins that image analysis software might miss.
However, it is a fact that pre-processing could also give rise
to false positive results. It is important to establish the best
statistical protocol for analysing the data from these
studies. One way to get around the issue of the effect of
pre-processing is to restrict a study to only those proteins
that are picked up as significant by image analysis
software. As we have mentioned above, in this study a

large number of the spots selected by PDQUEST were
poor quality spots either in terms of protein quality or
consistency. Another option is to consider only those
spots that appear in two sets of analyses (e.g. image anal-
yses, and the protocol described here) as true changes.
One is thus restricting oneself to gross changes. As the use
of proteomic techniques moves forward, however, we
think it will be important to identify more subtle changes
in proteins. A number of studies have suggested that
change in protein expression that starts the cascade of
changes that leads to a diseased tissue need not always be
gross or dramatic. Subtle changes in expression early in a
pathway can cause significant changes downstream. Sha-
piro et al [22] suggest that subtle changes in the spatial or
temporal expression of the patterning molecule Sonic
Hedgehog (SHH) is linked to the proliferation and pat-
terning of developing limbs. Similarly, a disease condi-
tion could be caused by small changes in expression in a
number of proteins. Reneiri et al [23] suggest that the phe-
notypic expression of Retts in some but not all girls with
the MECP2 mutation suggests that MECP2 causes deregu-
lation of a very small subset of genes that have not yet
been detected or that very subtle changes in many genes
(by extension proteins) may cause the neuronal pheno-
type. The importance of picking up subtle changes in pro-
tein expression suggested by studies cited above point to a
need to establish a way to identify the optimal statistical
pre-processing techniques for 2D gel datasets.

An intuitively appealing way to do this is to create 2D gels
with serially diluted quantities of commercially available
proteins, establishing the relationship of protein quantity
to spot intensity and then proceeding to compare differ-
ent statistical pre-processing techniques to the datasets
acquired from these gels. Since it is a known fact that com-
mercially bought proteins may not necessarily be pure
and may be present in multiple modified forms due to the
process of isolation, the experiment described above may
be enhanced by using controlled biological samples from
a cell culture with at least a hundred resolved spots. Once
again, the sample could be loaded in on gels in known
concentrations and the process described above would be
repeated. Clearly, the set of pre-processing techniques that
picks up differences that come closest to the true differ-
ences would be chosen as the optimal techniques. Some
recent publications have used similar techniques to estab-
lish the validity of emerging proteomic technology. Alban
et al [24] used an Escherichia coli lysate "spiked" with var-
ying amounts of four different known proteins to test a
novel experimental design that exploits the sample multi-
plexing capabilities of DIGE by including a standard
sample in each gel. Rabilloud et al [25] compared the
staining sensitivity of RuBPS and Sypro Ruby of serial
dilutions of molecular weight markers. However, there are
no designed experimental studies that have looked at the

Table 8: Test results of log transformed intensities pre-and post 
normalization – Imputation Method 2

Normalization 1 Minimum 
replaced by Random sample 
of minimum from all 30 gels 
Log transformed (36% of 
identified spots picked up)

Normalization 2 Minimum 
replaced by Random sample 
of minimum from all 30 gels 
Log transformed (91% of 
identified spots picked up)

SSP 1134
SSP 1509 SSP 1509

SSP 1733
SSP 2309

SSP 3806 SSP 3806
SSP 4203
SSP 4225

SSP 4435 SSP 4435
SSP 4724 SSP 4724

SSP 5413
SSP 6205
SSP 6228
SSP 6304

SSP 6314 SSP 6314
SSP 6452 SSP 6452

SSP 7223
SSP 7334
SSP 7750

The table shows the results of two sample t-tests on log-transformed 
intensities, pre and post normalization, when each missing intensities 
in GSE or control gel were replaced by randomly selecting one of the 
30 lowest spot intensity values from the 30 gels in the experiment. 
Spots in bold were later identified by MALDI-TOF. These were all 
spots that were biologically relevant to the system being studied.
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impact of statistical pre-processing or the effectiveness of
various statistical techniques on the conclusions drawn
from 2D gel experiments. Given the proliferation and
promise of 2D gel experiments, we suggest that the need
to conduct these validation experiments is urgent.

In this study we have used the proteins that were subse-
quently identified by MALDI-TOF spectroscopy as a meas-
ure of how well particular statistical protocols perform.
We concede that there is an inherent bias in that the spots
that were identified by MALDI-TOF were selected on the
basis of the protocol described in this paper. The

Table 9: Comparing t-test results for the three different imputation methods

Normalization 2 Missing replaced by = -
17.28 Log transformed (100% of 
identified spots picked up)

Normalization 2 Missing replaced by 
Random sample of minimum from 15 
gels in each group Log transformed (91% 
of identified spots picked up)

Normalization 2 Minimum replaced by 
Random sample of minimum from all 30 
gels Log transformed (91% of identified 
spots picked up)

SSP 1134 SSP1134 SSP 1134
SSP 1509 SSP 1509 SSP 1509
SSP 1733 SSP 1733 SSP 1733
SSP 2309 SSP 2309 SSP 2309
SSP 3219
SSP 3806 SSP 3806 SSP 3806
SSP 4203 SSP 4203 SSP 4203
SSP 4225 SSP 4225 SSP 4225
SSP 4435 SSP 4435 SSP 4435
SSP 4724 SSP 4724 SSP 4724
SSP 5413 SSP 5413
SSP 6205 SSP 6205 SSP 6205
SSP 6304 SSP 6228 SSP 6228
SSP 6314 SSP 6304 SSP 6304

SSP 6314 SSP 6314
SSP 6452 SSP 6452 SSP 6452
SSP 7223 SSP 7223 SSP 7223

SSP 7334 SSP 7334
SSP 7750 SSP 7750 SSP 7750

In column 1 missing values were replaced with the lowest intensity value in experiment; in column 2 values to replace missing intensities were 
randomly chosen from the 15 lowest intensity values within a treatment group; in values to replace missing intensities were randomly chosen from 
the 30 lowest intensity values without regard to treatment group.

Table 10: Comparing variances of spot intensities when using multiple values to impute versus a single value imputation.

Multiple Imputation Single Imputation

Treatment Control Treatment Control

SSP 1509 0.767 0.663 7.05 8.39 9 missing control
Range = (3.16) Range = (2.63) Range = (7.34) Range = (6.56) 3 missing 

treatment
SSP 1733 0.356 1.4249 0.356 1.4249 0 missing control

Range = (2.23) Range = (3.74) Range = (2.23) Range = (3.74) 0 missing 
treatment

SSP 6314 1.2055 1.178 3.41 1.17 0 missing control
Range = (3.94) Range = (3.51) Range = (7.15) Range = (3.51) 14 missing 

treatment
SSP 6452 0.547 0.564 0.547 0 15 missing control

Range = (2.79) Range = (2.14) Range = (2.79) Range = (0) 0 missing in 
treatment 

The variances for spots with missing values are either under estimated or over estimated with single imputation values. The ranges and variance 
values of intensities are closer to that of SSP 1733 (spot with no missing intensities) in the case of multiple value imputation.
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described protocol therefore will seem to perform much
better than others in this comparison. This however does
not diminish the main thrust of this paper, which is that
statistical protocols affect the conclusions drawn from a
2D gel experiment.

Conclusions
This study has demonstrated that the pre-processing of the
data from 2D gel experiments can have a significant
impact on the results of statistical tests. The purpose of the
study was not to identify the particular statistical protocol
used in this study as the optimal protocol, but rather to
demonstrate that the results and conclusions from a bio-
logical experiment are not independent of the statistical
protocol. The study has in effect looked at three different
statistical protocols. The one described in Figure 1, the
one described in Figure 2, in which the averaging of
intensities across replicates allows one to proceed directly
on to the t-tests, without the steps of testing distributions,
or imputation of missing spots, and the protocol used by
PDQUEST. Allowing for the inherent bias we have
described above, this study shows that the protocol
described in Figure 1, with normalization technique 2,

and multiple imputations, is superior to the method used
by PDQUEST, or the one in Figure 2. Given the possible
bias in this study, the larger conclusion from the study is
that there is a great need for research into developing opti-
mal statistical methodology to analyze data from 2D gel
experiments.

Methods
We used data from an experiment that compared the pro-
tein expression in the whole brain homogenate of rats
that were fed a diet with 5% of grape seed extract to that
of a normal rat diet. This experiment will be described in
a separate article. The data from this experiment was
exported to a database, which was saved as a text file. The
database was imported into SAS V-9.0 (Statistical Analysis
Software, 2003 Cary NC, USA), which was then used to do
all the statistical analysis.

Normalization 1
The intensity of each protein spot was divided by the total
protein content (total intensity) in the experiment.

Normalization 2
The intensity of each spot in each group was then normal-
ized to the median intensity of its group, i.e. the intensity
of each spot was converted into the intensity it would
have had if the gel it was in had a total intensity equal to
the median total intensity of the group. This is described
by the following formula:

This normalization reduces intra group variability, but
maintains the inter group variability.

Fold change is a common metric used in articles describ-
ing gene array and proteomic experiments. Fold change
measures the degree of change in protein intensity in the
treatment group, compared to the control group. This is
measured by dividing the average spot intensity in the
treatment group by the average spot intensity in the con-
trol group. In order for this ratio to be a true comparison
of the intensities in the two groups, the intensities need to
be expressed as proportions of the same quantity, i.e. they
need to be divided by the same quantity. Normalization 1
has this property built into the formula. In normalization
technique 2, the normalized intensities were divided by
the total protein content in the experiment in order to
make a fold change comparison meaningful.

Subset of spots included in analysis
A spot was considered present only if it was present in
both replicates of a sample if there were only two repli-

Table 11: Comparing averaging across replicates versus not.

Averaged across replicates 
(54% of identified spots 
picked up)

Log Normalized Log 
Transformed Missing 
replaced with – 17.28 (100% 
of identified spots picked up)

SSP 1134 SSP 1134
SSP 1509 SSP 1509
SSP 1733 SSP 1733

SSP 2309
SSP 2864
SSP 3222

SSP 3219
SSP 3806
SSP 4203

SSP 4225 SSP 4225
SSP 4435
SSP 4724

SSP 5413 SSP 5413
SSP 6205

SSP 6236
SSP 6304

SSP 6314 SSP 6314
SSP 6349
SSP 6452 SSP 6452
SSP 7144

SSP 7223
SSP 7439
SSP 7750 SSP 7750

Column 1 has the results of two sample t-tests when the intensity 
values were averaged across replicates. Columns 2 represents results 
of two sample t-tests when replicates were treated as independent 
observations.

NormalizedIntensity for Spot i onGel j inGroup k( ) ( ) ( )
= {Raw Intenssity of Spot (i)

Total intensity of Gel (j)}
Median intenX { ssity for Group k)}
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Statistical protocol for 2D gelsFigure 2
Statistical protocol for 2D gels. The second protocol that we followed in the statistical analysis of data from 2D gel exper-
iments is demonstrated in the flowchart in Figure 2. This consists of: 1) testing for differences between the groups with respect 
to total protein expression; 2) normalizing protein intensities on a gel to the mean total intensity of its group (e.g. treatment or 
control); expressing each normalized intensity as a fraction of the total protein intensity in the experiment in order to make 
fold change comparisons meaningful; 3) selecting the subset of protein spots to analyse; 4) Average spot intensities across gels 
from the same sample; 5) imputing values for missing spot intensities; 6) using 2-sample t-tests and f-tests to identify protein 
spots that can be used to build classifiers; 7) building a linear (or quadratic) discriminant classifier; and 8) using Principal Com-
ponents Analysis plots to demonstrate the separation between groups visually.

Testing for differences in 
total protein intensity 
between groups  
  

Normalizing intensities 
and adjusting for fold 
change   

Selecting protein spots to 
analyze 
Present in all treat (cont), 

      OR 
Absent in only one replicate 
gel of sample

Database 

Step 1

Step 2

Step 3

Step 4

Average spot 
intensities across 
gels from same 
sample 

Using 2-sample t-
tests and f-tests to 
identity spots for 
classifier 

Building linear (or 
quadratic) discriminant 
classifier 

Using principal 
components analysis 
plots to visualize 
separation between 
groups 

Step 6

Step 5

Step 7
Page 14 of 15
(page number not for citation purposes)



BMC Biotechnology 2005, 5:7 http://www.biomedcentral.com/1472-6750/5/7
cates, in two out of three replicates if there were three rep-
licates of a sample, and three out of four replicates if there
were four replicates of a sample. We also included spots
that were present in all controls and absent from all treat-
ments, or present in all treatment gels but absent from all
controls. Using these criteria, we had 201 spots that were
available for statistical analysis from the GSE database.

Missing spot intensities
Given the criteria used to subset spots for the final analy-
sis, there was a large number of missing spot intensities.
We examined the effect of filling in the missing spots in
three different ways.

1. Missing spot intensities were first replaced with the low-
est value of log-transformed intensities. In this case the
value was -17.28. The effect of the replacement of this sin-
gle value for all missing spot intensities is the same as the
effect of replacing non-log transformed spot intensities
with zero.

2. We created 1000 separate data sets that randomly
selected one of the 15 lowest spot intensity values from
the 15 gels in the control group to replace each of the
missing spot intensities in the controls, and repeated the
process for the 15 treatment gels.

3. In the third imputation method, each missing spot
intensity was replaced with a randomly selected value
from the 30 lowest values from each gel in the experiment
without regard to whether the value chosen was from a
control or treatment gel. The two methods of random
imputation of spot intensities were replicated 1000 times.
two sample t-tests were repeated with each replication.
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