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Purrosk. Previous research showed that the absence of 1-integrin from the mouse lens after
embryonic day (E) 13.5 (B1MLR10) leads to the perinatal apoptosis of lens epithelial cells
(LECs) resulting in severe microphthalmia. This study focuses on elucidating the molecular
connections between Bl-integrin deletion and this phenotype.

Mernops. RNA sequencing was performed to identify differentially regulated genes (DRGs) in
B1MLR10 lenses at E15.5. By using bioinformatics analysis and literature searching, Egrl (early
growth response 1) was selected for further study. The activation status of certain signaling
pathways (focal adhesion kinase [FAK]/Erk, TGF-B, and Akt signaling) was studied via Western
blot and immunohistochemistry. Mice lacking both Bl-integrin and Egrl genes from the lenses
were created (BIMLR10/Egr1 /") to study their relationship.

Resurts. RNA sequencing identified 120 DRGs that include candidates involved in the cellular
stress response, fibrosis, and/or apoptosis. Egrl was investigated in detail, as it mediates
cellular stress responses in various cell types, and is recognized as an upstream regulator of
numerous other f1MLR10 lens DRGs. In B1MLR10 mice, Egrl levels are elevated shortly after
B1-integrin loss from the lens. Further, pErk1/2 and pAkt are elevated in f1MLR10 LECs, thus
providing the potential signaling mechanism that causes Egrl upregulation in the mutant.
Indeed, deletion of Egrl from BIMLR10 lenses partially rescues the microphthalmia
phenotype.

Concrusions. Bl-integrin regulates the appropriate levels of Erk1/2 and Akt phosphorylation in
LECs, whereas its deficiency results in the overexpression of Egrl, culminating in reduced cell
survival. These findings provide insight into the molecular mechanism underlying the

microphthalmia observed in B1MLR10 mice.
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he ocular lens is transparent tissue composed of two

polarized cell types, lens epithelial cells (LECs) and
elongated fiber cells,"? whose basal tips interact with the lens
capsule, a thickened basement membrane that completely
surrounds the lens.®> Cell-cell and cell-capsule adhesion and
communication are important for lens structural integrity,
cellular communication, cell survival, and ultimately, lens
transparency.f® The lens expresses a wide variety of cell
adhesion molecules that can regulate lens structure and
physiology,” although their functional complexity is generally
not well understood.

Integrins are heterodimeric transmembrane adhesion mole-
cules that consist of noncovalently associated o and J3
subunits.!®!! They are best known as mediators of bidirection-
al cell communication with the extracellular matrix and cell
surface proteins on neighboring cells.'®!? The ocular lens
expresses Bl-integrins in all cells,'>-!> and these proteins are
proposed to be major regulators of lens cell contact with their
basement membrane (the lens capsule) due to their localization
at the basal surface of all lens cells.'®"!8 This is consistent with
the significant transcript-level expression, in the embryonic day
(B)15.5 mouse lens, of several o-integrins that are capable of
forming extracellular matrix-binding of1 heterodimers. These
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include the laminin-binding o6- (19 reads per kilobase per
million [RPKM]), the fibronectin/vitronectin/osteopontin bind-
ing oV- (8 RPKM), the laminin-binding o3- (5.8 RPKM), the
collagen-binding o2- (2.3 RPKM), and the fibronectin binding
a5-integrin (2.0 RPKM).!® Of these, a6B1 and a3B1 are likely to
be the functionally most crucial in the lens, as a6/03-integrin
double-null lenses exhibit abnormalities similar to those arising
from Bl-integrin deletion from the early lens.'>2° However, no
one o-integrin is likely responsible for all lens integrin
functions, as suggested by the findings that aG-integrin null
lenses exhibit only mild defects,??2! whereas o3-integrin®® and
aV-integrin null?? lenses are morphologically indistinguishable
from wild type (WT). Lens integrins also likely regulate growth
factor signaling by diverse mechanisms, such as the activation
of latent growth factors?? or direct binding to growth factor
receptors in cis,'>?>2% as well as indirectly via integrin-
mediated signal transduction.'”-25

Conditional deletion of B1-integrin from the lens at different
stages of development results in distinct phenotypes. For
example, removal of B1-integrin from elongating lens fiber cells
(using MLR39-Cre) results in a reduction in F-actin localization
at fiber cell membranes and altered gap junctional coupling,
leading to defects in lens fiber cell structure.'# In contrast,
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Tasie 1. List of All Primers Used for PCR and qRT-PCR
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Gene

Sequence of the Primers

Notes

p1-integrin

Fwd: 5'-CGG CTC AAA GCA GAG TGT CAG TC-3’
Rev: 5'-CCA CAA CTT TCC CAG TTA GCT CTC-3’

MLR10-Cre Fwd: 5'-GCA TTC CAG CTG CTG ACG GT-3’
Rev: 5'-CAG CCC GGA CCG ACG ATG AAG-3’
Egri Common Fwd: 5'-GGG CAC AGG GGA TGG GAA TG-3'

Egrl (qREPCR)

Rev for WT: 5'=AAC CGG CCC AGC AAG ACA CC-3’
Rev for mutant: 5'-CTC GTG CTT TAC GGT ATC GC-3’
Fwd: 5'-GCA AGT ACC CCA ACC GGC cCc-3’

Rev: 5'=CGG CGA TCG CAG GAC TCG AC-3’

Nab2 Fwd: 5'-GAGGAGGGGTTGCTGGACCG-3’
Rev: 5'-GGCTGGAGGCAAAGTCCG-3’
oSMA Fwd: 5'-CCGAGATCTCACCGACTACCT-3’
Rev: 5'-GCACAGCTTCTCCTTGATGTG-3’
Mt Fwd: 5'-GCTGTCCTCTAAGCGTCACC-3’
Rev: 5'~AGGAGCAGCAGCTCTTCTTG-3’
Anxa2 Fwd: 5'-ACCAACTTCGATGCTGAGAG-3’
Rev: 5'-GCTCCTTTTTGGTCCTTCTC-3’
Plat Fwd: 5'-TACAGAGCGACCTGCAGAGA-3’
Rev: 5'-AATACAGGGCCTGCTGACAC-3’
Mmp14 RT? qPCR Primer Assay for Mouse Mmp14
Thbs1 Fwd: 5'-CACCTCTCCGGGTTACTGAG-3’
Rev: 5'-GCAACAGGAACAGGACACCTA-3’
Stmn 1 Fwd: 5'-GTTCGACATGGCATCTTCTGAT-3’
Rev: 5'-CTCAAAAGCCTGGCCTGAA-3’
RpI29 Fwd: 5'-TCCGATGACATCCGTGACTA-3’

Recommended by the Jackson Laboratory

Ref. 94

Recommended by the Jackson Laboratory
Designed by A. Terrell

Ref. 95

Designed by M. Fisher

Ref. 96
Ref. 97

Designed by A. Terrell
Qiagen, PPM03617D
Ref. 98

Ref. 99

Ref. 100

Rev: 5'-TGCATCTTCTTCAGGCCTTT-3’

Fwd, forward; Rev, reverse.

deletion of fl-integrin earlier, in the lens vesicle (mouse
E10.5) using LE-Cre (B1LE), results in the exit of LECs from the
cell cycle, activation of ectopic Erk and bone morphogenetic
protein (BMP) signaling, and inappropriate differentiation of
the entire lens epithelium into lens fibers.!> Furthermore,
deletion of fi1-integrin from all lens cells at mouse E12.5 to
E13.5 via MLR10-Cre (B1MLR10) leads to disorganization of the
lens epithelium with upregulation of a-smooth muscle actin
(aSMA) expression by E16.5, and extensive apoptosis of LECs
by birth, resulting in the absence of lenses in adults.?®
However, the molecular basis of Bl-integrin function in the
lens and the reasons underlying differences between the B1LE
and B1IMLR10 lens phenotype remain unclear.

In this study, the molecular phenotype of B1IMLR10 lenses
was characterized by RNA-sequencing (RNA-seq)-based tran-
scriptome analysis. We find that Bl-integrin deletion results in
the elevated expression of a cohort of genes associated with
the cellular stress response, as well as those involved in
epithelial to mesenchymal transition (EMT), including several
immediate early response transcription factors, most notably
early growth response 1 (Egrl). Further, we find that deletion
of Egrl in B1IMLR10 mice partially rescues the ocular defects.
Thus, these findings serve to highlight how upregulation of a
single factor, Egrl, contributes to the ocular phenotype in
B1MLR10 mice and provides new insights into the function of
Bl-integrins in the ocular lens.

METHODS

Animals

All animal experiments described in this article conform to the
ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research. Mice were maintained and bred under
specific pathogen-free conditions at the University of Delaware

animal facility. Mice lacking Bl-integrin expression in all lens
cells via Cre-mediated conditional deletion driven by MLR10-
Cre (B1IMLR10) or Le-Cre (B1LE) were created as previously
described.’>2° Egrl null mice (B6N;129-Egri”*"]), in
which the Egrl gene was disrupted by insertion of a PGK-
neo cassette into a coding exon upstream of the DNA-binding
domain,?” were obtained from the Jackson Laboratory (Bar
Harbor, ME, USA). Egrl~/~ mice were bred to f1MLR10 mice,
to create mice carrying the MLR10-Cre allele and homozygous
for both f1-integrin and Egrl alleles (B1MLR10/Egr1~"). All
phenotypic comparisons were done among littermates. No
phenotypic differences were found between P1IMLR10 and
B1MLR10/Egr1™* or B1IMLR10/Egr1™~ mice. All mice carrying
BIMLR10 also carry CP49 mutations due to their genetic
background. Noon of the day that a vaginal plug was detected
in female mice was considered as EO.5.

DNA Extraction and Genotyping

DNA was isolated from tail snips or embryos using the
PureGene Tissue and Mouse Tail kit (Gentra Systems,
Minneapolis, MN, USA). Mice were genotyped by PCR using
primers described in Table 1.

RNA Sequencing

RNA-seq, data analysis, and filtering were performed as
previously described.'?82° Briefly, RNA was isolated from
E15.5 B1IMLR10 lenses (three biological replicates, 30 lenses
per replicate) and E15.5 C57Bl/6<har> lenses (WT; three
biological replicates, 75 lenses per replicate), and sequencing
libraries produced using the Illumina TruSeq RNA Sample
Preparation Kit v2 (Illumina, Madison, WI, USA). The resulting
cDNA library was sequenced at the University of Delaware,
Delaware Biotechnology Institute, Genotyping and Sequencing
Center on an Illumina HiSeq 2000 (Illumina). Bioinformatic



Investigative Ophthalmology & Visual Science

B1-Integrin and Cellular Stress in Lens

Genes

DONDOLWON -

IOVS | August 2017 | Vol. 58 | No. 10 | 3898

B SHT1 type receptor mediated signaling pathway (P04373)
Alzheimer disease-presenilin pathway (POO00L)
M Angiogenesis (PO000S)
Angiotensin Jl-stimulated signaling through G proteins and beta-arrestin (P0S911)
W Apoptosis signaling pathway (PO0006)
Axon guidance mediated by semaphoring (POO0D7)
B g cell activation (PO0010)
M Blood coagulation (PO0011)
ECCKR signaling map (P0£959)
B Cadherin signaling pathway (PO0012)
M Cytoskeletal regulation by Rho GTPase (PO0016)
M EGF receptor signaling pathway (PO0018)
FAS signaling pathwiay (PO0020)
FGF signaling pathway (PO0021)
General transcription by RNA polymerase 1 (P00022)
Gonadotropin-releasing hormone receptor pathviay (POGEES)
B Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway (PO00O26)
Huntington disease (PO0029)
Inflammation mediated by chemokine and cytokine signaling pathway (PO0031)

Integrin signalling pathway {PO0034)

458 76 mumz1su15wrrmezazlzzazuszuzmmam32

Category 31

22 M ntereukin signaling pathway (PO0O3E)

Parkinzon dizeaze (PO0O049)

n | 23 W Nicotinic acetylcholine receptor signaling pathway (PO00S4)
24 WPDGF signaling pathway (PO004T)
25 ci 5 004
1 26 W plasminogen activating cascade (PO00SO)
III 27 MRas Pathway (PO4393)

28 M Salvage pyrimidine ribonuclectides (P02775)

29 M T cell activation (POOOS3)
30 WTGF-beta signaling pathway (POOOS2)

VEGF signaling pathway (PO0056)

1 Wit signaling pathvway (PODOS7)

33 mps3 pathway (PO0OSY)

Ficure 1.

PANTHER gene ontology-based pathway analysis (http://pantherdb.org/) of 120 genes differentially regulated in f1MLR10 lenses

compared with WT at E15.5. The bar chart shows the 33 most represented pathways in which that 120 DRGs were predicted to participate. The
number of genes involved in each pathway ranged from one to seven, and most of them included just one to two genes. The top five pathways
shown were gonadotropin-releasing hormone receptor pathway (seven genes: Fos, Nab2, Nab1, Ptgfr, Egrl, Mmp14, Junb), inflammation mediated
by chemokine and cytokine signaling pathway (five genes: Alox12, Acta2, Pak1, Col6a3, Junb), Alzheimer disease-presenilin pathway (four genes:
Mmp2, Acta2, Erbb4, Mmp14), integrin signaling pathway (four genes: Acta2, Itgb8, Col6a3, Col26al), and CCKR signaling (four genes: Fos,

Arhgap4, Pakl1, Egrl).

analysis of the resulting data and filtering for significant
changes was performed as previously described,'?® except
that statistical analysis was done using the pairwise quintile-
adjusted conditional maximum likelihood method exact test
with a Benjamini Hochberg false discovery rate correction run
on the EdgeR BioConductor package (http://bioconductor.
org).

RNA Isolation/cDNA Synthesis/Quantitative RT-
PCR

RNA was isolated from pooled lenses at different embryonic
stages (E13.5, E14.5, E15.5, and E16.5; at least three biological
replicates derived from independent tissue pools per stage)
using the SV Total RNA Isolation System (Promega, Fitchburg,
WI, USA). At E15.5, different RNA samples were used for RNA-
seq and RT-PCR validations. The RT? First Strand Synthesis Kit
(Qiagen, Valencia, CA, USA) was used to synthesize cDNA, and
this was used in quantitative RT-PCR (qRT-PCR) reactions
performed with a QuantiTect SYBR Green PCR Kit (Qiagen) on
an Applied Biosystems 7300 Real Time PCR system (Applied
Biosystems, Foster City, CA, USA). See Table 1 for primer
sequences used in qRT-PCR. Fold change was calculated via the
2-AACT method, and statistical significance was determined by
2-level nested ANOVA.

Bioinformatics Analyses

The filtered differentially regulated gene (DRG) list was
analyzed for enriched pathways using PANTHER (Protein
ANalysis THrough Evolutionary Relationships, http://www.
pantherdb.org/)3° and analyzed for enriched expression during
normal lens development using SyTE (Integrated Systems Tool
for Eye Gene Discovery, http://bioinformatics.udel.edu/re
search/isyte/)>! as previously described.?82° Motif enrichment

analysis was performed on the putative regulatory regions
surrounding the transcriptional start site (TSS) of the B1MLR10
lens DRGs (n = 120). First, we implemented the iRegulon
package? (https://omictools.com/iregulon-tool) to identify
enrichment of overrepresented transcription factor (TF)
binding motifs using the open-access databases for transcrip-
tion factor binding profiles (Supplementary Table S3). The 10-
kb (TSS —5 kb and TSS 45 kb) a priori defined regulatory region
(described in Ref. 32) of all 120 DRGs was searched for TF-
binding motifs at a significant cutoff of normalized enrichment
score (NES) >3. Next, Egrl binding sites similar to the position
weight matrix for the Egrl motif>3 were identified in the region
2.5 kb upstream of the TSS of f1MLR10 lens DRGs (1 = 120)
using an in-house script implemented in the MotifDb R-
package (www.bioconductor.org). This Egrl motif matching
was performed with a minimum score match percentage (80%)
using the matchPMW function in the “Biostring” package
(www.bioconductor.org). The Egrl logo used in this analysis is
shown in Figure 6.

Gross Morphology

Adult mice (age range from 2 to 5 months old) were killed and
photographed. Eye tissues were enucleated and photographed
using a Zeiss Stemi SV 11 Apo Stereo dissecting microscope
(Zeiss, Thornwood, NY, USA) under dark-field illumination.
Afterward, lenses were dissected and placed into prewarmed
culture Medium 199 (Cellgro; Mediatech, Inc., Manassas, VA,
USA) and photographed under brightfield illumination. A
minimum of three biological replicates were analyzed for each
genotype.

Western Blot (WB)

Protein was extracted from lenses using lysis buffer (50 mM
Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% Na-
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Ficure 2. qRTPCR analysis of (A) aSMA, B) Anxa2, (C) Mmpl4
(Matrix metalloprotease 14/membrane type I matrix metalloprotei-
nase), and (D) Plat mRNA expression in WT and B1MLR10 lenses from
E13.5 to E16.5. (A) Compared with WT, the expression of oSMA was
significantly higher in BIMLR10 lenses from E14.5 to E16.5. (B)
Compared with WT, the expression of Anxa2 was significantly higher
in f1MLR10 lenses from E13.5 to E15.5. The elevation in Anxa2 mRNA
at E16.5 was not significant due to the high SD of the data. (C)
Compared with WT, the expression of MMP14 was significantly higher
in BIMLR10 lenses from E13.5 to E15.5. The elevation in MMP14
mRNA at E16.5 was not statistically significant due to the high SD of the
data. (D) Compared with WT, the expression of Plat was significantly
higher in f1IMLR10 lenses from E13.5 to E15.5. The elevation in Plat
mRNA at E16.5 was not significant due to the high SD of the data. Error
bars represent SD. Statistical significance was determined with nested
ANOVA and is given above the error bar in the figure.
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deoxycholate, 0.1% SDS) with 1X Halt Protease and Phospha-
tase Inhibitor Cocktail (Thermo Scientific, Rockford, IL, USA).
Protein was loaded and resolved on a 4% to 15% Mini-
PROTEAN TGX Precast Gel (Bio-Rad, Hercules, CA, USA) and
transferred onto a nitrocellulose membrane (Bio-Rad), followed
by blocking and incubation with primary antibodies (see Table
2 for details). The membrane was washed and incubated with
horseradish peroxidase conjugated secondary antibody (Cal-
biochem, San Diego, CA, USA). The membrane was treated
with a chemiluminescence detection kit (Amersham Biosci-
ences, Piscataway, NY, USA), and a FluorChem Q SA imager
(ProteinSimple, San Jose, CA, USA) was used for imaging and
digital quantification. At least three independent biological
replicates were analyzed for each antibody and statistical
significance was determined by 1-tailed #test.

Immunofluorescence Staining and Confocal
Imaging

All immunofluorescence (IF) analyses were performed as
previously described.?* Briefly, embryonic head tissue was
collected, while eyes were collected from newborn or adult
mice. Tissues were embedded directly in Optimum Cutting
Temperature (Tissue Tek, Torrance, CA, USA) and stored at
—80°C until 16-um-thick sections were obtained with a Leica
CM3050 cryostat (Leica Microsystems, Buffalo Grove, IL,
USA), and mounted on slides (ColorFrost Plus; Fisher
Scientific, Hampton, NH, USA). Slides were fixed with either
1:1 acetone-methanol for 20 minutes at —20°C or into 4%
paraformaldehyde for 30 minutes at room temperature.
Blocking buffer was made in 1X PBS or 1X Tris-buffered
saline (TBS), and slides were blocked for 1 hour at room
temperature. Sections were then incubated with primary
antibody diluted with blocking buffer (see Table 2 for
antibodies and dilution rates used) for 1 hour at room
temperature, or overnight at 4°C. Slides were then washed in
1X PBS or 1X TBS, and incubated with a solution consisting of
Alexa Fluor 488/568 labeled secondary antibody (1:200
dilution; Invitrogen, Grand Island, NY, USA), Drag-5 (1:2000
dilution; Biostatus Limited, Shepshed, Leicestershire, UK),
and fluorescein-labeled anti-aSMA (1:200 dilution; Sigma-
Aldrich Corp., St. Louis, MO, USA) for 1 hour at room
temperature in the dark. Sections were washed in 1X PBS or
1X TBS, then mounted with mounting media (10 mL PBS with
100 mg p-phenylenediamine to 90 mL glycerol; final pH 8.0).

Slides were imaged with a Zeiss LSM 780 confocal
microscope (Carl Zeiss, Inc., Gottingen, Germany). For each
experiment/comparison, all sections were stained simulta-
neously and imaged using identical configurations to ensure
the validity of staining intensity comparisons. Under some
circumstances, images were processed to optimize the
brightness and/or contrast for optimal viewing on diverse
computer screens. However, in all cases, any such adjustments
were applied identically to both control and experimental
images. At least six biological replicates were analyzed for each

genotype.

Immunohistochemistry

Immunohistochemistry was used to detect pErk1/2 and pAkt
levels in the lens as previously described,? using the CSA II
Biotin-Free Tyramide Signal Amplification System (K150011-2;
Dako Laboratories, Carpenteria, CA, USA) and CSA II Rabbit
Link (K150180-2; Dako Laboratories), following the manufac-
turer’s instructions (see Table 2 for the primary antibodies
used). At minimum, three biological replicates were analyzed
for each genotype.
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Ficure 3. Analysis of Smad phosphorylation in E16.5 WT and BIMLR10 lenses. (A) Representative WB comparing pSmad3 levels in WT and
B1MLR10 lenses. (B) Quantitation of the pSmad3 levels in WT and B1MLR10 lenses showing that pSmad3 levels were significantly lower in 31MLR10
lenses compared with WT (*P = 0.023, n = 4). (C-F) IF staining for pSmad3 (red) and aSMA (green) in WT (C, D) and B1IMLR10 (E, F) lenses at
E16.5. Qualitatively, pSmad3 staining was reduced in f1MLR10 LECs compared with WT. (G) Representative WB comparing pSmad1/5/8 levels
between E16.5 WT and P1IMLR10 lenses. (H) WB quantitation showing that pSmad1/5/8 levels in E16.5 WT and B1MLR10 lenses were not
significantly different (P = 0.18, n = 4). (I-L) IF staining for pSmad1/5/8 (red) and aSMA (green) in WT (1, J) and B1IMLR10 (K, L) lenses at E16.5.
Qualitatively fewer LECs of B1MLR10 lenses had detectable levels of pSmad1/5/8 compared with WT. Blue, DNA; (C-F) red, pSmad3; (I-L) red,

pSmad1/5/8; green, aSMA; e, epithelial cell; f, fiber cell. Scale bar: 38 pm.

RESULTS

RNA-Seq Identifies 120 Differentially Expressed
Genes in E15.5 f1IMLR10 Lenses

Deletion of Bl-integrin from the lens after the completion of
primary fiber cell elongation (E12.5-E13.5; f1MLR10) causes
the lens epithelium to become grossly abnormal by E16.5.2°
Thus, RNA-seq was performed a day earlier, at E15.5, on
BIMLR10 and WT lenses to identify changes in gene
expression that might proximally drive the observed morpho-
logical alterations, while minimizing the detection of gene
expression changes secondary to the phenotype. Analysis of
the gene list confirms that the lens isolations included minimal
contamination with nonlens ocular tissues, as keratin 8 mRNA
levels are very low in these samples (31MLR10 lenses, 0.08

RPKM; WT lenses, 0 RPKM), which is expressed robustly in the
cornea at this age.!® Although we attempted to completely
remove the adherent blood vessels (the tunica vasculosa lentis
[TVLD from these lenses, the RNA-seq suggests that the
isolated lenses did likely retain some TVL, as low levels of
Pecam mRNA (a blood vessel marker)?® was detected in both
WT (1.5 RPKM) and B1IMLR10 (2.2 RPKM) lenses. However,
this was unlikely to affect the analysis, as these levels were not
significantly different between WT and mutant samples.

The RNA-seq analysis revealed that 5120 genes exhibit
statistically significant (P < 0.05) differences in expression
between E15.5 WT and BIMLR10 lenses. These genes were
then subjected to previously developed stringent filtering
criteria to prioritize candidates whose differential expression is
likely to be biologically significant to the ocular lens.?® These
criteria are as follows: (1) potential DRGs are expressed at high
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FIGURE 4. Analysis of pFAK and pErk1/2 levels in E16.5 WT and B1MLR10 lenses. (A) A representative WB comparing pFAK (Y397) levels between
WTand B1MLR10 lenses. (B) WB quantitation showing that pFAK levels were significantly reduced in E16.5 f1MLR10 lenses compared with WT (P
<0.001, n=3). (C) A representative WB comparing Erk1/2 and pErk1/2 levels between WT and B1MLR10 lenses. (D) WB quantitation showing that
neither pErk1 nor pErk2 levels were significantly different in E16.5 f1MLR10 lenses compared with WT (pErkl P=0.41; pErk2, P=0.11; n=4). (E,
F) IHC localization of pErk1/2 (brown) in E16.5 WT (E) and B1MLR10 (F) lenses. Both WT and B1MLR10 lenses exhibit pErk1/2 staining in in the
newly formed lens fibers at the transition zone. However, BIMLR10 lenses also exhibit strong pErk1/2 staining in the lens epithelium (arrows),
whereas little to no pErk1/2 is seen in the epithelial cells of WT lenses. Blue, DNA; brown, pErk1/2 (E, F); e, lens epithelium; £, lens fiber cells; tz,

transition zone. Scale bar: 39 pm.

enough levels in either the WT or f1MLR10 lens to plausibly
affect cell function (unnormalized RPKM over 2); (2) the
difference between WT and B1IMLR10 lenses is greater than
2.5-fold to remove genes whose expression is different due to
genetic background variations; and (3) exclusion of pseudo-
genes or unknown/predicted genes. This filtering resulted in a
list of 120 DRGs (76 upregulated and 44 downregulated) that
are plausibly involved in the phenotypic changes found in
B1MLR10 lenses (Supplementary Table S1). Both the raw and
processed RNA-seq data have been deposited in the Gene
Expression Omnibus under accession number GSE77188.

Upregulated DRGs in f1MLR10 Lenses Include
Genes Related to Cellular Stress and EMT
Responses

The 120 prioritized candidate genes from the RNA-seq
experiment were further analyzed by the bioinformatics tools
PANTHER (http://www.pantherdb.org/),3° IPA (Qiagen, Valen-
cia, CA, USA, https://www.qiagenbioinformatics.com/prod
ucts/ingenuity-pathway-analysis/) and DAVID (The Database for
Annotation, Visualization and Integrated Discovery, http://da
vid.abcc.nciferf.gov). For instance, according to PANTHER,
these 120 genes can participate in 33 different pathways,
which expectedly included apoptosis and integrin signaling
pathways (Fig. 1; Supplementary Table S2). However, none of
these tools identified common pathways shared by more than a

handful of the 120 genes, and many of the identified
“pathways” were represented by only one gene, so these
analyses did not give great insight into Bl-integrin function in
the lens (Fig. 1; Supplementary Table S2; data not shown).

The relative expression of each DRG in the lens compared
with a mouse whole embryonic body (WB) reference dataset
was determined using iSyTE,>! which has previously been
shown to effectively identify lens-enriched genes.?> This
analysis revealed that only 12 of the 76 upregulated and 7 of
44 downregulated DRGs exhibited enriched expression in the
lens compared with reference (Supplementary Table S1).
These findings suggest that f1-integrin is not a major regulator
of lens-enriched gene expression after the completion of initial
lens morphogenesis. Therefore, PubMed was used to interro-
gate the scientific literature, and relationships between the
genes were manually assessed. This analysis revealed that 37 of
the 76 upregulated DRGs are connected to either cellular stress
responses, fibrosis or EMT in the scientific literature, whereas
only 6 of the 44 downregulated genes had those connections
(Table 3). The Fisher’s exact test of independence suggest that
the proportion of stress response, fibrotic, and EMT-related
genes is significantly different (P = 0.0001) between upregu-
lated and downregulated DRGs.

The time course of induction of four of these fibrotic/EMT
marker genes (Table 3), chosen due to their RNA abundance
(tissue plasminogen activator [Plat], Mmp 14, and Annexin A2
[AnxaZ2]) and/or importance as a marker of LEC EMT (aSMA),
were investigated by qPCR of independent lens RNA samples


http://iovs.arvojournals.org/data/Journals/IOVS/936407/iovs-58-07-47_s01.pdf
http://iovs.arvojournals.org/data/Journals/IOVS/936407/iovs-58-07-47_s01.pdf
http://iovs.arvojournals.org/data/Journals/IOVS/936407/iovs-58-07-47_s01.pdf
http://iovs.arvojournals.org/data/Journals/IOVS/936407/iovs-58-07-47_s01.pdf
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Ficure 5. Developmental expression pattern of Egrl in WT and
BIMLRI10O lenses. (A) qRT-PCR analysis of Egrl mRNA in WT and
BIMLR10 lenses from E13.5-E16.5, showing that Egrl mRNA levels
were significantly elevated in B1MLR10 lenses at all stages examined.
(B-D IF localization of Egrl protein (red) in WT and B1MLR10 lenses
from E13.5 to E16.5. At E13.5, no Egrl protein was detected in WT (B)
lenses, whereas a few Egrl-positive cell nuclei (arrow) were seen at
the central epithelium of f1MLR10 lenses ([C] arrows). At E14.5, no
Egrl protein was detected in WT lenses (D); however, many Egrl-
positive nuclei (arrows) were seen throughout the BIMLRIO lens
epithelium. At E15.5, no Egrl protein was detected in WT lenses (F);
however, Egrl protein was seen in numerous nuclei of the peripheral
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(Fig. 2), starting at E13.5, proximal to the first total loss of 1-
integrin protein from the f1MLR10 lens, and ending at E16.5,
when the morphological defects are first consistently ob-
served.?® As predicted by RNA-seq, the mRNA levels for aSMA,
the most commonly reported fibrotic marker in lens,3%37 were
significantly elevated by E14.5, and remained elevated at E16.5
(Fig. 2A), consistent with findings by IF?° (Figs. 11B, 11E).
Anxa2, a phospholipid-binding protein induced in numerous
fibrotic conditions,>3-4° was significantly elevated by E13.5,
and remained elevated later (Fig. 2B). MT1-MMP (encoded by
MMP14) is a membrane-associated matrix metalloprotease that
can activate latent TGF-B.4! The precise levels of MT1-MMP are
critical for normal tissue function, as it is induced in
fibrosis,¥243 but its absence also results in fibrosis due to
defective collagen turnover.*4 Like Anxa2, MMP14 mRNA
levels are first elevated at E13.5 in B1MLR10 lenses, and they
remain elevated later (Fig. 2C). Plat is a protease that can be a
pro-fibrotic factor.*> Its mRNA levels are also first elevated at
E13.5 in BIMLR10 lenses, and these levels remain elevated
later (Fig. 2D). Unfortunately, attempts to immunolocalize
MMP14, Anxa2, and Plat were unsuccessful due to antibody
limitations. Thus, it is unknown whether these mRNA
differences are reflected at the protein level.

Phosphorylated Smad Signaling Is Not Elevated in
E16.5 p1MLR10 Lenses

In the lens, EMT is best understood to be mediated by elevated
Smad2/3 phosphorylation, driven by TGF-B signaling.>® How-
ever, WB detected a reduction in Smad3 phosphorylation (Figs.
3A, 3B) in B1IMLR10 lenses at E16.5, which was also validated
by IF analysis comparing phosphorylated Smad3 (pSmad3)
levels between WT (Figs. 3C, 3D) and B1MLR10 lenses (Figs.
3E, 3F). Because we recently found that deletion of Bl-integrin
from the lens vesicle resulted in ectopic activation of Smad1/5/
8 phosphorylation in the lens epithelium by E12.5,'5> we also
evaluated pSmad1/5/8 levels in f1MLR10 lenses. By WB (Figs.
3G, 3H), pSmad1/5/8 levels were not significantly changed in
E16.5 B1IMLR10 lenses, and by IF, fewer pSmad1/5/8 positive
nuclei were detected in B1IMLR10 lenses (Figs. 3K, 3L) than
WT (Figs. 31, 3)). The downregulation of pSmad3 and pSmad1/
5/8 labeling in E16.5 B1MLR10 lenses appears to contradict our
prior observation?® that nuclear Smad4 levels are elevated in
this tissue but may reflect the difference between evaluating
levels of an active (pSmad3 or pSmadl/5/8) protein form
versus total levels of a protein that interacts with many
different Smads (Smad4). Evaluation of both pSmad3 and
pSmad1/5/8 distribution in the lens before E16.5 revealed no
obvious differences between WT and B1IMLRI10 lenses (data
not shown). Overall, these findings suggest that the mecha-
nism underlying the pathology of B1MLR10 lenses is indepen-
dent of either TGFp-driven elevations in Smad2/3
phosphorylation or BMP-driven activation of Smadl/5/8. We
then proceeded to investigate other signal transduction
cascades that may be responsible for the pathology of the
B1IMLR10 lens.

B1IMLR10 lens epithelium ([G] arrows). At E16.5, no Egrl protein was
detected in WT lenses (H), whereas Egrl protein was detected in
islands of nuclei in the LECs closest to the transition zone of B1MLR10
lenses (arrow). (B-I) Blue, DNA, red, Egrl; e, epithelial cell; f, fiber
cell. Scale bar: 71 pm. Error bars in (A) represent SD. Statistical
significance was determined with nested ANOVA and is given above
the error bar in the figure. *Nonspecific staining as determined by non-
nuclear distribution and its presence in WT lenses that express very
little Egrl mRNA.
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Mmusculus-JASPAR_CORE-Egr1-MA0162.1

Gene EntrezID Motif sequence Start End
(5" to 3’)
Akr1b8 14187 GGCGGGGGCGG -65 -85
Alox12 11684 TGTGAGGGCGG -55 -45
Bcam 57278 GGGGTGGGCGT -4 -34
: 320924 TGCGTGAGTGA -800 -790
66815 GGCGGGGGTGG  -1116 -1106
668158 GGGBTGGGCGG -27 -17
56222 ACGAGTGGGCGT -50 -40
182¢ 244418 TGCGGGGGTGC -61 51
Dctd 320685 GGCGGGGGLGT -1432 1422
Hjurp 381280 TGCGTGGGCAT -738 728
Hmga1 15361 CGCGGCGGCGG -72 62
Hmgn2 15331 GGCGGGGGTGG -955 945
Hspa8 15431 AGCGGGGGCGA -224 214
Htr1d 15652 GGTGGGGGCGG -1 £1
Lars2 102436 GGCCTGGGCGG -133 123
Paqr7 71904 AATGTGGGCGT 751 741
Rab6h 270192 GGCGCGGGCGG -315  -305
Rpl29 19944 TGAGTGGGTGG -1577 -1567
Tagap1 380608 CGCGTGAGGGG -75 65
Thbs1 21825 TGCGTGGGCGG -242 232
Upp1 22271 CTCGTGGGAGG -279  -269
Acta2 11475 CGAGTGGGAGG -19 9
Bend6 320705 TGCGCGCGCGG -130  -120
Col26a1 140709 GGCGTGGGCGC -76 -66
Crabp2 12904 GGCGGGGGCGG 60  -50
Crip1 12925 GGCGGGGGCGG -30  -20
CyrB1 16007 TGTGTGGGAGG -1309 -1299
Dynit1b 21648 AGCGTAGGTGG -14 -4
Egr1 13653 GGCGGAGGCGG -59 -49
Fcerlg 14127 AGTGTGGGCGA -24 -14
Faf15 14170 GGCCTGGGCGG -157 147
Glipr2 384009 TGGGCGGGCGT -1129 -1119
Hebp1 15199 CACGTGGGTGG -67 -47
Hemk1 69536 CACGTGGGTGA -363  -353
Kif4 16600 TGCGAGIGCGT -868  -858
Mmp14 17387 GGCGGGGGCGG  -23  -13
Mmp2 17390 TGTGTGGGGGG -608 -598
Mt1 17748 TGTGTGGGGGG -968 958
Nab1 17936 GGCGGGGGAGG -20 -10
Nab2 17937 GGCGTGGGCGG 271 261
Nes 18008 TGCATGGGCGT -2045 -2035
Nmb 68039 TGTGTGGGCGG 68 58
Npw 381073 GGCGGGGGCGA -151 141
Pak1 18479 GGCITGGGCGG -42 -32
Fhida3 27280 AGTGTGGGTGG -1804 -1794
Phpt1 75454 AGTGTGGGCGG -1349 -1339
Plagi1 22634 TGCGTGGGAGC -47 -77
Plekha2 83436 GGCGTTGGCGA -318  -308
Recan2 53901 AGGGTGGGAGG -1209 -1199
Rprm 67874 AGGGTGGGTGG -936 926
Tnfrsf12a 27279 GGCGGGGGCGG 48  -38
Zdhhc2 70546 GGCGGGGGCEG 46 -36
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B1IMLR10 Lenses Exhibit a Reduction in
Phosphorylated Focal Adhesion Kinase (pFAK),
While pErk1/2 and pAkt Levels Are Elevated in
LECs

Integrin activation is known to induce the phosphorylation of
FAK, which is abundantly expressed in the developing lens,*®
and plays a role in lens fiber cell morphogenesis.®” WB
revealed a near complete absence of pFAKY™97 in E16.5
BIMLR10 lenses (Figs. 4A, 4B). Because FAK is known to be
upstream of MAP kinase (MAPK) signaling,*®4° the levels of
Erk1/2 and pErk1/2 (Figs. 4C, 4D) were then assessed in WT
and B1MLR10 lenses. However, by WB of whole lenses, neither
Erk1/2 (Fig. 4C, quantitation not shown) nor pErk1/2 (Figs. 4C,
4D) levels were significantly altered in whole lenses of E16.5
B1IMLR10 mice. We hypothesized that because lens fibers,
which contribute to most of the cellular mass of the lens, have
high levels of pErk1/2 due to the FGF signaling required for
their differentiation,*3-5%-51 the evaluation of whole lenses may
mask expression changes specifically exhibited by B1IMLR10
LECs. Therefore, we also evaluated pErk1/2 levels in E16.5
LECs via immunohistochemistry (IHC). Notably, this analysis
revealed that pErk1/2 levels are strikingly elevated in E16.5
B1IMLR10 LECs (Fig. 4E arrows) compared with WT (Fig. 4E).

Because pErk1/2 levels were elevated in f1IMLR1O lenses,
we also tested Akt phosphorylation (pAkt) levels in E16.5
mutant and WT lenses using IHC. Similar to pErk1/2, pAkt is
elevated in the LECs of B1IMLR10 lenses compared with WT
(data not shown).

p1IMLR10 Lenses Exhibit Upregulation of the
Immediate Early Response TF, Egrl

The Ras/MAPK/Erk pathway is able to directly reprogram
cellular behavior via upregulation of immediate early response
(IER) TFs.5%53 Notably, three of the genes upregulated in
B1MLR10 lenses, Fos, Junb, and Egrl (Table 3), are IER TFs
whose mRNA levels are directly regulated via diverse signal
transduction cascades, including the MAPK pathway.>3-%¢ Of
these, Egrl was selected for further study because not only was
it expressed at the highest levels of the three IER genes, it was
also among the most upregulated (10-fold) genes overall in
B1MLR10 lenses (Table 3).

Next, the time course of Egrl upregulation relative to the
loss of Pl-integrin protein from the B1IMLR10 lens was
evaluated by qRT-PCR and immunolocalization (Fig. 5). Egrl
mRNA levels are significantly elevated shortly after the loss of
Bl-integrin protein from the lens at E13.5,2° and Egrl mRNA
levels remain elevated until at least E16.5 (Fig. 5A). Egrl
protein was generally not detected in WT lenses between
E13.5 and 16.5 (Figs. 5B, 5D, 5F 5H). Consistent with the
transcript-level analysis, Egrl-positive nuclei (arrows) were
observed in the central epithelium of f1MLR10 lenses at E13.5
(Fig. 5C), and most of the lens epithelium at E14.5 (Fig. 5E). At
E15.5 and E16.5, most Egrl-positive cell nuclei were confined

Ficure 6. The putative promoters of genes differentially regulated in
BIMLR10 lenses are enriched in Egrl DNA-binding motifs. (A)
Sequence logo for the JASPAR core Egrl binding site based on the
previously reported Egrl position weight matrix.'®® (B) Motif
enrichment analysis revealed a statistically significant enrichment of
Egrl DNA-binding motifs in the putative regulatory regions 2.5 kb
upstream of TSS of DRGs identified in f1MLR10 lenses. The start and
end positions of the promoter region that matches the Egrl DNA-
binding motif (5’ to 3’; position relative to TSS) for each candidate DRG
are given. Upregulated DRGs are indicated in red, and downregulated
DRGs are indicated in green.
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Ficure 7. Developmental expression pattern of Nab2 in WT and
BIMLR10O lenses. (A) qRT-PCR analysis of Nab2 mRNA in WT and
B1IMLR10 lenses from E13.5 to E16.5, showing that Nab2 mRNA levels
were significantly elevated in BIMLR10 lenses between E13.5 and
E15.5, whereas these levels were similar in WT at E16.5. (B-I) IF
localization of Nab2 protein (red) in WT and BIMLR10 lenses from
E13.5 to E16.5. At E13.5, no Nab2 protein was detected in either WT
(B) or B1IMLR10 lenses (C). At E14.5, no Nab2 protein was detected in
WT lenses (D); however, Nab2-positive nuclei (arrows) were seen in
the peripheral f1MLR10 lens epithelium. At E15.5, no Nab2 protein
was detected in WT lenses (F); however, Nab2 protein was seen in a
few nuclei of the peripheral B1IMLR10 lens epithelium (G, arrow). At
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Ficure 8. Developmental expression pattern of Egrl and Nab2 in WT
and B1LE lenses. (A-D) Sections from E11.5 eyes stained for Egrl (red,
[A, B]) and Nab2 (red, [C, D]). (A) WT lenses lack Egrl immunore-
activity at E11.5, whereas (B) Egrl-positive nuclei (arrows) were
detected in the lens vesicle of E11.5 B1LE lenses. (C) No Nab2
immunostaining was detected in WT lenses at E11.5. (D) Nab2-positive
nuclei (arrows) were found in the lens vesicle of E11.5 B1LE lenses.
(E-H) Sections from E13.5 eyes stained for Egrl (red, [E, F]) and Nab2
(red, G, H). Both WT (E) and BILE lenses (F) showed no Egrl
immunoreactivity at E13.5. (G) No Nab2 immunostaining was observed
in WT lenses at E13.5, whereas (H) many Nab2-positive nuclei
(arrows) were found in the abnormally differentiating fiber cells in
E13.5 B1LE lenses. (A-H) Blue, DNA; (A, B) and (E, F) red, Egrl; (C, D)
and (G, H) red, Nab2; lv, lens vesicle; r, retina; e, lens epithelium; f, lens
fibers. Scale bar: 71 pm (A-H).

E16.5, no Nab2 protein was detected in WT lenses (H), whereas Nab2
protein was detected in islands of nuclei in the LECs closest to the
transition zone of BIMLR10 lenses (arrow). (B-I) Blue, DNA; red,
Nab2; e, epithelial cell; f, fiber cell. Scale bar: 71 um. Error bars in (A)
represent SD. Statistical significance was determined with nested
ANOVA and is given above the error bar in the figure.
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Figure 9. Deletion of Egrl from f1MLR10 mice partially rescues the lens phenotype. (A) An eye isolated from a 2-month-old f1MLR10 mouse. (B)
An eye isolated from a f1MLR10/Egr1~~ mouse, showing that the microphthalmia is less severe in mice lacking Egrl. (C) An eye isolated from a WT
mouse showing the relative size of a normal mouse eye. (D) No lens tissue was isolatable from BIMLR10 eyes via dissection. (E) Bright-field
micrograph of a lens isolated from a 2-month-old $1MLR10/Egr1~~ mouse, showing that it is smaller than normal and not transparent. (F) Bright-
field micrograph of a lens isolated from a 2-month-old WT mouse. (G) IF detection of Aquaporin0 (red) in a section from a 2-month-old B1MLR10
eye, showing that these eyes contain very few cells expressing the marker of lens fiber cells at this age. (H) IF detection of Aquaporin0O (red) in a
section from a 2-month-old B1MLR10/Egr1~~ eye, showing that these eyes have much more tissue staining for aquaporin0 (red), although the lens is
still profoundly abnormal. (D IF detection of aquaporinO (red) in a section from a 2-month-old WT eye, showing the normal distribution of

aquaporinO in lens fibers. (G-D Blue, DNA; red, Aquaporin0; 1, lens; r, retina. Scale bar: 71 pm.

to the peripheral lens epithelium (Figs. 5G, 5D) in B1MLR10
lenses.

Egrl Binding Sites Are Present and Enriched in
Genes Upregulated in f1MLR10 Lenses

Next, to investigate the molecular connection between
upregulation of IER transcription factors and the other genes
misregulated in the f1MLR10 lens, we took two approaches:
(1) examine if any TF-binding motifs were enriched in the
DRGs; and (2) specifically analyze if the Egrl motif is
overrepresented in the putative promoters of the DRGs. The
iRegulon package’? was used to identify the enrichment of
known TF-binding motifs in the putative regulatory region (10
kb total sequence analyzed from —5kb to +5kb of the TSS of the
120 B1IMLR10 lens DRGs. This analysis identified enrichment
and overrepresentation of binding sites for Cys2His2 TFs (such
as Egrl), leucine zipper TFs (such as the AP1 factors Fos and
Junb), and members of the Ets domain family (which encode
direct transcriptional effectors of Erk phosphorylation)>®
(Table 4) in these putative regulatory regions. Further,
iRegulon analysis identified overrepresentation of Egrl binding
sites in 38% (46/120) of the DRGs, including 32 of the

upregulated and 14 of the downregulated candidates with a
significant (>3) NES of 5.8 (Table 4).

Egrl is a multifunctional TF that regulates cellular stress,
apoptosis, and fibrosis in different contexts.’*->° As Egrl is
upregulated in f1MLR10 lenses and its binding sites were also
overrepresented in the putative regulatory regions of f1MLR10
lens DRGs, we performed a detailed analysis to determine the
presence of Egrl binding motifs in the putative promoters of
these genes irrespective of their enrichment. Thus, a 2.5-kb
region upstream of the TSS of all 120 DRGs was analyzed for
putative Egrl binding motifs using the JASPAR position weight
matrix> for Egrl, CORE-Egr1-MA0162.1 (Fig. 6A). This analysis
revealed that the 5’ flanking sequence of 31 of the 76
upregulated DRGs and 21 of the 44 downregulated DRGs
contained consensus Egrl binding motifs (Fig. 6B). To gain
further insight into potential molecular connections between
Egrl and the DRGs, we examined the scientific literature to
identify PIMLR10 lens DRGs that may have published
connections with this transcriptional regulator. We find 18 of
the 76 upregulated DRGs to be either regulated by or
coregulated with Egrl (see Table 3, Supplementary Table S1).
In contrast, only 1 of the 44 downregulated DRGs has a
previously described connection with Egrl. Among the 19
DRGs with prior evidence connecting them with Egrl, 8 are


http://iovs.arvojournals.org/data/Journals/IOVS/936407/iovs-58-07-47_s01.pdf
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Ficure 10.  Analysis of apoptosis and fiber cell differentiation markers in f1MLR10/Egrl~~ lenses. (A-C) IF of cleaved Caspase 3 (red) in newborn
lenses. WT lenses (A) exhibit no cleaved Caspase 3 immunoreactivity under the conditions used. Intense cleaved Caspase 3 immunoreactivity was
seen in both the lens fibers and epithelium (arrow) of f1MLR10 lenses (B), whereas little to no cleaved Caspase 3 immunoreactivity was seen in
newborn B1MLR10/Egr1~~ lenses (C). (D-F) TUNEL staining of newborn lenses. WT lenses exhibit no TUNEL-positive nuclei (green) at birth (D),
whereas TUNEL staining was detected in both the epithelial cells and fibers of both f1MLR10 (E) and B1MLR10/Egr1~~ lenses (F) (arrows). (G-I
Immunolocalization of cMaf in E16.5 lenses. WT lenses (G) exhibit strong cMaf labeling in the transition zone nuclei in the midst of differentiating
into lens fiber cells. cMaf staining is seen in a similar pattern in B1MLR10 lenses, although the number of positive nuclei appears expanded (H).
B1MLR10/Egr1~~ lenses (I) appear to exhibit brighter cMaf staining overall, and this staining extends farther into the lens epithelium than either
WT or BIMLR10 lenses. (J-L) Immunolocalization of Prox1 in E16.5 lenses. WT lenses (J) exhibit strongest Prox1 labeling in the transition zone
nuclei in the midst of differentiating into lens fiber cells, whereas some Prox1 protein is detected in LECs at this age. Prox1 staining is seen in a
similar pattern in f1MLR10 lenses, although positive nuclei are brighter in LECs than in control (K). f1MLR10/Egrl~~ lenses (I) stain more
intensely for Prox1 immunoreactivity in LECs than either WT or BIMLR10 lenses. (A-L) Blue, DNA; (A-C) red, cleaved Caspase 3; (D-F) green,

TUNEL positive; (G-I) red, cMaf, (J-L) red, Prox1; e, epithelial cells; f, fiber cells. (A-F) Scale bar: 142 um; (G-D) scale bar: 62 pm; (J-L) scale bar:
142 pm.

validated as direct Egrl target genes in other cells or tissues
(Table 3).

negative feedback loop to downregulate Egrl expression, thus
limiting the IER,>8-°° while simultaneously stimulating Egrl-
mediated transcription at promoters with weak Egrl binding
sites.®1:2 Therefore, we investigated the expression pattern of
Nab2 in B1IMLR10 lenses (Fig. 7). Nab2 transcript levels were
significantly upregulated at E13.5, exhibit a further sharp

The Established Egrl Target Gene Nab2 Is
Upregulated in f1MLR10 Lenses

Interestingly, Ngfi-A binding protein 2 (Nab2), which exhibits
the highest extent of upregulation (14-fold) among these eight
known Egrl direct target genes (Fig. 6B; Table 3), is known to
be intricately involved in Egrl function. Nab2 participates in a

elevation at E14.5, and remain elevated in E15.5 B1MLR10
lenses (Fig. 7A). By immunolocalization, no Nab2 protein was
detected in the WT lens at any stage examined (Figs. 7B, 7D, 7E
7H). Although Nab2 protein was not detected in the $1MLR10



Investigative Ophthalmology & Visual Science

B1-Integrin and Cellular Stress in Lens

wildtype

B1-integrin

aSMA

Nab2

Ficure 11.

IOVS | August 2017 | Vol. 58 | No. 10 | 3908

B1MLR10 B1MLR10/Egr1--

Molecular phenotype of B1MLR10/Egr1~~ lenses. (A-C) Sections from E16.5 eyes stained for Bl-integrin (red) and o-smooth muscle

actin (green). E16.5 WT lenses (A) exhibit Bl-integrin immunoreactivity (red) in both lens epithelium and fiber cells. The intense Bl-integrin
staining at the lens periphery is in the tunica vasculosa (arrows). E16.5 BIMLR10 (B) and BIMLR10/Egrl™~ (O) lenses lack Pl-integrin
immunoreactivity in lens tissue, but retain the intense fl-integrin immunoreactivity in the tunica vasculosa (arrows). (D-F) The oaSMA (green)
channel alone of the images shown in (A-C). No aSMA immunoreactivity was detected in WT lenses (D) at E16.5; however, both f1MLR10 (E) and
B1IMLR10/Egr1~~ (F) lenses exhibit aSMA immunoreactivity (green, arrows). (G-I) Sections from E16.5 eyes stained for Nab2. (G) WT lenses lack
Nab2 immunoreactivity at E16.5. (H) Nab2-positive nuclei are detected in the peripheral epithelium of E16.5 B1MLR10 lenses. (I) No Nab2
immunostaining was detected in B1MLR10/Egr1~~ lenses. (A-C and G-I) Blue, DNA; (A-F) green, aSMA; (A-C) red, B1-integrin; (G-I) red, Nab2; e,
lens epithelium; f, lens fibers. Scale bar: 142 pm (A-F); scale bar: 71 pm (G-D).

lens at E13.5 (Fig. 70), islands of cells exhibiting nuclear
localized Nab2 (arrows) were present in peripheral LECs at
E14.5 to E16.5 (Figs. 7E, 7G, 7D. This confirmed that the
known Egrl target Nab2 is also upregulated in f1MLR10 lens,
giving insight into the molecular consequence of Egrl
upregulation that results from B1 integrin deletion in the
B1MLR10 lens.

Egrl and Nab2 Are Also Upregulated Early After 1
Integrin Deletion in B1LE Lenses

Previously, we found that deletion of 1 integrin from the lens
vesicle (B1LE mice) results in a complete transition of the lens
epithelium to fiber cells.!> Because upregulation of the Egrl/
Nab2 genes is a significant molecular consequence of P1-
integrin deletion from B1IMLR10 lenses, we sought to test the
universality of this finding between the early and late B1
integrin deletion mutants by examining Egrl expression in
B1LE lenses at E11.5, proximal to the loss of f1-integrin protein
from the lens, as well as at E13.5, when the B1LE phenotype is
seen. While occasional Egrl-positive cell nuclei were detected
in WT E11.5 (Fig. 8A) lenses, numerous Egrl-positive nuclei
(arrows) were observed in BILE lens vesicles (Fig. 8B);
however, by E13.5, neither WT (Fig. 8E) nor B1LE (Fig. 8F)
lenses exhibited Egrl staining. We also tested the levels of

Nab2 in B1LE lenses. Although no nuclear Nab2 staining was
detected in WT lenses at either E11.5 (Fig. 8C) or E13.5 (Fig.
8G), B1LE lenses exhibited nuclear Nab2 staining in subsets of
cell nuclei throughout the lens vesicle at E11.5 (Fig. 8D) and in
the remaining anterior lens cells at E13.5 (Fig. 8H), which have
not completely yet transformed to lens fibers. Thus, B1 integrin
deletion from the lens vesicle also led to the upregulation of
Egrl and its target Nab2 in the lens, although this was
restricted to times proximal to 1 integrin deletion.

Egrl Deletion Partially Rescues the f1IMLR10
Phenotype

Because the bioinformatics and experimental analyses suggest-
ed that Egrl is likely involved in the regulation of several
BIMLR10 lens DRGs (Table 3), we sought to determine
whether deletion of Egrl was sufficient to ameliorate the
consequences of Bl-integrin loss from the lens. Therefore, we
generated mice that lacked both the fI-integrin and Egrl
genes from the lens (BIMLR10/Egrl~"). As previously
reported, adult BIMLR10 mice lack externally visible eyes,
which are severely microphthalmic (Fig. 9A) with little to no
identifiable lens tissue on dissection (Fig. 9D), although small
islands of cells stain positive for the lens fiber marker,
Aquaporin0 (Fig. 9G; n = 6). In contrast, the eyes of adult
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B1IMLR10/Egrl ™~ mice are notably larger than those of
B1IMLR10 animals (Fig. 9B (middle), » = 7). Upon dissection,
6 of 7 adult f1MLR10/Egr1~~ eyes contained morphologically
identifiable lens tissue (Fig. 9E) that was strongly AquaporinO
positive (Fig. 9H; n = 6).

Because newborn BIMLR10 and B1IMLR10/Egrl~~ mouse
lenses were of similar size, we then evaluated whether the
maintenance of lens material in adult B1MLR10/Egr1~~ lenses
(Fig. 8) was due to alterations in apoptosis. As expected, no
cleaved Caspase 3 immunoreactivity (Fig. 10A) nor TUNEL-
positive nuclei (Fig. 10D) were detected in newborn WT
lenses. As previously reported, f1MLR10 lenses exhibited both
numerous TUNEL-positive nuclei (Fig. 10E, arrows) and
abundant cleaved Caspase 3 (Fig. 10B) staining. Notably,
deletion of Egrl from B1IMLR10 mice led to a marked
attenuation of cleaved Caspase 3 staining in newborn lenses
(Fig. 10C). However, more TUNEL-positive nuclei were
detected in B1IMLR10/Egr1~~ lens fiber cells (Fig. 10F, arrows)
than in B1IMLR10 lenses (Fig. 10E, arrows). As low-level
Caspase 3 cleavage has been associated with lens fiber cell
differentiation,®>% we also assessed whether the expression of
the Erk responsive fiber cell differentiation regulators, cMaf
(Figs. 10G-D and Prox1 (Figs. 10J-L), was affected by Egrl
deletion from B1MLR10 lenses. Qualitatively, f1MLR10/Egr1~~
LECs stain more intensely for cMaf and Prox1 than f1MLR10
LECs, suggesting that the loss of intense cleaved Caspase 3
staining from P1IMLR10/Egr1~~ lenses is not associated with a
loss of the aberrant fiber cell differentiation pathway activation
previously reported?® in B1MLR10 lenses.

As the ocular phenotype of adult BIMLR10 mice was less
severe in animals that also lacked the Egri gene, we
investigated their molecular phenotype at E16.5, the stage at
which the first morphological defects are observed in
BIMLR10 lenses. As we previously reported,' WT E16.5
lenses exhibit high levels Bl-integrin immunoreactivity in the
lens epithelium and newly elongating cortical fibers, whereas
these levels are reduced in the terminally differentiating
nuclear fibers (Fig. 11A). In contrast, neither f1IMLR10 (Fig.
11B) nor B1IMLR10/Egr1~~ (Fig. 11C) lenses exhibit detectable
Bl-integrin protein, although, in both cases, other ocular
structures, including the TVL (arrows), still stain strongly for
B1-integrin (Figs. 11B, 11C). We then investigated whether the
deletion of Egrl altered the pattern of aSMA upregulation in
B1IMLR10 lenses, as this is the best characterized fibrotic
marker in the lens. As previously reported,?® WT lenses do not
exhibit detectable levels of aSMA protein at E16.5 (Fig. 11A;
Fig. 11D is aSMA alone), whereas B1IMLR10 lenses exhibit
obvious aSMA in LECs (Fig. 11B; Fig. 11E is aSMA alone,
arrows). This upregulation of aSMA was similar in f1MLR10/
Egrl~~ lenses (Fig. 11C; Fig. 11F is aSMA alone, arrows),
indicating that Egrl cannot be the sole driver of aSMA
upregulation as a consequence of Bl-integrin deletion in the
lens. Notably though, although the expression of Nab2 protein
was obviously upregulated in BIMLR10 lenses (Fig. 11H)
compared with WT (Fig. 11G), no Nab2 protein was detected
in BIMLR10/Egrl~~ lenses (Fig. 11I), indicating that Nab2
upregulation is solely under Egrl control.

DIsCcUSSION

B1-integrin is localized to the basal surface of all lens cells and
is therefore believed to be a regulator of the interactions
between lens cells and the lens capsule.!°-18 B1-integrin is also
localized to the apical tips and lateral membranes of lens fiber
cells where it stabilizes cortical F-actin.'4 In LECs, the function
of B1-containing integrins is complex and changes during lens
development. Deletion of Bl-integrin from the lens vesicle in
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B1LE mice leads to defects in lens capsule deposition, as well
as in the exit of LECs from the cell cycle, and their
differentiation into lens fibers.!> In contrast, loss of Bl-integrin
after the completion of primary lens morphogenesis
(BIMLR10) leads to a distinct phenotype, wherein LECs
initially remain in the cell cycle, but become disorganized,
and coexpress the “early” lens fiber cell markers, B-crystallin
and cMaf, along with the fibrotic marker aSMA, which is
followed by their loss via apoptosis.?® Here we further our
understanding of the molecular basis of this phenotype via
gene expression profiling by RNA-seq of mutant lenses, and its
partial rescue by deletion of an abnormally upregulated
transcriptional regulator.

Deletion of p1-Integrin After the Completion of
Initial Lens Morphogenesis Induces Stress
Response and Fibrosis-Related Gene Expression

Because the morphological abnormalities of B1MLR10 mouse
lenses first become apparent at E16.5, we performed RNA-seq
expression profiling on lenses a day earlier, at stage E15.5, to
identify molecular changes proximally resulting from f1-
integrin deletion, while minimizing the detection of secondary
changes. On applying filtering criteria designed to reveal
biologically relevant changes in gene expression, 120 DRGs
were found. Although several proteins/TFs were found to be
altered in BIMLR10 lenses via IE2° they were not found to be
differentially expressed by RNA-seq. It is likely that either the
evaluation of whole lenses masked the subtle changes
specifically exhibited by BIMLR10 LECs or the differential
protein expression is not controlled at the level of transcrip-
tion. All the 120 DRGs were prioritized, and analyzed by a
variety of bioinformatics tools that use gene ontology databases
to identify commonly regulated pathways. However, although
“apoptosis,” “integrin signaling,” and several pathways related
to Ras/MapK signaling were identified as relevant, the
pathways identified by this method (see Fig. 1) were each
based on only a few DRGs, leading us to explore more
approaches to gain biological insight into the phenotype.

A comprehensive literature search revealed that nearly half
of the 76 upregulated DRGs had known connections to stress
response and/or fibrotic pathways. This included aSMA, the
most commonly used marker of EMT in the lens,3%37 which we
have previously reported to be upregulated at the protein level
in E16.5 B1IMLR10 lenses.2° Validation of four of these genes by
qRT-PCR revealed that their mRNA levels are first elevated
shortly after loss of B1-integrin protein from the B1MLR10 lens,
which is 2 to 3 days earlier than the onset of the obvious lens
phenotype.?® Thus, this induction of stress/fibrotic responses
in B1MLR10 mice likely proximately results from the loss of 1-
integrin at E12.5 to E13.5. However, although TGF-§ is the
most intensively studied regulator of EMT and aSMA expres-
sion in LECs,3%95-%7 the levels of its downstream regulator,
pSmad3, were significantly downregulated in B1MLR10 lenses
(Figs. 3A-F) suggesting that TGF/Smad signaling is not driving
the B1IMLR10 phenotype.

p1-Integrin Negatively Regulates Erk1/2 and Akt
Signaling in LECs

FAK is expressed in the rodent lens in a pattern similar to 1-
integrins,'®25 and is necessary for fiber cell morphogenesis in
zebrafish.4” Because integrin activation results in the phos-
phorylation of FAK in other cell types, %8 it was not surprising
that pFAK (Tyr397) levels are greatly attenuated in B1IMLR10
lenses. The loss of pFAK from B1MLR10 lenses is also
consistent with the apoptosis observed in newborn f1MLR10
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TaBie 4. List of Statistically Overrepresented Motifs (Normalized Enrichment Score >3) in the Upstream Region of DRGs

S. No | Enriched Motif ID | Motif NES (Normalized | Enriched Motif Containing Up- and | Motif Logo
Information Enriched Score) | Down-Regulated DRGs
1 Factorbook-Egr1 Cys2His2-type | 5.78 Ahnak, Alox12, Ankrd34c, Anxa2, R
Arhgap4, Bcam, Bend6, C1qa, .
Ccbe1, Ccdc85c, Crabp2, Cyr61, gﬂ Q
D8Ertd82e, Detd, Egrt, Empf, P I VI S
Erbb4, Fgf12, Fgf15, Figla, Fos, £ T T T
Fut10, Gja4, Hmga1, Hmga1-rs1,
Hspa$8, Itgh8, Junb, Kif4, Ldb2,
Mmp14, Nab1,Nab2, Pak1, Paqr7,
Phlda3, Plekha2, Ptrf, Rab6b,
Rcan2, Rerg, S100a13, Tagin,
Thbs1, Tnfrsf12a, Zdhhc2
2 Swissregulon Unknown 5.20 Acta2, Cyr61, Egr1, Fgf15, Fos,
(SRF) p3 Glipr2, Junb, Lgals3, Tagin, Thbs1, R SR
Tuft1 =,
gl L8 CAQ IR
3 Tfdimers- Ets domain- 5.00 Ahnak, Bcam, Ccdc109b, Crabp2, = dimers-MDOOOSI
MDO00081 family Erbb4, Fcer1lg, Hmga1, Hmga1-rs1, o
Hmgn2, Junb, Nes s B it
SRR AY
4 Transfac_public- Leucine-zipper | 3.10 Bend6, Crabp2, Hmga1, Hmga1-rs1, g (WD BBICMINN
M00490 Htr1d, Klk1b26, Lgals3, Tnfrsf12a 2
(V$BACH2_01) & QAT A TCA =
5 Transfac_public- Leucine-zipper | 3.00 Bend6, Fgf12, Hmga1, Hmga1-rs1, ———__—
M00495/V$BACH1 Htr1d, KIk1b26, Lgals3, Plagl1, i
01 Tnfrsf12a §j A T

LECs, because pFAK is important for cell survival in other
cellular contexts.®®-7° Notably, FAK deletion from fibroblasts
leads to the upregulation of aSMA expression,®® consistent
with the upregulation of aSMA expression found B1IMLR10
lenses at E16.5.

However, in fibroblasts as well as other cell types, the loss
of integrin-mediated FAK phosphorylation often results in a
loss of Erk1/2 phosphorylation, #7173 whereas Erk1/2 and Akt
phosphorylation are upregulated in both f1MLR10 (this study)
and B1LE!> LECs. There are other precedents for increased Erk
and/or Akt activation on integrin deletion, although the
proposed mechanisms are diverse. For instance, deletion of
emilinl, an a4B1 and o9P1 ligand, from the skin, leads to a
downregulation of the phosphatase, PTEN, leading to sustained
Erk and Akt phosphorylation.”¥ In mesangial cells, o1B1-
integrin deletion results in elevated pERK levels due to the
ability of this integrin to negatively regulate epidermal growth
factor receptor signaling.”> Thus, it appears likely that B1-
integrins can limit Erk/Akt pathway activation in a variety of
cellular contexts, including the embryonic lens epithelium.

The IER TF, Egrl, Is Upregulated in f1MLR10
Lenses Shortly After p1-Integrin Loss

Interrogation of the B1MLR10 lens DRGs specifically for TFs
regulated by pErk/pAKT activation led to identification of the

IER TFs Egrl, Fos, and Junb, all of which were upregulated in
these mutant lenses. We focused on Egrl because active Erk
can elevate Egrl levels by phosphorylating the Ets-family TF
Elk-157-5%; Egrl is the most upregulated, and most highly
expressed, of these three IER genes in E15.5 B1MLR10 lenses;
Egrl can both drive,”® and make cells resistant to,”” apoptosis;
Egrl upregulation is first detected coincident with Bl-integrin
protein loss from both BIMLR10 and B1LE lenses; and the
detection of Egrl protein first in the central lens epithelium,
then later in peripheral LECs, correlates with the pattern of
LEC loss in the B1MLR10 null lens.

It should be noted that Egrl mRNA levels remain elevated in
the E16.5 B1IMLR10 lens, although few Egrl-positive cells were
detected at this time by immunolocalization. Although the
original reports suggested that Egrl protein levels are solely
controlled at the level of transcription, more recent investiga-
tions show that Egrl protein levels are controlled by microRNA
regulation of protein translation’®7° while Egrl undergoes
extensive posttranslational modifications, including phosphor-
ylation, sumoylation, and acetylation, which affect its stabili-
ty.89-82 Thus, it is not surprising that Egrl protein and mRNA
levels do not always correlate.

This upregulation of IER gene expression is likely to be
functionally relevant to the B1IMLR10 lens phenotype as an
unbiased analysis of the 76 upregulated genes revealed that
their promoters were enriched in binding motifs for Ets factors,
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which are known direct transcriptional effectors of Erk
signaling,>> leucine zipper TFs (like Fos and Junb), and Egrl.
This finding suggested that these TFs had the potential to drive
the upregulation of many of the DRGs. Further analysis of the
DRGs for the presence of Egrl binding motifs in their putative
promoters revealed that 52 of the 120 DRGs had consensus
Egrl binding sites in the 2.5 kb of sequence upstream of their
TSS. Notably, eight of these promoters are already known to be
directly regulated by Egrl (Table 3). For example, Egrl directly
binds to and upregulates expression driven by the promoter of
the Kruppelrelated TE KIf4, in HepG2 cells.8> Egrl also
directly binds to and upregulates the expression of MMP14, a
gene encoding MT1-MMP, a matrix metalloprotease that can
activate latent TGF-B.3% Similarly, Egrl activates the expression
of the most upregulated TF in the E15.5 B1IMLR10 lens, Nab2,
which is best known for its ability to heterodimerize with Egrl,
acting as an Egrl corepressor.®>-87 Notably, Nab2 upregulation
driven by Egrl blocks the ability of Egrl to upregulate its own
expression, limiting the IER.>7-%° This negative feedback loop
likely explains why Nab2 protein upregulation persists in 1-
integrin null lens cells longer than Egrl.

However, Nab2-Egrl interactions also can stimulate gene
expression driven by promoters harboring weak Egrl binding
sites.®! This functional complexity may explain the observation
that consensus Egrl binding sites were identified in the
promoters of both upregulated (7 =31) and downregulated (72
= 21) DRGs. Overall, this analysis suggests that the upregu-
lation of Egrl may participate in both the positive and negative
regulation of B1MLR10 DRGs.

Elevated Egrl Expression in f1MLR10 LECs Causes
a Subset of the f1MLR10 Lens Phenotype

In the eye, Egrl mediates the connection between image focus
on the retina and eye growth, and Egrl null mice develop
myopia associated with elevated growth of the sclera and
changes in lens optics.®® In the lens, Egrl expression is
upregulated during cellular stresses such as selenite treat-
ment,%° whereas knockdown of Egrl in cultured LECs can
attenuate selenite-induced cell death.”® Thus, we generated
B1MLR10/Egr1~~ mice to evaluate the extent to which the
B1IMLR10 lens phenotype was a consequence of Egrl
upregulation. Notably, deletion of the Egrl gene partially
rescued the microphthalmia seen in B1IMLR10 adults. This
partial rescue is likely related to the observed attenuation of
Caspase 3 cleavage in perinatal B1IMLR10/Egrl~~ lenses,
leading to enhanced cell survival of the lens epithelium
compared with B1MLR10 lenses. However, it should be noted
that BIMLR10/Egr1~~ lenses are still TUNEL positive, partic-
ularly within the lens fibers, suggesting that either multiple cell
death pathways are active in B1MLR10 lenses, or that Egrl is
able to simultaneously influence prosurvival and proapoptotic
pathways in the lens. Alternatively, as f1MLR10 lenses lacking
Egrl appear to upregulate the Erk responsive TFs cMaf®! and
Prox1,?° Egrl upregulation in Bl-integrin null LECs may limit
the ability of these cells to enter the fiber cell differentiation
pathway.

Another major feature of B1IMLR10 lenses is the upregu-
lation of the “fibrotic” marker, aSMA, in LECs. However, Egrl
expression is also found to be upregulated in the B1LE lens,
which does not exhibit upregulation of aSMA,'> and we find
that deletion of Egrl from the f1MLR10 lens did not noticeably
affect the upregulation of aSMA. However, Egrl appears to
directly control the expression of Nab2 in the lens. First,
although both Egrl and Nab2 mRNA and protein levels are
upregulated in BIMLR10 lenses proximal to the loss of P1-
integrin protein, Nab2 upregulation lags behind that of Egrl.
Second, Nab2 protein expression is not upregulated in
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B1IMLR10 lenses lacking Egrl, whereas Nab2 is highly
upregulated in BIMLR10 LECs. These observations are
consistent with the known ability of Egrl to bind to the
Nab2 promoter, activating Nab2 expression, which subse-
quently downregulates Egrl expression, limiting the IER.®? The
possibility that Egrl is generally induced in the lens in response
to cellular stress, and the role its induction plays in mediating
cellular stress responses, is a fruitful topic of future study.

CONCLUSIONS

B1l-integrin deletion from the lens after the completion of its
primary morphogenesis (B1MLR10) leads to activation of Erk/
Akt signaling, upregulation of IER genes, as well as numerous
markers of cellular stress. As Egrl expression is also elevated in
lenses undergoing stress postnatally,”’>*3 and deletion of Egrl
from BIMLRI1O lenses attenuates part of the phenotype, the
role of Egrl in mediating stress responses in the lens
epithelium represents a novel finding worthy of further
investigation.
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