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ABSTRACT
Mounting evidence indicates that cancer treatments cause numerous deleterious effects, including central
nervous system (CNS) toxicity. Chemotherapy-caused CNS side effects encompass changes in cognitive
function, memory, and attention, to name a few. Although chemotherapy treatment-induced side effects
occur in 16–75% of all patients, the mechanisms of these effects are not well understood. We have
recently proposed a new epigenetic theory of chemo brain and, in a pioneer study, determined that
cytotoxic chemotherapy agents induce oxidative DNA damage and affect molecular and epigenetic
processes in the brain, and may be associated with brain aging processes.

In this paper, we discuss the implications of chemo brain epigenetic effects and future perspectives, as
well as outline potential links with brain aging and future translational research opportunities.
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Introduction - neurotoxicity of chemotherapy

Elevated cancer rates have resulted in increased awareness and
thus the outpouring of research seeking new ways to improve
cancer prevention, achieve effective early detection and precise
diagnostics, and, most important of all, develop effective treat-
ment options. Ensuring that cancer patients have the best pos-
sible quality of life and suffer minimum side effects from their
treatments is of utmost importance. Chemotherapy is a key
cancer treatment strategy. The vast majority of cytotoxic che-
motherapy agents target rapidly dividing cells, including both
cancer cells and normal cells that are growing and dividing. As
such, these agents can have numerous toxic side effects, such as
hair loss, skin changes, gastro-intestinal syndromes, and dys-
function of the bone marrow, among many other effects.1,2

The brain is the key coordinating organ that is responsible
for every function of our bodies. Cancer treatment side effects
also manifest in central nervous system (CNS) toxicity.3 Recent
research shows that chemotherapy agents are, in fact, more
toxic to healthy brain cells than to the cancer cells they were
designed to treat.4 Chemotherapeutic drugs cause side effects
in the cognitive domains of memory, attention, processing
speed, and executive function, and these chemotherapy-
induced persistent cognitive dysfunction.5-12 This condition,
often described by patients as brain fog, is called “chemo
brain”.13 The duration of chemo brain symptoms ranges from
short to long,14-16 with around one third of patients reporting
side effects for months to as long as 5 to 10 y after the cessation
of their treatments.13,17

In breast cancer alone, more than 60 studies have investi-
gated and found various degrees of association between chemo-
therapy and cognitive impairments.18 Nevertheless, which

cognitive domains are most affected and most vulnerable to
chemotherapy treatment remain unclear. This knowledge gap
is due to the multifactorial nature of the neuropsychological
tests used in various clinical studies.19 In a longitudinal study
by O’Farrel et al., they found the following 4 cognitive factors
that were affected in cases of chemo brain: processing speed,
working memory, visual memory, and verbal memory. These
test findings agree well with patients’ self-reports of experienc-
ing losses in cognitive function.19 At the same time, other stud-
ies have found that self-reported cognitive function
impairment is weakly correlated with testing performance on
neurocognitive tasks.20 However, this dichotomy may suggest
that tests of neurocognitive tasks may be not fully accurate in
assessing how well patients perform in their everyday lives.
Subjective reports of impairment from patients, while provid-
ing grounds that issues occur in post-chemotherapy treatment,
are based on assignments of cognitive tests that assess a partic-
ular cognitive domain. A recent elegant scoping review by
Olson and colleagues21 focused on the comprehensive cognitive
assessment of adult cancer chemotherapy patients concluded
that while cognitive function is a constant and burning concern
of individuals diagnosed with cancer, “additional research is
needed to find an objective testing protocol that is more highly
correlated with perceived cognitive changes”.21 Nevertheless,
current clinical reports do not provide any information on the
molecular and cellular changes that go on in the brain and serve
as a foundation for cognitive deficits.

New insights into mechanisms of chemo brain

The underlying mechanisms of chemotherapy-related cognitive
dysfunction need to be further elucidated.22 Recently,
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increasing amounts of data have shown that chemotherapy
imposes toxic effects on the cellular populations of the CNS.22

Chemotherapy induces oxidative stress and apoptosis, inhibits
neuronal proliferation and differentiation, activates microglia,
and affects chromatin remodeling, leading to the aberrant
expression of neurotrophic proteins in the brains of experimen-
tal animals.5-11 These molecular changes are linked to altered
neurogenesis and deficits in learning and memory.12,23,24 Fur-
thermore, the frequency and timing of chemo brain occurrence
and persistence suggest that its origins may be epigenetic and
associated with aberrant global gene expression patterns.25 Epi-
genetic changes are defined as “meiotically heritable and mitot-
ically stable alterations in gene expression” that “include DNA
methylation, histone modification and RNA-associated silenc-
ing”.26-28 Epigenetic changes play key roles in brain and
behavior.29,30

In a recent pioneer study in Aging (2016)31 we have pro-
posed a new theory of chemo brain in which the mechanisms
that underlie the neurotoxic side effects of chemotherapy on
the brain are epigenetically regulated and associated with
altered gene expression.31 Our analysis focused on the hippo-
campus and prefrontal cortex (PFC) and was based on their
pivotal roles in memory, learning, and executive functions. The
PFC is at the foremost section of the frontal lobes. It is involved
in “executive functions,” such as decision making, planning
and judgment, and working memory. It is also regulates
abstract thinking and social behavior.32,33 The PFC undergoes
prolonged development and is extensively interconnected with
other cortical, subcortical, and brain stem sites.32 The hippo-
campus is a part of the limbic system and is located within the
medial temporal lobe. It regulates several cognitive processes,
including spatial navigation and memory processing.34 It plays
major roles in the storage of long-term memory and in declara-
tive memory, which concerns things that can be recalled with
purpose, such as facts or events.35

We dissected the molecular mechanisms of chemo brain by
using a murine model, and we analyzed epigenetic and gene
expression changes in the hippocampus and PFC tissues of
mice 24 hours and 3 weeks after treatment with cytotoxic che-
motherapy agents mitomycin C (MMC) and cyclophospho-
made (CPP), 2 agents that have been shown to cause chemo
brain; however, the mechanisms of their effects remained elu-
sive.31 Our data showed that MMC and CPP treatments lead to
drug-, sex-, and brain region-specific and persistent changes in
global gene expression profiles. Overall, gene expression
responses were much more profound for MCC than CPP expo-
sure, and they were most prominent in the PFC tissues of
female animals 3 weeks after MMC treatment, affecting path-
ways responsible for oxidative stress and other effects. Mitomy-
cin C treatment caused oxidative stress, accumulation of
8-oxodG, decreased global DNA methylation, and increased
DNA hydroxymethylation in the PFC tissues of female animals.
The molecular changes caused by MMC exposure persisted for
up to 3 weeks and were most pronounced in the PCF tissues of
female animals. The results show that the PFCs of females may
be more vulnerable than those of males in the long-term
because the significant changes observed in females at 3 weeks
post-exposure to MMC were not apparent in males. Moreover,
the majority of the changes induced by MMC in the PFC

tissues of female mice resembled those that occur during aging
processes, suggesting that chemotherapy exposures may accel-
erate brain aging.

Reflections and future perspectives – from
mechanisms to aging links

In our pioneer study,31 we used Illumina mRNA profiling tech-
nology to determine that chemotherapy exposures cause gene
expression changes in rodent brain, although mRNAs consti-
tute only a small portion of cellular RNA makeup. Genome
sequencing, as well as recent advances in non-coding RNA
biology, has shown that more than 98% of our genes encode
RNA molecules that are never translated into proteins.36,37

These non-coding RNAs (ncRNAs) are structurally and func-
tionally diverse, and many of them partake in the regulation of
cellular proliferation, differentiation, apoptosis, stress
responses, and control of genome stability.38-40,41 Among the
large repertoire of cellular ncRNAs, microRNAs and piwi-
interacting RNAs are implicated as important players in the
regulation of neuronal development and function, aging and
neurodegeneration, and a variety of neurologic diseases, such
as Alzheimer disease, Parkinson disease, amyotrophic lateral
sclerosis, stroke, Huntington’s disease, and brain cancers, as
reviewed in.42-47 Chemo brain has not been explored in terms
of the small ncRNA domain. Future research that examines the
effects of chemotherapy on non-coding RNAs in the brain is
both interesting and important.

We determined that chemotherapy exposure causes changes
in global genome DNA methylation and hydroxymethylation.48

These epigenetic phenomena are essential regulators of gene
expression,26,42 49 and are important in health and disease,48

including cognitive regulation, memory and aging.50-52 Our
data show the overall net changes in the amount of 5 mC and
5 hmC in the genome but lack details on the genomic distribu-
tion and locus specificity of the observed changes. Alterations
in DNA methylation have been shown to occur in defined
regions.53 Future studies should be conducted to determine the
distribution and plasticity of DNA methylation and hydroxy-
methylation in a quantitative fashion and to correlate genome-
wide and promoter-specific DNA methylation and hydroxyme-
thylation patterns with the levels of gene expression.49,54,55 This
approach will help analyze the regulation of gene expression by
chemotherapy exposure. In addition, looking into the role of
transcription factors in the regulation of gene expression
responses to chemotherapy drugs would likewise be important,
especially in context of brain aging.

Our study focused on the effects of 2 cytotoxic chemother-
apy agents, MMC and CPP, on the brain. Notably, CNS side
effects have been reported to occur upon exposure to ‘targeted’
chemotherapy drugs, such as proteasome inhibitors (bortezo-
mib), topoisomerase inhibitors, bevacizumab, trastuzumab,
and small-molecule tyrosine kinase inhibitors (TKIs), to name
a few.3 Among these, bevacizumab is a recombinant monoclo-
nal antibody that blocks angiogenesis by inhibiting vascular
endothelial growth factor A. Trastuzumab (i.e., Herceptin) is a
monoclonal antibody that interacts with HER2. Gefitinib is one
of many oral small-molecule TKIs that block the ErbB-1 recep-
tor.56 The molecular targets of many of these agents are
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involved in cancer, but they may also be important for brain
function. Little is known about the effects of targeted drugs on
the brain or on the mechanisms of chemo brain induction by
these new targeted chemotherapy agents, as well as any
potential pro-aging effects of targeted chemotherapy. While
new techniques are being developed to better tailor individual
drugs to individual patients with the use of new platforms, such
as the OncoFinder algorithm,57-59 conducting individualized
predictions of any possible side effects, especially severe ones
that involve the CNS, will also be important. Recent modifica-
tions to the OncoFinder algorithm allow the personalized
screening of nootropic drugs,60 as well as the analysis of the
effects of small RNA (MiRImpact) on signaling pathways.61

With thorough animal studies, OncoFinder and MiRImpact
may be further developed and enabled to predict possible tar-
geted chemotherapy-induced brain side effects.

Given that chemotherapy exposure leads to molecular epige-
netic changes, analyzing neuroanatomical and behavioral post-
chemotherapy outcomes is an interesting area for future study.
Moreover, our studies and the available data on chemo brain
used healthy animal models that, while treated with chemother-
apy drugs, lacked one important component—the presence of
an actual tumor. Investigating chemo brain in tumor-bearing
animals is essential to gain a full understanding of the molecu-
lar mechanisms and pathways affected in chemo brain. Chemo
brain is hypothesized to manifest itself in tumor-bearing mice
and is more pronounced in treated animals than in untreated
ones, whereas the presence of a tumor itself also affects molecu-
lar networks in the brain.

On another note, the phenomenon of chemo brain has not
been fully explored in the aging domain. Chemotherapy may
cause changes that lead to neuroinflammation and brain
aging.21,62 As highlighted at the recent conference on biomedi-
cal innovations for healthy longevity, the mechanism and role
of cancer treatment-caused aging-related changes need to be
analyzed because it will allow the development of strategies for
the prevention and mitigation of treatment-induced neurode-
generation and aging.63 To that effect, a new computational
tool, the GeroScope, may be used to determine pro-aging and
anti-aging pathways altered by chemotherapy exposures in the
brain.64

Even more crucial would be the study of chemo-treatment
side effects in adolescents and children. For children in devel-
oped countries, cancer is the second most common cause of
death after accidents. In Canada, 10,000 children live with can-
cer today, and 1,500 new cases are diagnosed each year. Among
these, leukemia is the most common pediatric cancer, account-
ing for 30% of all malignancies diagnosed annually in children
aged younger than 15 (http://childhoodcancer.ca/education/
facts_figures). In 1960, the survival rate of pediatric leukemia
patients was very low at about 10%. Nowadays, 80–85% of leu-
kemia patients survive, but many of them suffer debilitating
side effects, including severe manifestations of chemo brain,
leading to huge losses in productive years of life.65-67 In the
future, animal model studies can help shed light on the molecu-
lar mechanisms and behavioral repercussions of pediatric
chemo brain effects.

One other poorly studied aspect of chemo brain is the possi-
bility of treatments that might reverse, or at least reduce, its

manifestations. Such treatments could be based upon strategies
devised for rehabilitation after brain injuries in animal models,
such as complex housing, exercise, tactile stimulation, and psy-
chomotor stimulants, among others. Moreover, given a link
between chemo brain and aging, some of the novel geroprotec-
tors can be explored in the anti-chemo brain domain.68

Preclinical animal model data can serve as a foundation for
the research and development of new chemo brain biomarkers.
Our studies can be used as a roadmap for the development of
tests that will predict sensitivity to radiation and chemo brain
side effects. Molecular changes observed in the brain must first
be correlated with those observed in blood to find effective bio-
markers. The markers (small RNAs or mRNAs) that will be
correlated between blood and the brain in animal models may
be further explored to determine their usefulness in human
studies. Last but not the least, animal models may be used to
develop future strategies and interventions that help prevent
and mitigate chemo brain.
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