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1.0 Introduction

Infants born very preterm (≤32 weeks gestational age) spend weeks to months in neonatal 

intensive care units (NICU), undergoing on average 10 painful procedures per day [54] 

while their brains are rapidly developing. In rodents, early pain exposure has adverse effects 

on brain development [2,27,39] and social behaviors [1,11]. Clinical human prospective 

longitudinal cohort studies have demonstrated adverse effects of repetitive exposure to early 

pain on brain development and outcomes [16,25,48,49,67,70].

Effective pain management is crucial to help mitigate these negative consequences of early 

pain exposure. Currently, oral sucrose is administered routinely to reduce pain of minor 

procedures in infants and is recommended as standard care in international guidelines 

[4,5,43], which are based on evidence of safety and efficacy of a single dose of sucrose to 

reduce pain behaviors [62]. Importantly, long-term benefits or risks of repeated sucrose 

administration in the context of pain, in human or animal neonates, on brain development 

have not been studied. To date, one study in very preterm infants showed that more than 10 

sucrose doses per day in the first week of life was associated with poorer attention and motor 

function, but the end-point was only at term-equivalent age [38]. Since oral sucrose is 

advocated as standard care worldwide [4,5,43], clinical equipoise no longer exists for a 

randomized controlled trial of sucrose in infants to evaluate effects on brain development.
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Mechanisms of sucrose-induced analgesia are well established in rodent models. Oral 

administration of sweet substances, such as sucrose, inhibit pain by mediating endogenous 

opioid peptide and μ1-opioid receptor actions [21]. Others have suggested additional 

involvement of the 5-HT2A-serotonergic receptors in the antinociception effect of sweet 

solution administration[51]. Additionally, key brainstem sites critically involved in 

descending pain modulation (e.g. periaqueductal gray and rostroventromedial medullary 

region) have been shown to be activated by intraoral sucrose administration in rat pups [6]. 

One study has reported short-term memory impairment in rats repeadly exposed during the 

first 8 weeks of life to daily pain alone compared to pain combined with sucrose[45]. 

However, their pain model does not match that of the human infant exposure in the NICU.

Sugar consumption activates common reward pathways and repeated sugar exposure is 

known to cause excessive dopamine and acetylcholine release, as well as opioid stimulation 

[32,34,47,59]. In the developing brain, it is not known whether increases in dopamine and/or 

acetylcholine levels, as well as opioid stimulation would have positive or negative effect on 

related brain structures and functions [35].

Given that sucrose administration for procedural pain is a treatment that currently affects 

many thousands of preterm infants annually, it is crucial to determine the long-term benefits/

risks of repetitive sucrose. In the present study we examined effects of neonatal repetitive 

sucrose treatment on brain development in a mouse pain model and amount of oral sucrose 

exposure that closely mimics NICU care.

2.0 Materials and methods

2.1. Animals

Mice make an excellent preclinical model to study conditions in the human preterm neonate 

because they are born neurologically immature, with the first postnatal week in the mouse 

corresponding to the development of the human limbic system, striatum and cerebellar 

development at 24 to 32 weeks gestation [12]. All procedures were approved by the 

University of British Columbia Animal Care Committee and conform to the guidelines of 

the Canadian Council on Animal Care. C57BL/6J mice used in this study were obtained 

from the Goldowitz mouse colony at the Center for Molecular Medicine and Therapeutics 

Animal Facility. Animals were maintained on a 14/10 hour light/dark cycle with food and 

water ad libitum. All mice were provided with nestlets and Plexiglas igloo-style houses as 

part of standard enrichment. A specific cellulose bedding was used during the entire protocol 

duration to minimize stimulation and discomfort of inflamed paws in the pups (¼ inch 

pelleted cellulose, Biofresh, USA). Multiparous female mice were individually mated with a 

male stud. Pregnant females were group housed until E17, upon which they were divided 

and housed with a nulliparous female CD-1 used as a “nanny” to improve survival and 

reduce cannibalism of mouse pups. This housing was maintained for the duration of 

pregnancy and lactation. The day of birth was considered P0. Pups were kept with their 

mother until wean age, postnatal day 21 (P21). After weaning, mice were housed together 

with appropriate nesting materials, enrichment and cellulose bedding (5 mice/cage, sex-

matched cages) during aging until P85–P95.
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2.2. Needle-prick model combined with oral sucrose

Newborn mouse pups on P0 were randomized to one of the six groups and tattooed on their 

paw using a single 30G needle prick to allow individual identification. Pups received either 

sterile water or sucrose (Vehicle; Treatment) given orally by a micropipette 2 minutes prior 

to one of the three interventions: paw needle-prick, light paw tactile pressure with a cotton-

tipped swab, or only being handled in a similar manner to other intervention groups. 

Treatment/Intervention sequence duration was less than 5 minutes per interval. A solution of 

sucrose 24% w/v (Sucrose ≥99.5% (GC), Sigma, USA, cat#S7903) in sterile water, filtered 

with 0.22μm filter, or sterile water was used intraorally as analgesic treatment 2 minutes 

before the intervention. Using a micropipette and sterile tips, the treatment was administered 

either on the anterior part of the tongue or inner-cheek of the mouth. An equivalent dose of 

sucrose per weight comparable to the recommended dose for human neonates was given. 

The standard guideline recommends 0.5mL per dose for very preterm infants (24 to 32 

weeks of gestation), which correspond to 0.08g–0.2g of sucrose per body weight (kg) [62]. 

Each pup received 0.1–0.2g of sucrose per kg of mouse body weight. Each dose was 

adjusted daily based on the mouse pup weight. Vehicle treatment group received orally an 

equivalent volume of sterile water. Treatment/Intervention was administered 10 times per 

day per mouse pup over a 10-hour period (from 8AM until 6PM) during the day (light) cycle 

from P1 to P6 inclusive. Each treatment/intervention was spaced by a minimum of 30 

minutes to allow enough time for feeding and recovery from the interventions. Forepaws and 

hindpaws were alternated over each intervention and only one paw was touched or pricked 

during each interval. Needle-pricks were performed using a 30G sterile needle (0.3mm outer 

diameter) angled at 10–15 degrees from the skin to carefully pierce only the surface of the 

skin. Penetration of deeper layers, such as tendon or bone, was avoided. Mouse pups were 

returned to the dams between each hourly Treatment/Intervention sequences. During the 

procedure, home cages with nursing females were placed in a separate room to decrease 

their stress in response to mouse pup vocalizations related to the interventions. Each 

procedure was performed on a warmed heating pad to avoid any heat loss. At P7, mice pups 

remained in their home cage with their dam until weaning (P21). A total of 109 mouse pups 

were treated and survived to adulthood with an overall survival rate of 88%.

2.3. Perfusion and tissue collection

Adult brains were collected between P85–P95 for MRI scanning. Initially the mice were 

anesthetized and transcardially perfused with 10mL of 0.1M PBS containing 10U/mL 

heparin (PPC, CA, cat#C504805) and 2mM ProHance (a Gadolinium contrast agent, Bracco 

Diagnostics, USA, cat#111181) followed by 10mL of 4% paraformaldehyde (PFA) 

(Cedarlane, CA, cat#15710) in 0.1M PBS containing 2mM ProHance [60]. Perfusions were 

performed at a rate of approximately 60mL/hr. After perfusion, mice were decapitated. The 

brain and remaining skull structures were incubated in 4% PFA + 2mM ProHance overnight 

at 4°C then transferred to 0.1M PBS containing 2mM ProHance and 0.02% sodium azide for 

at least seven days prior to MRI scanning.
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2.4. Magnetic resonance imaging, registration and analysis

A multi-channel 7.0 Tesla MRI scanner (Varian Inc., Palo Alto, CA) was used to image the 

brains within skulls. Sixteen custom-built solenoid coils were used to image the brains in 

parallel [15]. T2-weighted, three-dimensional fast spin echo sequence, with a cylindrical 

acquisition of k-space, and with repetition time TR = 350 ms, echo train length = 6, TEeff = 

12 ms, field of view (FOV) 20mm×20mm×25mm3, and matrix size of 504 × 504 × 630, 

which provided an isotropic resolution of 0.04 mm were used to gather anatomical imaging 

and volume change parameters. Total imaging time was ~14 hours.

To visualize and compare any changes in the mouse brains, images were linearly (6 

parameter followed by a 12 parameter) and non-linearly registered against a pre-existing 

atlas [26]. All scans were then re-sampled with the appropriate transformation and averaged 

to create a population atlas representing the average anatomy of the study sample. The 

resulting registration was to have all scans deformed into alignment with each other in an 

unbiased fashion. This strategy allowed for the analysis of the deformations needed to take 

each individual mouse’s anatomy into this final atlas space, the goal being to model how the 

deformation fields relate to treatment/intervention [42,44]. The Jacobian determinants of the 

deformation fields were calculated as measures of volume at each voxel. Significant volume 

changes were calculated by warping a pre-existing classified MRI atlas onto the population 

atlas, which allowed assessment of the volumes of 159 segmented structures encompassing 

cortical lobes, large white matter structures (i.e. corpus callosum), ventricles, cerebellum, 

brain stem, and olfactory bulbs in all brains [26]. The current atlas used is a combination of 

three atlas segmentations: A 62 region full brain segmentation [26], and additional 

segmentation of the cortex [66] and cerebellum [61,66]. This 159 region atlas was used to 

assess regional differences across the brain. Further, these measurements were examined on 

a voxel-wise basis to localize the differences found within regions or across the brain.

2.5. Statistical analysis

We first conducted multiple one-sided ANOVAs to determine whether there was any effect 

by intervention (Handle, Tactile, or Needle-prick), treatment (Vehicle or Sucrose), or an 

intervention by treatment interaction for each of the 159 regional brain volumes. Multiple 

comparisons were controlled for using the False Discovery Rate (FDR) [30].

Constrained principal component analysis (CPCA) was used to examine the group 

differences of effects of needle-prick and sucrose exposure upon all 159 regional brain 

volumes. CPCA is a 2-step process, referred to as the external and internal analysis. The 

external analysis consists of a multivariate least squares multiple regression of the dependent 

measures on the independent measures, producing predicted and residual scores for each 

dependent measure [48,49]. The internal analysis is a principal component analysis (PCA), 

which transforms aforementioned regression matrices into a few orthogonal components (or 

latency variables) which explain the maximum amount of variance.

CPCA captures the most prominent feature in a data matrix and projects it to a subspace of 

minimal dimensionality according to the external information [64]. The lowest dimension, 

which explains the greatest variation, depends on both the dataset and the external 
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information. Since the aim of the study was to investigate the effects of sucrose on the 

interventions, three CPCA models were built to capture the contrasts between groups. The 

first CPCA was to compare regional brain volumes between Vehicle and Sucrose treatment 

groups. Second and third CPCA models were built to compare the effect of Treatment 

exposure within the Vehicle and Sucrose treatment group respectively.

In the first CPCA, the independent variables matrix of the external analysis included Vehicle 

treatment group and Sucrose treatment group, sex, and the adjusted total brain volume. The 

adjusted total brain volumes were computed as the residuals of regressing total brain 

volumes onto Vehicle/Sucrose groups and intervention groups. The purpose was to remove 

the possible association between sucrose and needle-prick exposure and the total brain 

volume. Two separate CPCAs were then performed by splitting the sample into Vehicle 

treated and Sucrose treated mice. The independent variable matrix of each CPCA included 

Intervention (i.e. Handle vs Tactile, Handle vs Needle-prick), sex, and adjusted total brain 

volume.

The internal analysis consists of PCAs on each of the aforementioned matrices. The 

resulting component solutions (overall, predicted, and residual solutions) are examined to 

determine which dimensions of the regional brain volumes can be explained by the 

independent variables. Details of CPCA have been described previously [19,48,49]. 

Computations for CPCA were done using MATLAB v 7.11 (The MathWorks, 2010, Natick, 

Massachusetts). Multiple comparisons were corrected by Bonferroni method. Data were 

graphically organized using GraphPad Prism (San Diego, CA).

3.0 Results

3.1. Repeated sucrose pain model details

At P0, mouse pups (50 males; 59 females) were randomly allocated to one of six groups: 

Vehicle/Handle (n = 18), Vehicle/Tactile (n = 16), Vehicle/Needle-prick (n = 18), Sucrose/

Handle (n = 17), Sucrose/Tactile (n = 22), or Sucrose/Needle-prick (n = 18) (Figure 1C). 

Each litter included at least two different groups and nearly equal distribution by sex per 

group. During the first days of life, from postnatal day 1 to 3 (P1 to P3), pups in the needle-

prick groups showed visible paw inflammation at the site of skin-break as exposure to the 

intervention accumulated throughout the 10 hours (Figure 1A); in each case, local 

inflammation disappeared by the following morning. No signs of infection or other 

complications occurred. Timeline of the experimental design is shown in Figure 1B.

Over the treatment period (P1–P7), suckling behavior was not affected by sucrose exposure 

reflected by non-significant changes in mean weight gain over the treatment period between 

groups (F5,103 = 2.050, P = 0.0778) (Figure 1C). Similar weight gain across groups persisted 

beyond the treatment period up to weaning (F5,102 = 1.639, P = 0.1564). Likewise, there was 

no significant difference in mean body weight between groups at scanning time (F5,103 = 

0.350, P = 0.8815).
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3.2. Early repetitive sucrose exposure leads to widespread smaller regional brain volumes

To explore the effects of P1 to P6 repeated exposure to sucrose on long-term brain 

development, we initially examined volumes of 159 independent brain regions in adult mice 

that either received Vehicle (n = 52) or Sucrose (n = 57) treatment before the intervention 

(either Handle, Tactile, or Needle-prick). Overall, we found significant differences in 

multiple regions with respect to treatment, with 21 out of 159 regions being significantly 

smaller in mice exposed to sucrose (P < 0.0001; false discovery rate [FDR] < 5%) (Figure 

2A). White matter structures were particularly affected by sucrose treatment. For example, 

compared to the Vehicle groups, smaller volumes were found in the Sucrose groups for the 

corpus callosum (P < 0.0001; FDR = 3%) and fimbria (P < 0.0001; FDR = 1%). Only trends 

were seen when examining the effects of intervention only and treatment-intervention 

interaction; no significant sex differences were found. Figure 2A lists the results of the 

significant one-way ANOVAs (P < 0.0001, FDR < 5% to P < 0.03, FDR < 15%) for each 

brain region. We further explored the effect of sucrose exposure on brain volumes by 

grouping 159 brain regions into seven major divisions (cortex, cerebellum, ventricles, 

brainstem, olfactory region, grey and white matter) to limit the number of examined regions. 

Here, we found that adult mice exposed to sucrose as pups had significantly smaller volumes 

in the white matter, cerebellum and ventricles (P < 0.0001; FDR < 5%) (Figure 2B). Trends 

were observed in cerebral grey matter (P = 0.003; FDR = 6%). As before, we did not find 

any significant effects of intervention only, treatment-intervention interaction, or sex.

Figures 2C and 2D provide box-plot examples of significant and non-significant volume 

differences found in specific brain regions. A complete list of brain mean volumes for the 

159 regions measured is provided in supplementary material (Table S1 and Table S2) along 

with group comparisons for effect of Treatment (Vehicle vs Sucrose) or Intervention 

(Needle-prick [pain] vs all other interventions).

3.3. Constrained principal component analysis confirms Sucrose treatment damaging 
effect on brain volumes

To confirm and further explore the effect of exposure to treatment and intervention found 

using ANOVA, we used constrained principal component analysis (CPCA) [64] to examine 

the component structure of the variance in the brain volumes that is specifically predicted by 

a set of predictor variables: total brain volume, sex and study groups. CPCA allowed us to 

conduct a multiple regression analysis of the regional brain volumes in relation to the 

treatment group, sex and total brain volume, and then condense the results into components. 

Hence, in the present study, the matrix of predicted component scores reflected the variance 

in regional brain volumes that was accounted for by total brain volume, sex and study 

groups.

First we examined the 159 regional volumes in relation to treatment (i.e. Vehicle vs 

Sucrose), irrespective of intervention. The external analysis of CPCA (see Methods section 

for further details) showed that the three predictors included in our model (total brain 

volume, sex, and treatment) accounted for 49% of the overall variance in regional brain 

volume (Table 1). Two main principal components (PC) were extracted from the predicted 

solution, explaining respectively 26.2% and 22.7% of the variance in brain volumes of the 
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159 regions examined. Based on the distribution of predictors on each principal component, 

we interpreted PC1 as representing total brain volume and sex effects, and PC2 as 

representing treatment effects. Predictor variables with positive loadings were associated 

with larger regional brain volumes. Total brain volume positively loaded on both 

components, which indicated larger total brain volume was associated with larger regional 

volumes, whereas in contrast, the negative loading for treatment indicates smaller brain 

volumes was associated with sucrose exposure. Treatment (reflected in PC2) uniquely 

loaded on 22 out of the 159 brain regions largely comprising of cerebellar grey and white 

matter, showing smaller volumes in cortical amygdaloid, hippocampus, stria terminalis and 

hypothalamus; indicating that mice exposed to sucrose had smaller volumes in those areas 

compared to those exposed to vehicle (Table 2).

3.3.1 Needle-prick intervention has no effect on brain volumes—To examine the 

effects of treatment (Vehicle, Sucrose) within the three intervention groups (Handle, Tactile, 

and Needle-prick), two distinct CPCAs were conducted by splitting the sample by treatment 

group assignment, i.e. Vehicle versus Sucrose. To examine effects of Tactile and Needle-

prick intervention, Handle was used as the reference intervention, i.e. Tactile vs Handle, 

Needle-prick vs Handle in each analysis.

When examining the effect of the interventions in mice exposed to vehicle, our CPCA 

showed that the four predictors included in our model (total brain volume, sex, Needle-prick 

intervention, and Tactile intervention) accounted for 44% of the overall variance in regional 

brain volumes. Three principal components (PC) were extracted from the predicted solution 

where PC1 reflected total brain volume and sex, PC2 reflected Tactile intervention, and PC3 

reflected sex and Tactile intervention, explaining respectively 22%, 15.3%, and 6.3% of the 

variance in brain volumes of the 159 regions examined (Table 3). Predictor variables with 

positive loadings were associated with larger regional brain volumes. The Needle-prick 

intervention predictor did not load significantly on any PC, indicating that regional brain 

volumes were not different between the Vehicle/Needle-prick and Vehicle/Handle groups. 

Thus, mice repeatedly exposed to needle-pricks did not have significantly different regional 

brain volumes from those that were just handled. Tactile intervention positively loaded on 

PC2 and negatively on PC3, which indicated that Tactile intervention was not associated 

with those brain regions loaded on both components. Accordingly, Tactile intervention 

(reflected here in PC2) was solely related to volumes in 40 brain regions out of the 159 brain 

regions that were examined (Table 4; Bonferroni cut-off for significance [P < 0.013]). 

Therefore, mice in the Vehicle/Tactile group compared to Vehicle/Handle had bigger 

volumes in those structures, such as the hippocampus, midbrain, nucleus accumbens, and 

cerebellar subregions.

3.3.2. Smallest brain volumes found in mice given sucrose treatment before 
needle-prick intervention—The CPCA for the Sucrose treatment showed that the four 

predictors included in our model (total brain volume, sex, Needle-prick intervention, and 

Tactile intervention) accounted for 55% of the overall variance in regional brain volumes. 

Three principal components (PC) were extracted from the predicted solution, where PC1 

reflected Needle-prick and Tactile interventions, PC2 total brain volume and sex, and PC3 
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reflected all four predictors, explaining respectively 33.6%, 17.3%, and 4.3% of the variance 

in brain volumes of the 159 regions examined (Table 5). Predictor variables with positive 

loadings were associated with larger regional brain volumes. Dominant loadings on PC1 

were widespread, with highly significant loadings in 95 brain regions (Table 6; Bonferroni 

cut-off for significance [P < 0.013]). Given that in PC1 the predictor loading for Needle-

prick was negative and that the loading for Tactile was positive (loadings −0.469 and 0.428 

respectively; see Table 5), this indicated that mice in the Sucrose/Needle-prick group 

compared to Sucrose/Handle group had smaller volumes in those structures with significant 

loadings on PC1, whereas mice in the Sucrose/Tactile group compared to Sucrose/Handle 

had bigger volumes in structures with significant loadings on PC1. These regions included 

the amygdala, cerebellum, primary and secondary somatosensory cortices, thalamus, 

hippocampus, cingulate cortex, and periaqueductal grey.

4.0 Discussion

Using a neonatal mouse model that closely mimics NICU procedural pain and treatment, we 

found widespread long-term alterations in adult white and grey matter brain volumes in 

mouse pups repeatedly exposed to sucrose in the first week of life, which approximates the 

preterm period in humans. Repetitive sucrose exposure induced smaller brain volumes 

mainly in white matter regions of the forebrain, cerebellum, and hippocampus. To our 

knowledge, this is the first animal or human study to examine long-term effects on brain of 

neonatal repetitive sucrose exposure for pain treatment relevant to NICU care. Whereas, 

Nuseir et al. [45] exposed newborn rats to daily repetitive pain and/or sucrose over a 

prolonged period of 8 weeks, which is exposure lasting far beyond the neonatal period, we 

used a pain model that matches that of the human infant exposure in the NICU. Importantly, 

we found deleterious effects of early sucrose treatment irrespective whether mouse pups 

were handled, touched or needle-pricked at the time sucrose was administered. Our findings 

raise serious questions relating to the current widespread use of sucrose for procedural pain 

management in NICUs worldwide. Of even greater concern, is that when analyzing the data 

by splitting the sample by intervention exposure (i.e. Vehicle versus Sucrose), we found that 

from all the pups that were exposed to sucrose prior to a treatment (i.e. handling, touch, 

needle-prick), it was the ones that received needle-pricks that had the worst outcome. This 

particular group of mice had smaller regional brain volumes predominately in areas involved 

in nociceptive processing (e.g. primary somatosensory cortices, thalamus, cingulate cortex, 

periaqueductal grey); whereas, this effect was not observed in mice that received water. This 

suggests that sucrose is not providing brain-protection and may even have an opposite effect 

on brain especially when given in combination with pain.

Sucrose is widely accepted as an effective nonpharmacological intervention for pain of 

minor procedures in preterm infants [29,62]. Exposure to single sucrose treatment is safe 

and spared of serious short-term side effects. However, one study has shown poorer 

neurological development around term equivalent age in preterm infants exposed to more 

than 10 doses of sucrose per 24h in the first week of life [38] and our results of reduced 

brain volume are consistent with these findings. There are increasing concerns regarding the 

limited evidence of long-term safety of repeated exposure to sucrose for procedural pain 

management in the preterm population [20].
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The rewarding effects of ingesting sweet solutions, such as sucrose, a disaccharide 

combination of glucose and fructose, appear to be mediated by similar neuronal pathways 

and mechanisms implicated in drug abuse. Indeed, sucrose has opioid-like effects on 

dopamine receptors comparable to morphine [59]. Thus, the deleterious effect of sucrose on 

brain volumes after repeated administration seen in this study may be explained through the 

mechanism underlying sucrose’s mitigating effect on pain. Opioid-induced neurotoxicity has 

been largely explored in preclinical studies showing reduced neuronal density and dendritic 

length, as well as induced neuronal apoptosis in rodent pups exposed to morphine 

[8,33,53,57]. Early opioid exposure also induces apoptosis of fetal microglia and neurons in 

vitro [36] and compromises myelination [56]. Accordingly, these apoptotic and anti-

proliferative effects described could also occur after sucrose exposure in the developing 

brain and could explain, at least partially, the widespread effect on brain regions we 

observed.

There are concerns currently about possible effects of pre-emptive morphine infusions in 

ventilated preterm infants, particularly at higher doses, based on findings from randomized 

control trials (RCTs) [3,50,58], leading to recommendations of judicious use in this 

population [10]. Follow-up studies of long-term neurodevelomental outcomes have reported 

mixed findings [22,23,28]. A single-site longitudinal cohort study of very preterm children 

showed an independent association between neonatal exposure to morphine and impaired 

cerebellar growth in the neonatal period (in a dose-dependent manner) [71]. Our current 

findings with early exposure to sucrose appear to be consistent with clinical and preclinical 

findings of opioid exposure, such that repetitive sucrose administration had adverse effects 

that were seen mainly in hippocampal areas and cerebellar lobules.

Importantly, Asmerom et al. [7] found that after a single dose of sucrose before a heel lance, 

preterm neonates had tachycardia, higher oxidative stress and adenosine triphosphate (ATP) 

breakdown. Given that multiple doses of sucrose are administered daily to preterm infants 

[18], the pathophysiological mechanisms involved in this recurrent sucrose-induced 

oxidative stress exposure may partially explain the widespread alterations of white matter 

tracts seen in our study. Indeed, excitotoxicity and oxidative stress are known as factors 

involved in maturation of pre-oligodendrocytes (pre-OLC) and oligodendrocytes (OLC) in 

premature brain white matter injury [9] leading to delayed or arrested OLC development 

[17] and delayed myelination [37]. In rodents, these cells proliferate, migrate and 

differentiate during the first two postnatal weeks, whereas in humans they develop 

predominantly in the second half of pregnancy [55]. Here, we found that repetitive sucrose 

during the first postnatal week in mice resulted in smaller cerebellar white matter volume 

and forebrain fiber tracts suggestive of a deleterious sucrose effect on OLC maturation and 

myelination.

Unique to our model is the administration of minute quantities of sucrose absorbed 

prominently through the oral mucosa, mimicking the standardized non-pharmacological pain 

treatment use of sucrose in NICU care worldwide. Absorption, metabolism and differing 

brain activation pathways must be taken into account when comparing our results to findings 

from models of sugar binge eating where sucrose solutions are being infused directly into 

the rodents’ stomach or animals feed ad libidum sucrose solutions/high caloric diets. Indeed, 
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binge sugar intake has opioid-like effects and activates the reward system through the 

nucleus accumbens and the adjacent caudate-putamen [59], whereas repetitive exposure to 

small quantities of oral sucrose may activate different neurological pathways. Based on our 

findings that sucrose exposure induced altered regional brain volumes prominently in large 

afferent white matter tracts implicated in the hypothalamic–pituitary–adrenal (HPA) axis/

stress system (e.g. fimbria, stria terminalis), and that we did not find significant volume 

alterations in the nucleus accumbens, we question which pathway is predominantly affected 

by early repetitive exposure to sucrose in this context. Evidence in rodents has shown the 

effects of sucrose/carbohydrates on regulation of the HPA axis [68]. Moreover, results of 

rodent studies have suggested that sweet solutions modulate pain through opioid 

mechanisms [13,40,52]. The evidence is less clear in human infants with few studies having 

examined potential mechanisms of action of sucrose [14,31,63] and results suggest that 

mechanisms other than those mediated by opioid pathways may be involved in the effects of 

sucrose [35]. Further studies are needed.

Surprisingly, we did not find a significant long-term effect of early repetitive pain exposure 

from needle-pricks on adult regional brain volumes, nor did we find a treatment-intervention 

interaction. According to previous studies in rodent pups, neonatal pain exposure (i.e. 

inflammatory pain from formalin injections or repetitive saline injections) was shown to 

modify both the structure and function of the developing brain [2,27,39]. Thus, we were 

expecting that mice exposed to needle-pricks during the first week of life would have altered 

brain development, which was not the case. Methodological differences may account for 

these findings, inflammatory pain or pain from injections may not have the same 

consequences as needle-pricks. We question the invasiveness of our needle-prick pain 

stimulus, given that we used very thin needles (30G) and did not penetrate deeper layers, 

such as tendon or bone, in contrast to the apparently more invasive procedures used in 

needle-prick pain in previous rat studies [1,27,41]. It should be noted that we undertook 

interventions 10 times daily for six days, based on the median exposure to painful 

procedures during NICU care [54].

Importantly, distinctive to our study was the addition of a CD-1 female mouse as a “nanny” 

to support the mother and improve survival of mouse pups, which could have added a 

buffering effect on pain through increased grooming and nurturing. Maternal behavior 

(grooming and licking) has been shown to modulate effects of early pain exposure in rats 

[24,69], where increased maternal behaviors reduced inflammation in response to neonatal 

formalin injections during the first two weeks of life of rat pups and thermal sensitivity once 

in adulthood. This “nanny plus mother” model emphasizes the robustness of our current 

findings of permanently smaller regional brain volumes in relation to early repetitive sucrose 

exposure.

Some limitations to our study exist. At this time, we do not have histological data to support 

our brain volume findings, thus complete interpretation cannot be determined (e.g. apoptosis 

or decrease neuronal proliferation or changes in cortical blood volume or water content) 

[46,65]. Consequences of repetitive sucrose exposure on the developing brain should be 

further studied at the functional level to assess if long-term effects on brain induce 

differences in learning and behavior.
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Currently, it is not possible to conduct randomized controlled clinical trials of sucrose for 

pain management in preterm neonates in the NICU, since sucrose is the standard of care. 

Therefore, our findings from a neonatal mouse model are critical, suggesting cautious use of 

repetitive sucrose administration in very preterm infants is warranted. Our work reinforces 

recent guidelines from the American Academy of Pediatrics [20] highlighting the lack of 

evidence on mechanisms of action and long-term consequences of repetitive oral sucrose use 

for procedural pain.

Split analysis by treatment (Sucrose) CPCA factor loadings for Sucrose groups model; three 

PCs were extracted from the predicted solution, where PC1 reflected Needle-prick 

intervention and Tactile intervention, PC2 total brain volume and sex, and PC3 reflected all 

four predictors; explained variance for PC1, PC2 and PC3 are 33.6%, 17.3%, and 4.3% 

respectively. Sucrose/Handle (n = 17), Sucrose/Tactile (n = 22), Sucrose/Needle-prick (n = 

18). Significant loadings (Bonferroni P < 0.013) particular to intervention shown in bold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neonatal mouse model of repetitive sucrose exposure given for procedural pain
(A) Representative images showing C57Bl/6J mouse pups receiving oral sucrose treatment 

preceding 10 interventions daily: Handle, Tactile or Needle-prick. Ecchymosis and inflamed 

paws are highlighted by white circles showing focal needle-prick intervention effects. (B) 
Experimental protocol illustrating treatment/intervention timeline. Brain tissue was collected 

between P85–P95 for 7T MRI scanning. (C) Neonatal mice (n = 109) were assigned 

randomly across treatment/intervention groups (total of 6 groups). Distribution, mean weight 

gain over treatment period, mean body weight at MRI scan, sex ratio and survival amongst 

groups during the current study are provided.
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Figure 2. Widespread smaller volumes in 21 brain regions at adulthood in mice exposed to 
neonatal repetitive sucrose irrespective of intervention
(A) List of the 21 brain regions, including cortical, subcortical, cerebellar structures and 

fiber tracts, that were significantly smaller (FDR < 5%) at adulthood. (B) Sample of coronal 

slices showing cross-regional voxel-wise differences of absolute brain regional volumes 

between mice exposed to repetitive Vehicle compared to Sucrose, irrespective of 

intervention. FDR 5–15% are shown. (C) Box-plot figures of brain volumes comparing mice 

in Vehicle versus Sucrose groups in white matter (FDR = 3%), corpus callosum (FDR = 

3%), fimbria (FDR = 3%) and stria terminalis (FDR = 1%). (D) Box-plot figures of brain 

volumes comparing mice in Vehicle versus Sucrose groups in grey matter (FDR = 6%), 
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cortex (FDR = 17%), hippocampus (FDR = 3%) and cerebellum (FDR = 4%). n = 52–57 per 

group. **P < 0.01, ***P < 0.001, ***P < 0.0001; FDR, false discovery rate.
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Table 1

Component loadings for treatment in CPCA modeling

Factors
PC1 PC2

Loading P-value Loading P-value

Total brain volume 0.746 0,0000 0.611 0.0000

Sex 0.623 0,0000 −0.762 0.0000

Vehicle vs Sucrose −0.037 0.7005 −0.360 0.0001

CPCA factor loadings for Vehicle versus Sucrose model; two principal components (PC)s were extracted from the predicted solution, where PC1 
reflected total brain volume and sex and PC2 reflected treatment; explained variance for PC1 and PC2 are 26.2%, 22.7% respectively, n = 52–57 
per group. Significant loadings (Bonferroni P < 0.013) particular to treatment shown in bold.

CPCA, constrained principal component analysis.

Pain. Author manuscript; available in PMC 2018 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tremblay et al. Page 20

Table 2

Regional brain volumes variance explained by treatment (Vehicle vs Sucrose) in CPCA modeling.

Brain Structure
PC1 PC2

Loading P-value Loading P-value

Cerebrum / Cerebral cortex 0.279 0.0021 0.820 0.0000

 Amygdalo piriform transition area 0.255 0.0004 0.685 0.0000

 Caudo medial entorhinal cortex 0.297 0.0070 0.665 0.0000

 Postero lateral cortical amygdaloid area 0.312 0.0013 0.554 0.0000

 Postero medial cortical amygdaloid area 0.225 0.0017 0.748 0.0000

 Rostral amygdalo piriform area 0.271 0.0092 0.525 0.0000

 Ventral tenia tecta 0.191 0.0292 0.399 0.0000

Cerebrum / Cerebral nuclei

 Bed nucleus of stria terminalis 0.279 0.0021 0.820 0.0000

Brainstem

 Medulla 0.203 0.0094 0.351 0.0002

 Superior olivary complex 0.061 0.4517 0.370 0.0001

Cerebellum

 Lobules 4–5: culmen (ventral and dorsal) 0.329 0.0004 0.536 0.0000

 Lobule 7: tuber (or folium) 0.185 0.0129 0.418 0.0000

 Lobule 8: pyramis 0.190 0.0233 0.439 0.0000

 Copula pyramis lobule 8 0.271 0.0020 0.427 0.0000

 Trunk of lobules 6–8 white matter 0.265 0.0009 0.391 0.0000

 Lobule 8 white matter 0.110 0.1854 0.394 0.0001

 Lobule 9: uvula 0.266 0.0006 0.507 0.0000

 Lobule 9 white matter 0.201 0.0106 0.484 0.0000

 Lobule 10: nodulus 0.260 0.0015 0.433 0.0000

 Flocculus FL 0.156 0.0549 0.509 0.0000

 Flocculus white matter 0.099 0.2381 0.397 0.0000

 Paraflocculus PFL 0.250 0.0019 0.329 0.0002

Ventricular system

 Third ventricle 0.410 0.0010 0.483 0.0001

CPCA factor loadings for analysis of treatment effect on regional brain volumes. Component loadings for PC1 and PC2 and their P-values for the 
22 brain regions that passed the Bonferroni cut-off (P < 0.013) are listed. Treatment (represented in PC2) loaded uniquely on 22 brain regions, 
reflecting that mice exposed to Sucrose have significantly smaller volumes in these specific brain areas compared to Vehicle (P < 0.013), n per 
group 52–57.

CPCA, constrained principal component analysis; PC, principal component.
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