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Abstract: In order to recognize indoor scenarios, we extract image features for detecting objects,
however, computers can make some unexpected mistakes. After visualizing the histogram of oriented
gradient (HOG) features, we find that the world through the eyes of a computer is indeed different
from human eyes, which assists researchers to see the reasons that cause a computer to make errors.
Additionally, according to the visualization, we notice that the HOG features can obtain rich texture
information. However, a large amount of background interference is also introduced. In order
to enhance the robustness of the HOG feature, we propose an improved method for suppressing
the background interference. On the basis of the original HOG feature, we introduce a principal
component analysis (PCA) to extract the principal components of the image colour information. Then,
a new hybrid feature descriptor, which is named HOG–PCA (HOGP), is made by deeply fusing these
two features. Finally, the HOGP is compared to the state-of-the-art HOG feature descriptor in four
scenes under different illumination. In the simulation and experimental tests, the qualitative and
quantitative assessments indicate that the visualizing images of the HOGP feature are close to the
observation results obtained by human eyes, which is better than the original HOG feature for object
detection. Furthermore, the runtime of our proposed algorithm is hardly increased in comparison to
the classic HOG feature.

Keywords: image feature extraction; indoor scenario recognition; HOG feature descriptor; feature
visualization; sparse representation

1. Introduction

Scene recognition is a highly valuable perceptual ability for indoor navigation, unmanned vehicles,
UAV, or other kinds of mobile robots. However, current approaches for scene recognition present a
significant drop in performance in the case of indoor scenes. Early work in computer vision attempted
to achieve scene recognition by using supervised classifiers that directly operate over low-level image
features, such as colour, texture, and shape. The main problem with these approaches has been their
inability to choose reasonable image features from complex scenes.

Sande and his colleagues used colour descriptors for object and scene recognition, which was
efficient. However, this method was invariant to light intensity [1]. Pandey and Lazebnik utilized
deformable part-based models for scene recognition, which outperformed some other state-of-the-art
supervised approaches. However, this method cannot classify similar objects in low intensity indoor
scenes [2]. Silberman and Fergus used a structured light depth sensor for assisting indoor scene
segmentation. However, the depth sensor will fail to detect the accurate depth when the sensor is
blocked by a wall or a pillar [3]. Li and Sumanaphan used the scale-invariant feature transformer
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(SIFT) to recognize bathrooms. However, they also indicated that the accuracy of their approach was
low, making it difficult to detect a bathroom in low-resolution images [4].

According to our research, feature extraction is an important step in order to improve scene
recognition. The histogram of oriented gradient (HOG) is an excellent feature that describes the local
image texture information, which is widely used in pedestrian detection. However, a large amount of
background noise is introduced while obtaining the abundant texture information using HOG features,
which induces the computer to make wrong judgments.

In order to analyse the reasons for this, people began to understand the vision world of the
computer from the view of a computer, which is achieved by visualizing image features. It is an
important method for understanding the minds of computers and for locating the problems in
computer vision. During our research into finding a useful feature for scene recognition, we found
that it was difficult to find the reasons that result in errors in object classification and recognition.
At present, visualization is a popular method for analysing progress and discovering the shortcomings
of feature extraction methods [5,6].

The goal of information visualization is generally defined as providing useful tools and techniques
for gaining insight into and understanding of the computer vision system or, more generally, to amplify
cognition [7]. These are high-level cognitive issues that are difficult to measure with quantitative user
studies. Tory and Moller, in their summary of expert reviews, recommend the use of visualization
evaluation for analysing computer vision systems [8]. Moreover, inspired by further studies [9,10],
we introduce this method to evaluate and find the problem resulting in recognition error by using
the descriptor we built. Despite this encouraging progress, there is still little insight into the internal
operation and behaviour of these complex models, or how they achieve such good performance.
From a scientific standpoint, this is deeply unsatisfactory. Without a clear understanding of how and
why they work, the development of better feature descriptors is reduced to trial and error. Therefore,
we introduce the visualization approach for evaluating our proposed feature descriptor. In this paper,
we introduce a visualization technique that reveals the input stimuli that excite individual image
features. It also allows us to observe the evolution of features during detection and recognition
in indoor scenarios. The visualization technique we propose uses a dictionary library and a new
HOG-based feature to project the feature activations back to the input pixel space.

The rest of this paper is organized as follows: Section 2 discusses relevant previous work
on the HOG-based method and the visualization-based evaluation method; Section 3 presents the
mathematical framework behind our model to achieve HOGP extraction and its visualization; Section 4
presents an evaluation of the proposed method and a comparison with state-of-the-art approaches;
Finally, Section 5 presents the main conclusions of this work and future avenues of our research.

2. Related Work

In recent decades, image classification technology has been widely used in the scenes and tasks of
computer vision, which includes object recognition, scene classification, object tracking, pedestrian
detection, and so on. Several of the most widely used feature descriptors are local binary pattern
(LBP) [11], HOG [12], and scale-invariant feature transformation (SIFT) [13]. LBP features are usually
applied to face detection and recognition [14,15]. HOG features are often used for pedestrian detection
and tracking [12,16]. SIFT features are more widely used in target recognition and location. Moreover,
the research for improving those descriptors has been achieved. Through the combination of HOG and
LBP, the pedestrian detection accuracy was improved [17,18]. Additionally, PCA was used to reduce
the dimensions and computational complexity of the SIFT feature descriptor [19]. These features
and their improved versions are able to express the local image texture features. However, those
feature descriptors were underdeveloped in image classification and recognition against complex
backgrounds. Therefore, more details are needed to achieve high accuracy image classification and
recognition. SIFT can express most of the image region information, but its computational complexity
is still a problem. In contrast, HOG is more effective than SIFT in large-scale target detection, because
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HOG indicates less region information than SIFT. However, HOG is hardly beneficial in small-scale
target detection [20]. According to our previous work, we found that image colour is useful in
describing image features.

In this paper, we introduce PCA to extract the principal colour information from image pixels.
Then the PCA information is combined with the HOG descriptor. Consequently, the new feature
descriptor, named HOGP, can simultaneously contain the regional texture and colour information,
which makes it clearer for expressing small and dim objects than other HOG-based methods. Trung and
his co-authors project the HOG features into the linear subspace by PCA in order to locate the
objects in images [21]. However, the runtime of this method will decrease for high-resolution images.
López and his colleagues proposed an approach for vehicle–pedestrian object classification based on
the HOG–PCA feature space, instead of the frame coordinates [22]. Savakis and his co-authors created
an efficient eye detector based on HOG–PCA features that reduces feature dimensionality compared to
the dimensionality of the original HOG feature [23]. Kim and his colleagues introduced the pedestrian
detection system by using the HOG–PCA feature, which improved the detection rate [24]. Agrawal and
Singh developed a novel framework for a face recognition system that outperforms in an unconstrained
environment, in which the HOG–PCA feature was used [25]. Dhamsania and Ratanpara implied that
action recognition can be estimated by computing the PCA–HOG descriptor of the tracking region
in frames. The experiments were performed for two games: hockey and soccer [26]. However, those
methods indicated that the computational time should be considered carefully.

Moreover, the image visualization method is widely used to evaluate the performance of image
feature descriptors. In a further study [27], the authors proposed an image feature visualizing method
for assessing their improved SIFT features by finding similar blocks in the input database and then
seamlessly splicing and smoothing them. Vondrick visualized HOG features and convolutional neural
network (CNN) features through a dictionary-based sparse representation method [28]. Mahendran
visualized CNN features, SIFT features, and the features combined with CNN and HOG [29]. In their
study [30], based on a qualitative visualization approach, Chu and his colleagues argued that the
residual networks challenged our understanding that CNNs learn layers of local features. Therefore,
we introduced the visualization method to evaluate the performance of the different features that are
used in our experiment.

3. Algorithm

According to a previous study [28], we visualized Figure 1a. Then, we found that the contour
detected by the computer was like a car from the computer’s perspective. Moreover, according to
our test, the recognition result could not be changed, even by increasing the training samples or
using other classification methods. After careful analysis, we suggested that the choice of the image
feature descriptor did not distinguish the water waves and the car’s textures. That was because the
Euclidean distance between the feature of the water wave and the feature of the car was closer than the
distance between the feature of the water wave and other kinds of image features during the image
classification. On the contrary, the human eye can easily distinguish the water wave from the noisy
water surface.

The flowchart of our algorithm is shown in Figure 2. In the first place, the HOG features are
extracted from the input image. Meanwhile, the PCA features of the image’s colourful information are
achieved [31]. After that, those two features are combined by cascade, which results in the formation
of the HOGP features. Finally, the sparse dictionary method is introduced to visualize the HOGP
features. It is noted that HOGP generation is inspired by Bajwa [32]. Bajwa argued that the pixel value
of the image was a kind of feature and was also the most direct formation of the feature. Almost all of
the image information can be expressed by the pixel values, which are named “direct features”, in our
paper. The existing feature descriptors are representative and are powerful in certain backgrounds, but
some of the image details are lost. In this paper, we propose HOGP for increasing feature robustness
without increasing the computation cost in the feature extraction.
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Figure 1. Comparison of our visualization with other visualization methods. (a) Original image; (b) 
HOG visualization [28]; and (c) HOGP feature visualization. 

 

Figure 2. Flowchart of our proposed algorithm. 

3.1. Grey Value 

To increase illumination invariance and discriminative power, colour descriptors have been 
proposed recently [1]. Therefore, we obtain grey values of images by arranging the image’s block 
pixel values to a dimensional vector. We visualize direct features to validate that this feature could 
restore the image information to a high degree. The visualization method is briefly described as 
follows:  

Step 1: Build a dictionary library for the direct feature; 
Step 2: Find the first p blocks with the smallest Euclidean distance by the K-nearest neighbour 

(KNN) algorithm that was proposed by a previous study [33]; 
Step 3: Compute the weighted average of the p image blocks to obtain a visualization image.  
According to our experimental results, the method can highly restore the colour information of 

the original image. However, it is clear that this colour feature does not have good robustness, but 
rather poor noise immunity. Moreover, the direct feature shows little reward in obtaining the 
gradient information, like the HOG-based feature. Therefore, we extracted the PCA information of 
the colour features, but did not use the colour features directly. 

3.2. HOG Feature Descriptor 

The HOG feature uses the image’s local gradient information to describe an image. The specific 
steps for extracting HOG features are outlined as follows: 

Step 1: Normalize the gamma space to reduce the impact of the illumination change: 

( , ) ( , )I x y I x y   (1)

where I is the image, ( , )x y  is the location of a pixel, and   is assumed to be 0.5 in this paper. 

Figure 1. Comparison of our visualization with other visualization methods. (a) Original image;
(b) HOG visualization [28]; and (c) HOGP feature visualization.
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3.1. Grey Value

To increase illumination invariance and discriminative power, colour descriptors have been
proposed recently [1]. Therefore, we obtain grey values of images by arranging the image’s block pixel
values to a dimensional vector. We visualize direct features to validate that this feature could restore
the image information to a high degree. The visualization method is briefly described as follows:

Step 1: Build a dictionary library for the direct feature;
Step 2: Find the first p blocks with the smallest Euclidean distance by the K-nearest neighbour

(KNN) algorithm that was proposed by a previous study [33];
Step 3: Compute the weighted average of the p image blocks to obtain a visualization image.
According to our experimental results, the method can highly restore the colour information of

the original image. However, it is clear that this colour feature does not have good robustness, but
rather poor noise immunity. Moreover, the direct feature shows little reward in obtaining the gradient
information, like the HOG-based feature. Therefore, we extracted the PCA information of the colour
features, but did not use the colour features directly.

3.2. HOG Feature Descriptor

The HOG feature uses the image’s local gradient information to describe an image. The specific
steps for extracting HOG features are outlined as follows:

Step 1: Normalize the gamma space to reduce the impact of the illumination change:

I(x, y) = I(x, y)λ (1)

where I is the image, (x, y) is the location of a pixel, and λ is assumed to be 0.5 in this paper.
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Step 2: Compute the image gradient:

G(x, y) =
√
(I(x + 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y− 1))2 (2)

α(x, y) = tan−1
(

I(x, y + 1)− I(x, y− 1)
I(x + 1, y)− I(x− 1, y)

)
(3)

where G(x, y) and α(x, y) represent the gradient magnitude and the direction of the pixel, respectively.
Step 3: Divide the image into cells whose size are wcell × ncell . It is noted that each cell is composed

of 8× 8 pixels in our experiment. Additionally, the stride of the moving block was chosen to be eight
pixels in our proposed method. The gradient directions of the region pixels are divided into eight bins,
which are evenly spaced over [0, 180◦]. According to the gradient directions, the gradient magnitudes
of the regional pixels are voted into those eight bins. Then, the gradient magnitudes of the eight
direction bins are added, and the bins are arranged to form an eight-dimensional feature vector.

Step 4: Combine 2× 2 cells into a block. In this paper, each cell contains an eight-dimensional
feature vector. Then, four cells that include eight-dimensional feature vectors are arranged to form a
32-dimensional feature vector.

In this way, the spatial relationship among pixels in a larger region is erected. The 32-dimensional
feature vector is normalized to form a HOG feature.

3.3. HOGP Feature Descriptor

We extracted the PCA information of the pixel grey values. PCA provides better spatial
information. PCA uses an orthogonal transformation to convert a set of observations of
possibly-correlated variables into a set of values of linearly uncorrelated variables that are called
principal components, which are shown in Figure 3. Therefore, in our work, we applied PCA along
with the selection of maximum pixel intensity to create a new feature descriptor. The method yielded
an image with less structural similarity to the source images along with low contrast and luminescence.
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Figure 3. Projecting data in two orthogonal directions.

Let the dataset be an M× N matrix D = {X1, X2, . . . , XN}, N is the number of samples, and each
sample contains an M-dimensional feature vector Xi = {x1, x2, . . . , xM}. The calculation of principal
components consists the following three steps.

Step 1: Compute the covariance matrix C by using the following function:

C =
1

N − 1
(D− D)(D− D)

T (4)
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Step 2: Obtain the transformation matrix W. First of all, the eigenvalues and eigenvectors of the
covariance matrix C are computed. Then, eigenvectors are arranged according to the eigenvalues.
In the following, the contribution rate of the eigenvalue is computed. Finally, the eigenvectors of the
first K eigenvalues are selected to compose the PCA feature.

Step 3: Transform dataset D from an M-dimensional space to a K-dimensional space by
transforming matrix W:

Y = WT D (5)

where Y is a dataset after dimension reduction.
The wpca × hpca pixels corresponding to each HOG block are selected as the input dataset, wpca is

the width of the HOG block, and hpca is the height of the HOG block. Each column of the dataset is
a sample, and each pixel value is a feature. In other words, each sample includes hpca features. It is
noted that both wpca and hpca are 16 in our experiment.

Moreover, we find that the contribution rate of the first two-dimensional eigenvalues is commonly
80% larger after calculating the contribution rate of the eigenvalue of the dataset. Consequently, we
select the eigenvectors’ first two-dimensional eigenvalues as the transformation matrix. After that, the
dataset Y is called the PCA feature.

Finally, we combine the HOG feature with the PCA feature in cascade, in order to constitute a
new feature named HOGP, by using Equation (6):

HOGPp(x, y) =
{

Yp(x, y), Hp(x, y)
}

(6)

where Yp(x, y) is the PCA feature of the pth image patch, and Hp(x, y) is the HOG feature of the
pth image patch. Therefore, we can find that HOGP is a coupling feature vector which includes
two elements.

Equation (6) indicates that HOPG can achieve better performance than HOG in object recognition
because of the introduction of the PCA feature. Therefore, compared to HOG, HOGP is more salient,
which means that HOGP is more efficient than HOG in complex environments that include rotation,
scale, and illumination. The process of creating a HOGP feature is shown in Figure 4.
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3.4. Visualization Method

We use an effective sparse dictionary pair to visualize the image features. The specific steps are
expressed as follows:

Step 1: Obtain the image features. Let I be an RGB original image which is divided into M patches
I = {I1, I2, . . . , IM}. m represents the pixel number of each patch Ii that is an m-dimensional space.
P = f (Ii) ∈ Rn means the image is packed into an n-dimensional descriptor vector. The transformation
method is to extract image features. There are many methods to extract image features, such as HOG,
SIFT, or HOGP.

Step 2: Construct a dictionary library. Our aim was to obtain the visualization image by using
the image features, so we built a feature dictionary FD = {P1, P2, . . . , PK} where each element Pi
corresponds to an image patch, and K represents the number of the element. ID = {I1, I2, . . . , IK} is
the image patch dictionary of the corresponding feature dictionary.

Step 3: Complete the visualization by transferring the coefficients, which is shown in Equation (7).
From Figure 5, we find that the combination of the features of each image patch that need to be
visualized and the features in the dictionary are types of linear weighted processes.
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p = αFD, i = αID (7)

where α = {α1, α2, . . . , αK} is a weight vector, p is the feature of a visualized image patch, and i is the
visualization image.
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We obtain the feature visualization by solving an optimization problem, which includes two
optimizing procedures. One is to find out the coefficient through the feature dictionary:

argmin
α∈RK

||αFD− p||22 s.t.||α||1 ≤ ε (8)

Another optimization is to use the obtained coefficient α to visualize the image patch. In order to
express the process of the optimization problem, we re-wrote Equation (8) and the new function is
shown as follows:

arg min
α∈RK

M
∑

i=1

(
||αFD− p||22 + ||αID− i||22

)
s.t.||α||1 ≤ ε (9)

According to Equation (9) we find that α can be obtained by minimizing the above function.

4. Results

4.1. Experiment Environment

We used a visualization method to assess the analysis of the experimental results. Part of our
dataset comes from PASCAL [34] and another part comes from our collection based on a smartphone
camera. Example images from the database are shown in Figure 6.

4.2. HOGP Feature Visualization

Based on the direct features, the visualization results of the direct image features are shown in
Figure 6. According to Figure 6, we find that the method can highly restore the colour information of
the original image.

From Figure 6, we find that the colour features coupled with PCA can recover a large amount of
the original colour information. Figure 6a is the image that was used by a previous study [28], and this
result is compared with the result obtained by HOGP. Figure 6b is a baby image selected from PASCAL.
Figure 6c is the Lena image. Figure 6d is an image filled with noise due to being taken at night.
Figure 6e is a desktop, where there is much foreground information and a simple background, since a
simple background easily introduces noise into a visualization. Figure 6f is an indoor image. However,
the shortcomings of this kind of feature are also obvious, which is that the regional connectivity is
underdeveloped and the dimension is too high because of the lack of texture information.
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4.3. Qualitative Results Based on Feature Visualization

Based on the sparse representation of the dictionary pair, we obtain the visualization results of
the HOGP-based and HOG-based features. Comparing the HOGP feature visualization image to the
HOG feature visualization image, the results indicate that HOG and HOGP features can both obtain
rich texture information and have good robustness. However, HOGP features can highlight the theme
and retain better colour information, which achieves better performance than the HOG features in
image classification and recognition. Additionally, the HOGP features introduce less noise than the
HOG feature. Therefore, the HOGP features can make the computer see objects more clearly than the
HOG features.

4.4. Quantitative Evaluation in the Image Feature Matching Rate

As mentioned in the previous section of this paper, HOGP can improve performance in scene
recognition. Therefore, in order to demonstrate the robustness of our proposed feature descriptor,
HOGP, the image feature matching rate is introduced in our paper, which was inspired by a previous
study [35]. Feature matching is the comparison of two sets of feature descriptors obtained from
different images to provide point correspondences between images, which is shown in Equation (9).

ratematching =
Ncorr

min
(

nre f , nsen

) × 100% (10)

where Ncorr is the number of the pair of matched features, nre f is the number of features of the reference
image, and nsen is the number of features of the sensed image.

In this test, HOG and HOGP were used to extract the image features from the database. In our
test, the existing matching method, named the Hamming distance, was implemented. Additionally,
a statistically robust method, named RANSAC, was used to filter outliers in matched feature sets,
which is useful in object detection.

HOGP is robust to luminous intensity because it uses PCA to find key colour features.
From Figure 7, we find that the middle figure was obtained by visualizing the HOG features of
the left figure, and the right figure was obtained by visualizing the HOGP features. Comparing
those two visualization results, we found that HOGP makes the computer see the image more clearly.
From Table 1, we find that both HOG and HOGP obtained good performance in different scenes.
Especially in pedestrian detection, the feature matching rate can achieve more than 76.3% with different
illumination, which indicates that HOGP is robust to illumination change. Moreover, we find that
HOGP achieved better performance than HOG in almost all of the scenes, even if the illumination
intensity changed.
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Figure 7. Comparison of the visualization results of HOG and HOGP features. The first column is the
original image, the images in the second column are visualized by the HOG features, and the images in
the third column are visualized by the HOGP features.

It is noted that we divided our test images into four scenes: human facial, pedestrian, indoor
environment, and animals. Figure 6 shows an example of our test image. In our test, each scene
included 100 images. Moreover, different illumination changes were added to the test images. It is
noted that three kinds of luminous intensity are added to our test image. Figure 8 displays an example
of the images with different luminous intensity.

Given the feature-matching results, Figure 9 shows the comparison of the results between HOG
and HOGP. Figure 9 shows the object detection results in different scenarios, which indicates that
our proposed method can detect all of the objects in the images. Figure 9a–d implies that our HOGP
feature descriptor is robust to illumination change. Figure 9e displays the performance of detecting
similar and small objects based on HOGP features. Figure 9f gives the detection result in a complex
indoor scenario that includes humans, computers, furniture, and so on.
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Figure 9. Object detection under different backgrounds based on our proposed method. (a) Baseline;
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object detection.

A summary of the results is displayed in Figure 10 of four scenes with three kinds of luminous
intensity. In the Figure 10 and Table 1, each point is the average of 100 independent runs with different
random data samples. The horizontal axis represents the scene that was classified. The vertical axis
represents the average results given by the feature matching score criterion. Figure 10a indicates
that the larger the luminous intensity, the lower the feature matching rate. Those results imply that
illumination change is an important factor that affects feature matching performance. Figure 10b
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shows that HOG obtained a better performance than HOGP only in pedestrian detection. However, the
feature-matching rate of HOGP (86.9%) is close to that of HOG (87.3%). Figure 10d shows that HOG
feature matching was 0.8% larger than that of HOGP in human facial detection when the brightness
was 1.4 times that of the baseline, which implies that HOGP is more efficient than HOG.Sensors 2016, 16, 1569 12 of 17 
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Figure 10. The comparison of results between HOG and HOGP for four kinds of scene. (a) Matching
result for baseline; (b) matching result for 80% brightness; (c) matching result for 120% brightness;
(d) matching result for 140% brightness.

Furthermore, we assessed our proposed method based on rotated and scaled images, which
are used to improve the efficiency performance of HOGP in a complex environment. In order to
improve the robust performance of HOGP, we rotated the test images with five different rotation
values θ = {5o, 10o, 15o, 20o, 25o, 30o}. Additionally, we scaled the test images with five different
values κ = {0.6, 0.8, 0.9, 1.2, 1.4, 1.5}. Figures 11 and 12 show the object detection results for the
rotated images (θ = 5o), and scaled images (κ = 0.8) by using HOGP, respectively.

Figure 11 indicates the object detection results of the rotated images based on HOGP. Compared
to Figure 9a,e, and f we find that all of the same objects in Figure 9 were also detected when the image
was rotated to the right by 5o. Additionally, according to Figure 13a, we find that HOGP obtains
better performance than HOG in all of the scaled images in the matching rate. Figure 12 displays
the object detection results for the scaled images with κ = 0.8. Compared to Figure 9a,e, and f, all
of the same objects in Figure 9 were detected, even though the image is zoomed out. Furthermore,
Figure 13b shows that HOGP achieves higher matching rates than HOG in all of the scaled images.
Furthermore, Figure 13 also shows that the curve of HOGP’s matching rate is smoother than that of
HOG, which implies that HOGP is more robust than HOG in object detection from scaled and rotated
images. Considering these results, we can conclude that HOGP performs well and provides a robust
and powerful alternative to object detection in complex scenes.
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4.5. Runtime Comparison

In this section, we evaluate the running time of our algorithm by comparing it to state-of-the-art
feature methods. Our implementation is coded in MATLAB. All experiments were done on a single
core with 3.40 GHz Intel CPU with 12 GB of RAM.

Table 1. Runtime comparison.

Pixel/Time(s) Man (333 × 5000) Desktop (1969 × 1513) Lena (256 × 256) Boy (443 × 543)

HOG + sparse dictionary 92.191 1423.114 36.532 123.521
HOGP + sparse dictionary 91.342 1378.683 29.563 111.049

In order to display the robust performance of our proposed method in object detection, we tested a
number of different resolution images in different scenes, and the means of the runtime were calculated
for HOGP and HOG. Table 1 shows the results for recovering the colour image from the original image.
The runtime of the HOG feature compared to the HOGP feature increased by 4.07%. Consequently, we
find that the runtime of HOGP has hardly increased, while the visualization result and the recognition
rate is better than with HOG. Moreover, the runtime can be reduced to one-third for recovering the
grey image. Comparing the runtime between the two descriptors, the HOGP-based algorithm is more
efficient than the HOG-based method. This is because the runtime for extracting the direct image
feature is reduced because PCA is used. Additionally, it is noted that the HOGP-based visualization
results are better than that of the HOG-based method that was introduced in this paper.

5. Conclusions

To tackle the problem that HOG features introduce a greater amount of noise in complex scenarios,
we proposed a new feature descriptor named HOGP. We used the visualization method to compare
the performance of image features and intuitively understand the world that the computer sees.
A qualitative and quantitative evaluation of the performance of HOG and HOGP under a variety of
occasions was achieved. The experimental results showed that HOGP was more robust than other
HOG-based features. Moreover, HOGP can make the computer see the image in the same way as the
human vision system, which is proved by comparing the visualization performance to a state-of-the-art
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descriptor. In another word, HOGP can also improve the correct rate of computer classification and
recognition. In the next work, we intend to apply HOGP to image classification and object detection
after reducing the runtime of our proposed algorithm.
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