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Machine learning is poised to transform health care. For example, to diagnose certain 

diabetic complications, ophthalmologists must visualize patients’ retinae, looking for subtle 

signs of damage. A Google team built a deep learning algorithm that could look at digitized 

retinal photographs and diagnose as accurately, if not more, than physicians (Gulshan et al. 

(2016)).

These efforts, though, are expanding in scope, from automating routine tasks to aiding in 

complex decisions. Tailored diagnostics help doctors decide whom to test and treat. 

Algorithms predict adverse outcomes (say stroke or heart disease) for early warning system 

that target resources and attention to high-risk patients.

These health policy applications raise their own econometric concerns. One is well 

understood—the conflation of causation and prediction. We suggest another important, yet 

under-appreciated, challenge: mismeasurement. Machine learning algorithms excel at 

predicting outcomes y based on inputs x. In automation tasks, measuring y, e.g. majority 

opinion of ophthalmologists, is straightforward. In health policy applications, we rely on 

electronic health records or claims data to measure y and x. The very construction of these 

data induces large and systematic mismeasurement. These in turn can bias algorithmic 

predictions; in some cases, these biases can automate policies that magnify existing clinical 

errors and moral hazard.

I. Example Application

Patients in the emergency department (ED) can be difficult to diagnose. Subtle symptoms 

can often overlap between diseases of differing severity: nausea could reflect heart attack, or 

acid reflux. Take the case of patients who are either having a stroke, or are at high risk of 

impending stroke in the days after ED visits. These patients can be hard to distinguish from 

more benign presentations. Yet if they could be identified, one could target more effective 

interventions in the ED, or arrange for close follow-up and expedited additional testing (e.g., 

to identify treatable causes of potential stroke) if they are sent home.

This seems like a perfect example of a ‘prediction problem’ (Kleinberg et al. (2015)). This 

decision does not require a causally valid estimate of a coefficient β̂x, such as how a 
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particular treatment affects stroke risk. Instead, we require an accurate prediction ŷ of stroke 

risk y in order to allocate interventions to highest risk patients. Moreover, the richness of 

electronic health records (EHRs) give us many variables x with which to make these 

predictions.

A. Empirical Results

To illustrate this, we use data from a large academic hospital and its ED to predict short-term 

stroke risk, focusing on a diagnosis of stroke in the week of the ED visit. As predictors, we 

use demographic data as well as any prior diagnoses present in the EHR system over the 

year before the ED visit, grouped into clinically-relevant categories. To illustrate our point 

simply, we use a logistic regression; surely more complex predictors would find even more 

structure than we present.1

Table 1 presents the top predictors of future stroke in terms of coefficient magnitude. 

Somewhat intuitively, prior stroke has the strongest association with future stroke. The next 

five largest predictors of stroke are also shown. Like prior stroke, history of cardiovascular 

disease also makes sense as a known risk factor for stroke. The other four predictors—

accidental injury, benign breast lump, colonoscopy, and sinusitis—are somewhat more 

mysterious. Have we discovered novel biomedical risk factors for stroke?

B. Measurement

To understand what might be happening, we must understand the measurement process 

underlying these data. We have spoken as if we are predicting “stroke.” Yet our measures are 

several layers removed from the biological signature of blood flow restriction to brain cells. 

Instead we see the presence of a billing code or a note recorded by a doctor. Moreover, 

unless the stroke is discovered during the ED visit, the patient must have either decided to 

return, or mentioned new symptoms to her doctors during hospital admission that provoked 

new testing. In other words, measured stroke is (at least) the compound of: having stroke-

like symptoms, deciding to seek medical care, and being tested and diagnosed by a doctor.

Medical data are as much behavioral as biological; whether a person decides to seek care 

can be as pivotal as actual stroke in determining whether they are diagnosed with stroke. 

Many decisions and judgments intervene in the assignment of a diagnosis code—or indeed, 

any piece of medical data, including obtaining and interpreting test results, admission and 

re-admission of a patient to the hospital, etc.

Viewed in this light, the findings in Table 1 are intuitive. We are just as much predicting 

heavy utilization (the propensity of people to seek care) as we are biological stroke. For 

example, evaluation for minor injury implies that the patient came into her doctor’s clinic or 

the ED for minor injuries; a recorded abnormal breast finding indicates that she noticed an 

irregularity, worried about it enough to schedule a visit, and came in to be checked out. 

Variables which proxy for heavy utilization could in fact appear to predict any medical 

condition, including stroke.

1Even this simple model does fairly well. A standard measure of performance is AUC, the area under the receiver operating 
characteristic curve—formally, P (ŷi > ŷj |yi = 1, yj = 0), which is 0.84 here.
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This can be seen by looking at a variable far less prone to mis-measurement: mortality. 

Column (2) shows coefficients for a similar regression in which mortality (ascertained from 

Social Security Administration records) is substituted for stroke as the dependent variable. 

All coefficients have decreased in magnitude. We can see that prior stroke remains 

associated with mortality, but the two significant predictors of stroke (injury and breast 

lump) no longer predict mortality; screening for colon cancer has switched signs and 

become a strong negative predictor of mortality. All in all, we can see that the variables that 

were so effective at predicting a y measured through the lens of human decision-making no 

longer perform so well in predicting a y measured with less error.

II. Measurement error in medical prediction problems

A simple framework can help understand how mismeasurement might bias prediction. We 

can write this as the difference between yi, e.g., measured stroke from medical records, and 

actual stroke, :

In a causal inference task, we have some intuition about how mis-measurement can be 

problematic: if Δi is correlated with a variable, its coefficient will be biased. How will it 

matter for prediction tasks?

A good predictor will produce predictions that are close to expected values:

Since we care about the prediction as a whole, in principle we are no longer concerned that 

Δi is correlated with specific xi variables but with any predictor. Two scenarios are possible 

here. The best case is that the error Δi is noise uncorrelated with xi.

The resulting prediction will be purely fitted to the predictable part of underlying risk, rather 

than the error. Here, prediction will effectively be a ‘denoised’ version of the raw yi drawn 

from medical records.

A less optimistic scenario arises when both error and actual risk are predictable:
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By writing  and Δ̂i E[Δi|xi], prediction variability can be decomposed in to the 

the predictable variance of the signal and the noise:

How much our decisions are based on predicted risk, ŷ, versus how much they are based on 

mismeasurement depends on the relative predictability of  and Δi.

This simple framework helps makes sense of our empirical example. In this case:

Measured injury predicts measured stroke because both are proxies for heavy utilization 

patients. Our (measured) stroke predictor is actually a combination of a stroke predictor and 

a utilization predictor.

In fact, given the nature of the data, it is entire plausible that utilization, Δi, is more 

predictable than , true stroke outcome. After all most of our predictors are highly 

dependent on patients tendency to utilize. In this sense, an early warning system based on 

predicted stroke risk might magnify moral hazard—by diverting resources even further to 

patients most likely to seek out care.

A. Consequences for decisions

In most machine learning applications, ŷ feeds into some decision. In the stroke example 

above, the decision is whether or not to allocate high-cost diagnostic or therapeutic 

technology to a patient with a given level of predicted risk.

Predictability of error alone does not imply a problem for decision-making. For example, the 

misprediction may not distort the the rank ordering of individuals in terms of . In these 

cases any decision that allocates according to rank, such as Di = 1 if  (based on 

costs and benefits of D) will not be affected. The decision can simply be scaled back to a 

new threshold , where k is an approximation of E[Δi|xi]. As an example, if the 

only error in yi was that moral hazard led doctors to over-diagnose stroke, but  still 

consistently ranked patients by true risk, we could simply scale back decisions (e.g., allocate 

D to the top 5% instead of the top 10% as the original prediction would have suggested).

In many cases, however, mismeasurement distorts rank ordering as well. The stroke 

predictor above did not simply rank according to true stroke risk: patients could have higher 

predicted “stroke risk” simply by being heavy utilizers. In these cases, predictors will create 

decision and allocation biases. The severity of these biases—and whether they lead to worse 

outcomes—depends on how predictable mismeasurement is, relative to the underlying 

outcome. As we have seen, in health data, mismeasurement is plausibly even more 
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predictable than true risk. An important corollary is that simply quantifying how well 

algorithms predict measured y is not enough to gauge its quality: we might prefer a worse-

looking predictor that tracks true risk and does not fit to mismeasurement.

B. How widespread are these problems?

Measurement error is often ignored in the machine learning literature because it is largely 

unimportant in traditional applications. The image algorithms that underlie the self-driving 

car, for example, are trained on data where it is easy to objectively label the presence of road 

boundaries, pedestrians, trees, and other obstacles. In the large image datasets on which 

vision algorithms are trained, the judgment of human observers who label images defines the 

truth that algorithm designers seek to predict.

In health data, on the other hand, mismeasurement is the rule, and the example of stroke 

prediction is hardly the exception. We identify three major categories of mismeasurement.

First, measurement is subjective. A diagnosis is not an objective assessment, but rather an 

opinion that has been assigned and billed, often for the purpose of justifying further testing 

or treatment. Even symptoms are not unfiltered reports from patients, but rather those 

symptoms elicited in the course of an interview, redacted, and set down in a note.

Second it is selective. Diagnostic test results reflect the decision to test. Patients ‘set the 

agenda’ and select which complaints to focus on during a visit.

Finally, it is event-based. We only record data when there is some precipitating medical 

event, such as clinic visit or hospitalization.2 We have seen how patient decisions play a 

major role here.

These measurement issues, in turn, can bias machine learning applications. First, as we saw 

above, they can further concentrate health spending in high utilizers. Many early warning 

systems are built on predictors not unlike our simple stroke predictor. These efforts to target 

testing, screening or simply extra attention may simply end up targeting the patients who 

already tend to seek out care at high levels.

Second, automated diagnoses could reinforce physicians’ judgmental biases (Blumenthal-

Barby and Krieger (2015)). For example, if psychologically salient or available diseases are 

over-diagnosed, algorithms trained on these diagnoses might simply replicate them 

(Mamede et al. (2010)). These biases might also reinforce disadvantage. Physicians are 40% 

less likely to refer female or black patients with chest pain for catheterization (Schulman et 

al. (1999)). Minorities receive less aggressive cancer treatment (Bach et al. (1999)). 

Algorithms that mine EHR data to automate diagnoses or make personalized cancer 

treatment recommendations (e.g., IBM Watson’s) could perpetuate these biases.

2This even affects measurement of death, which we typically assume is measured reliably. In fact, most databases record only death 
during some event, most often hospitalization. In our application, to resolve this, we linked to Social Security data, but this is not the 
norm.

Mullainathan and Obermeyer Page 5

Am Econ Rev. Author manuscript; available in PMC 2017 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, measurement error can feed through prediction algorithms. The biases inherent 

in human decisions that generate the data could be automated or even magnified. Done 

naively, algorithmic prediction could then magnify or perpetuate some of policy problems 

we see in the health system, rather than fix them.

III. Solutions

Ultimately, just as for causal inference in observational data, we are unlikely to find a one 

size fits all solution to measurement problems in prediction tasks. But we can start to think 

about several categories of ways to mitigate or solve them.

One avenue is better measurement: in many cases, at some cost, better measure y. Because 

these measures are time consuming and expensive, it limits sample size to the point where 

machine learning is often impractical. One solution would be to use these on a small sample 

for validation. They could be taken after predictions are made using a potentially 

mismeasured y.3 These studies could even be combined with randomized trials of 

interventions, which would allow for both prediction of y* and estimation of treatment effect 

by ŷ.

The ideal solution could be to hold machine learning tools to the same stnadard as any other 

new diagnostic technology in medicine, such as a new laboratory or imaging test. Their 

predictions ought to be compared to gold standard measures and rely on long-term, high-

quality follow-up data for validation.

IV. Conclusion

Machine learning relies on the availability of large, high-quality datasets (Halevy et al. 

(2009)). Health policy is a particularly attractive area exactly because large data are 

increasingly becoming available. Yet if we do not take the measurement process generating 

those data seriously, predictive algorithms risk doing less good than they otherwise might; in 

some cases, they could possibly even do harm.
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Table 1

Predicting and Mispredicting

Stroke 30 Day Mortality

Prior Stroke .302*** (.012) .041*** (.014)

Prior Accidental Injury .285** (.095) .007 (.101)

Abnormal Breast Finding .224* (.092) .162 (.110)

Cardiovascular Disease History .218*** (.029) −.017 (.034)

Colon Cancer Screening .242 (.178) −.475** (.222)

Acute Sinusitis .220 (.155) .056 (.166)

Notes: Logistic regression on demographics and prior diagnoses in EHR data. Sample: 177,825 ED visits in 2010-2 to a large academic hospital.
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