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Abstract

Type 2 diabetes mellitus (T2DM) is believed to be irreversible although no component of the

pathophysiology is irreversible. We show here with a network model that the apparent irre-

versibility is contributed by the structure of the network of inter-organ signalling. A network

model comprising all known inter-organ signals in T2DM showed bi-stability with one insulin

sensitive and one insulin resistant attractor. The bi-stability was made robust by multiple

positive feedback loops suggesting an evolved allostatic system rather than a homeostatic

system. In the absence of the complete network, impaired insulin signalling alone failed to

give a stable insulin resistant or hyperglycemic state. The model made a number of correla-

tional predictions many of which were validated by empirical data. The current treatment

practice targeting obesity, insulin resistance, beta cell function and normalization of plasma

glucose failed to reverse T2DM in the model. However certain behavioural and neuro-endo-

crine interventions ensured a reversal. These results suggest novel prevention and treat-

ment approaches which need to be tested empirically.

Introduction

The classical thinking about the pathogenesis of Type 2 diabetes mellitus (T2DM) can be sum-

marized in the form of five postulates: (i) Obesity results when net energy intake exceeds net

energy expenditure. (ii) Obesity leads to insulin resistance. (iii) To compensate for the insulin

resistance, more insulin is produced by the pancreatic β-cells. (iv) Chronically increased rate

of insulin synthesis leads to ‘exhaustion’ or some form of dysfunction of β-cells which causes

relative insulin insufficiency. This combination of insulin resistance and relative insulin insuf-

ficiency results in hyperglycaemia. (v) The pathophysiological complications of T2DM are a

consequence of chronically elevated glucose levels in the blood [1,2].

A number of recent studies have exposed many gaps, flaws and paradoxes in this thinking

[1–3]. The inability to cure diabetes can be attributed to these flaws and the clinical approach

that uses this classical thinking in patient treatment. Since hyperglycemia was assumed to be

the primary cause of the macrovascular and microvascular complications, treating hyperglyce-

mia was the major course of treatment for T2DM patients. It was observed in many large scale
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clinical trials that normalizing blood glucose is not sufficient to avoid diabetic complications

[4].

One of the fundamental paradoxes of T2DM is that the diabetic state is known to be irre-

versible although no component of the pathophysiology is individually irreversible. Beta cell

loss was considered irreversible for some time but they are shown to have good regeneration

capacity[5–8]. Therefore, the reason why T2DM cannot be cured is not known. Experiments

in rodents and humans using different means to suppress insulin production have shown that

whenever insulin production was suppressed, insulin sensitivity increased and blood sugar

remained normal [9–16]. Such experiments have raised doubts whether insulin resistance and

inadequate insulin production is necessary and sufficient for hyperglycemia in T2DM.

Although T2DM is historically identified as a condition of increased plasma glucose levels

owing to inadequate insulin action, we know today that not only insulin and glucose but a

large number of metabolites, hormones, growth factors, neurotransmitters, neuropeptides,

cytokines, behaviours and neuronal signals are up or down-regulated in this disorder. Whether

alterations in these signals are causes or consequences of altered insulin signalling and hyper-

glycemia is not clearly known [2]. We need to be open to the possibility that insulin and glu-

cose are not central players but only two of the links in a complex network of signals. In order

to get a good understanding of the pathophysiology of T2DM we need to consider all demon-

strated interactions between molecules and other signals involved in T2DM without any preju-

dice and construct a comprehensive model.

We constructed a multi-organ multi-signal interactive network model of pathophysiology

of T2DM and studied its behaviour. We show here that a network explains the pathophysiol-

ogy of T2DM better than a simplistic insulin and glucose centred model. The model was vali-

dated by testing many of its predictions and the results demonstrated that most of the

characteristics of T2DM are contributed by the structure of the network rather than

impairment of insulin signalling alone. Since the classical drug targets for the treatment of

T2DM failed to ensure a complete cure [17], a systematic search for alternative markers and

targets is needed and a network model is likely to give some directions for the search. In the

model, interventions that could reverse the insulin resistant state were not related to obesity,

beta cell functionality, insulin production or insulin action but to a set of behavioural and

neuro-endocrine targets.

Materials and methods—The network model

Identifying nodes and links of the network

We started with the classical theory of T2DM involving the 3 main variables classically believed

to be central to T2DM namely plasma insulin level, insulin resistance and plasma glucose level.

We searched literature for signals that affected one or more of the three (direct effectors) and

further for signals that affected the direct effector signals (indirect effectors). Since specific

behaviours are also known to trigger certain hormones and growth factors among the direct

effectors, behaviours were also included in the list of signals. Thus, our definition of signals

includes nutrients, metabolites, hormones, growth factors, cell populations, behaviours and

neuronal signals (Fig 1). All our signals have a functional meaning. So, a down-regulation

means loss or decrease in the signal. Whether it is because of structural change or any other

change, is considered irrelevant.

The source data to extract possible interactions amongst the listed signals were publications

reporting interventional studies giving causal evidence for a positive effect (up-regulation) or a

negative effect (down-regulation) of a given signal on another signal of interest. All searches

were made in ‘Google Scholar’ and ‘BioMedNet’ using the name(s) of the target nodes and
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“regulation of”, “expression of” and “affected by” as key words. Correlations and associations

were not considered as evidence for an interaction. All published interactions were treated

with equal weighting. No weighting of interactions was done by number of studies/ publica-

tions, validation, reliability, impact factor or level of current acceptance. Since, most of the

interventional data comes from non-human species; we included all experiments with

humans, rodents or other mammalian hosts (see S1 Table for model organisms used in the ref-

erence for each link).

After listing a large number of possible interactions, we applied the following inclusion and

exclusion criteria and redundancy filters. Since our focus was on signalling between cell types

and organs we excluded strictly intracellular pathways. If two or more signals shared the same

upstream signal/s and the downstream effect/s, they were merged into one. From a known lin-

ear signalling pathway, only one molecule was listed. However, if there was a branching point

in a pathway, it was listed as a signal. Only the signals having both upstream and downstream

effects from other nodes of the network were included (see S1 Text for details).

Finally, 330 interactions among 72 signals were identified from 491 publications and incor-

porated in the model (see S2 Table for details of the nodes and links with references). A net-

work was constructed using these signals and interactions (Fig 2). All signals were treated as

organ specific nodes and the interactions formed the directional links (in the network)

between these nodes. If a given signal had different actions in different organs they were

Fig 1. Signals in their respective tiers. First tier (innermost circle) includes players classically believed to be central to T2DM. Second tier

(intermediate whorl) includes the players that directly affected or were directly affected by the players in the first tier. The third tier (outermost

whorl) included players that affected those in the second tier or were affected by them.

https://doi.org/10.1371/journal.pone.0181536.g001
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Fig 2. The inter-organ signalling network involved in the pathogenesis of T2DM. Each organ (coloured

rectangles) displays the signals it produces. The outbound (white rectangle) and inbound (black rectangle)

portals for each signal are shown. Red arrows indicate up-regulation interactions and cyan, down-regulation

interactions. (See also S2 Table).

https://doi.org/10.1371/journal.pone.0181536.g002
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considered different nodes. For example, glucose in blood and that in the brain were treated as

separate nodes. A limitation of the study is that the network model may be currently incom-

plete due to lack of specific studies (studies yet to be pursued by the scientific community),

publication bias or studies that we may have missed during literature survey. Currently, the

model is only qualitative, in that it considers normal, up-regulated and down-regulated states

as discrete states. Each of the links may have some quantitative dynamics which may be linear

or non-linear which was not incorporated in the current model.

Perturbation simulations

A combination of Microsoft Excel 2007 for data input (addition of links to the network) and

output (network perturbation results) and Visual Basic Application for executing the links was

used to construct a network perturbation model. The signals were treated as nodes that can

have one of three states namely 0 or baseline, +1 or up-regulated and -1 or down-regulated.

Also, the directional links were of three different kinds namely up-regulatory or positive

(which increased the state of the downstream node by 1), down-regulatory or negative (which

decreased the state of the downstream node by 1) and basal level (which did not change the

state of the downstream node). A zero signal here does not mean that there is no signal; it

rather denotes that there is basal level signalling going on between the two nodes. Although

the model considers only discrete states, it does not indicate extreme states. For example, -1

state of beta cell mass does not mean complete destruction of beta cells. In T2DM, a substantial

proportion of beta cells survives lifelong [18]. Therefore, even in the -1 state of beta cells, insu-

lin producing capacity is not assumed to be completely lost.

After constructing the network, we studied the effects of different kinds of perturbations in

the network. At the beginning all nodes were at a default state of zero. Whenever a node was

manually up or down-regulated, the state of that node changed to +1 or -1 respectively. All the

directional links starting from that node were activated to change the states of the recipient

nodes (first generation nodes). Subsequently directional links from these first generation

nodes were activated to change the states of nodes further downstream (second generation

nodes). The event of activation of one generation of nodes was termed as a ‘cycle’. Whenever a

node received activated signals from more than one other node, the signals were added arith-

metically to give a net signal strength. Based on the net positive or negative value of the signal

strength, the state of the node was changed by +1 or -1 respectively; but without exceeding the

state limits of -1 to +1. If the net signal strength was zero or normal in a given cycle, then the

node returned to its normal default state. Thus at any given time the direction of change in the

state of a node was solely determined by the net input signal. However, the step length for any

change was restricted to unity, i.e. the state -1 could not become +1 in a single step.

Mathematically, the function of each node in every cycle can be explained as follows.

If Si 6¼ 0, then si = Seji; where ‘S’ is the state of the node ‘i’, ‘s’ is the cumulative signal it

received and ‘eji’ is the link from node j to i.

Depending upon the cumulative signal, the node is assigned a state.

If si > 0, Si(t) = Si(t − 1) + 1

If si = 0, Si(t) = 0

If si < 0, Si(t) = Si(t − 1)– 1; where ‘t’ is the cycle number

The state is then bound to limits -1 to +1

If Si(t)� −1,Si(t) = −1

If Si(t)� 1,Si(t) = 1

For example, to simulate the effects of primary hyperinsulinemia, the state of insulin in the

starting cycle was made 1 where all the other nodes had a state of zero. In the first cycle, the
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direct effects of insulin were executed. Hence, only those nodes that were immediate down-

stream of insulin altered their state to +1 or -1 depending upon whether they received up-regu-

lation or down-regulation link respectively, from the insulin node. In the current example, β-

cells, leptin, klotho, EGF, cognitive functions, endothelin-1, gonadotropin—releasing hor-

mone, nitric oxides and gut motility were up-regulated (state changed to +1); and keto acids

and adiponectin were down-regulated (state changed to -1). In the second cycle, the immediate

effects of these first generation nodes were executed. Thus in every cycle, the effects radiated,

and because all the nodes lay in a network, in a few cycles, every node was affected in some

way or the other. The recorded output was the state of each node after each cycle.

In the model above, the step length was always unity. As it changed from -1 to 0 in one

cycle, the signals changed according to the new states and the next step was decided by the

new signals. The step length was altered in two other variations of the model. One allowed a

direct leap from -1 to +1 if the net signal was> 0 or vice versa. This variation of the model did

not consider change in signals during state transition. In another variation the states as well as

steps were fine grained with a resolution of 0.1 so that twenty different states for each node

were possible between -1 and +1. Each link when activated led to a change of 0.1 in the down-

stream effector node. Multiple signals led to a cumulative signal strength which changed the

state of the node quantitatively between the limits of -1 and +1. We examined whether the

results were sensitive to the step length.

We used two types of perturbations separately or in combinations. (i) Point perturbations,

i.e., after the perturbation was made in the starting cycle, the perturbed node came back to

basal state after the first cycle; and then its state was allowed to be decided by the links it

received eventually from other nodes. (ii) Sustained perturbations, i.e., the state of a starting

perturbation node was changed and the changed state was maintained independent of any link

it received subsequently.

A stable state of a node was described as a consistent resultant state of the node which

remained so throughout further cycles. If a node changed its state with a repeated cyclic pat-

tern of a fixed periodicity throughout the cycles, it was termed as a node in stable oscillation. If

a node changed its states with unpredictably altering periodicity, it was termed as a node in a

chaotic state. The stable state of the system was defined as a state in which every node was in a

stable state or in short term deterministic oscillations. Further for the definition of a stable

state it was necessary that if the system was point perturbed starting with that state it returned

to the same state. If an apparently stable state obtained after one perturbation did not return to

it after any other point perturbation it was called pseudo-stable state. A chaotic state of the sys-

tem was defined by one or more nodes being in a chaotic state. Whenever there were stable

oscillations or chaos the average of the last hundred cycles was taken as the ‘mean final state’

for a node.

Some debatable links

A surprising finding of the search for links was that some of the classical beliefs were not sup-

ported by interventional evidence. For example we found no interventional evidence that mus-

cle insulin resistance was compensated by hyperinsulinemia. Lack of evidence for this widely

held assumption is acknowledged [2,19,20] but the assumption continues to be a part of main-

stream thinking. Strictly going by the inclusion criteria of the model, we should not have

included this link in the model. However since compensatory hyperinsulinemia is a widely

held belief, we decided to run (make point perturbations to the network model and observe

any changes in the Results) the model independently with and without this link. The difference

in the outcomes of the two models could potentially give us the importance of this link. The
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link between obesity and insulin resistance is also laden with contradictory evidence but the

mainstream thinking is that obesity increases insulin resistance. We run the model separately

with no link and with to and fro links between the two nodes.

The apparent irreversibility of beta cell damage is debated. Although classically beta cells

were believed not to regenerate once lost, experiments over the last two decades have shown

that beta cells have good regeneration capacity in vitro and in vivo including de novo regenera-

tion from ductal ascinar cells [21]. We operate the model independently assuming beta cell -1

state to be reversible as well as irreversible. We also encountered eleven other contradicting

reports, where some studies had reported up-regulation while others observed down-regula-

tion effect between the same node pair. We treated the contradictory links similar to the insu-

lin resistance—hyperinsulinemia link i.e., the model was run separately assuming positive link

or assuming negative link between the node pair.

Results

Point perturbations

For all point perturbations, after 20–25 cycles, the system invariably reached a stable state. Fur-

ther, there were only two observed stable states that the system reached. Chaos or a homeo-

static return to the starting state was never observed in the system. The two stable states did

not drift further after any point perturbation and were thus true stable states by definition. If

instead of zero, starting states of all nodes were randomly assigned, the same two stable system

states were obtained. The bi-stability thus obtained is unlikely to be a statistical generality

since a null model with the same number of nodes and links but with randomization of link

placements rarely gave bi-stability. Out of 1000 null model simulations, 931 ended in a chaotic

state. Stability was observed in 69 of them out of which, 12 showed a single stable state; 49

showed bi-stability, 4 showed tri-stability and the remaining 4 showed tetra-stability. The

uncommon occurrence of bi-stability (p< 0.05) in the null model implies that the observed

bi-stability in the network is unlikely to have arisen by chance alone.

In the two alternative stable system states, the states of all nodes including insulin action

were stable, consistent and exactly opposite (in terms of +1 or up-regulated and -1 or down-

regulated) to each other. Since insulin resistance is conventionally believed to be central to

T2DM we called the two attractors as insulin sensitive and insulin resistant attractors. The for-

mer was characterized by low adiposity, cholesterol, glucose levels and inflammatory markers;

and high adiponectin. The latter had a diametrically opposite picture (Table 1). The nodes

which, when perturbed (up-regulated), led to the insulin sensitive attractor were collectively

called the insulin sensitive basin of attraction and those which led to the insulin resistant

attractor, when perturbed (up-regulated), were collectively called the insulin resistant basin of

attraction.

The model used three different step lengths. For all the three step lengths, bi-stability was

observed and the composition of the two attractors remained identical. There were subtle

changes in the basins of attraction though. When the steps were fine grained, although the

nodes attained transient fractional values in the initial cycles, they ultimately settled at +1 or -1

and the attractors remained identical. Between unit step and fine grained step the basins of

attraction were over 90% similar. When direct leap was allowed bimodality and composition

of attractors remained the same and the basins of attraction were similar to unit step model by

over 80%. Since bi-stability and attractor composition were not sensitive to the step length, for

further analysis we used the unit step model alone which was faster as well as accommodated

changes in signals during transition.
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Table 1. Attractors for the point perturbations.

Serial

Number

Signals/ Nodes Three Letter

Code

State in the insulin resistant

attractor

State in the insulin sensitive

attractor

1. Activin A ata 1 -1

2. Adiponectin and -1 1

3. Adipose Tissue adp 1 -1

4. Aggression agr -1 1

5. α-Melanocyte Stimulating Hormone (α-MSH) msh 1 -1

6. Angiogenesis ang -1 1

7. Anti-oxidants aox -1 1

8. Arginine Vasopressin avp 0 0

9. β-Adrenergic Receptors bar 0 0

10. β Cells btc -1 1

11. Bone Strength/ Bone Mass ost -1 1

12. Brain-Derived Neurotrophic Factor (BDNF) bdn -1 1

13. Brain Glucose bgl -1 1

14. Cholecystokinin cck -1 1

15. Cholesterol chl 1 -1

16. Cocaine and Amphetamine Regulated

Transcript (CART)

car 1 -1

17. Cognitive Functions cfn 1 -1

18. Cortico-Releasing Hormone (CRH) crh -1 1

19. Corticosteroids cts -1 1

20. Cytokines ctk 0 0

21. Diplomat Behaviour dip 1 -1

22. Dopamine dop -1 1

23. Endorphins edp -1 1

24. Endothelin-1 et1 1 -1

25. Epidermal Growth Factor (EGF) egf -1 1

26. Erythropoeitin epo -1 1

27. Exercise exe 0 0

28. Fertility fty -1 1

29. Food Intake fdi 1 -1

30. Free Fatty Acids ffa 1 -1

31. γ-Aminobutyric acid (GABA) pancreas gap -1 1

32. γ-Aminobutyric acid (GABA) brain gab 0 0

33. Gastrin gst 1 -1

34. Ghrelin ghr 0 0

35. Glucagon glg -1 1

36. Glucagon-Like Peptide-1 (GLP-1) glp 0 0

37. Gluconeogenesis gng -1 1

38. Glucose Transporter-1 (GLUT-1) gt1 -1 1

39. Gonadotropin-Releasing Hormone (GnRH) grh 1 -1

40. Growth Hormone hgh 0 0

41. Gut Motility gmo 1 -1

42. Histamine hst -1 1

43. Inflammatory Response inr 1 1

44. Injury (Growth Factors) inj -1 1

45. Insulin ins 1 -1

46. Insulin Action ina -1 1

(Continued )

Bi-stability in type 2 diabetes signalling network

PLOS ONE | https://doi.org/10.1371/journal.pone.0181536 August 2, 2017 8 / 23

https://doi.org/10.1371/journal.pone.0181536


Sensitivity of the model to assumptions and contradictions

1. Assumptions. To test the sensitivity of bi-stability to the underlying assumptions of the

model, we relaxed the assumptions one by one and in combinations to see whether bi-stability

was an artefact caused by some of them.

When we changed the mode of signal additions from simple arithmetic addition to qualita-

tive addition, i.e. when a given node received both non-zero up-regulation and non-zero

down-regulation links, the net signal strength was treated as zero. When a node received only

positive signals, the node was up-regulated and when it received only negative signals, it was

down-regulated. This invariably resulted in to chaos with every node and no long term ten-

dency towards being up-regulated or down-regulated. A null model with qualitative additions

invariably gave chaos. Therefore this result appears to be more of a statistical generality than

any specific character of this network. The qualitative addition never allowed a sustained

departure from the zero state. In the context of T2DM, this would mean that a stable insulin

resistant or diabetic state may never be obtained. In reality, long term stability of insulin resis-

tant or diabetic state is common and reversal is difficult. The qualitative addition mode did

not appear to represent a realistic picture. Thus, relaxing some of the assumptions did not

affect bi-stability and relaxing certain others gave rise to unrealistic chaotic results. None of

the assumptions gave rise to good homeostatic control where the system returned to its ground

Table 1. (Continued)

Serial

Number

Signals/ Nodes Three Letter

Code

State in the insulin resistant

attractor

State in the insulin sensitive

attractor

47. Insulin-like Growth Factor (IGF-1) igf -1 1

48. Interleukin-6 il6 0 0

49. Keto Acids ktg -1 1

50. Klotho klt 0 0

51. Leptin lep 1 -1

52. Leptin Action lpa 0 0

53. Melatonin mlt 0 0

54. Muscle Strength/ Muscle Mass msl -1 1

55. Myostatin myo 1 -1

56. Nerve Growth Factor (NGF) ngf -1 1

57. Nitric Oxide nox 1 -1

58. Nociception noc 1 -1

59. Nor-epinephrine nep -1 1

60. Oestrogen otg -1 1

61. Osteocalcin ocl -1 1

62. Oxytocin oxy -1 1

63. Plasma Glucose pgl 1 -1

64. Secreted Frizzled-Related Protein 5 (SFRP-5) sfr 1 -1

65. Serotonin ser 1 -1

66. Sympathetic Stimulation sys 0 0

67. Testosterone tet -1 1

68. Triglycerides tri 1 -1

69. Tumour necrosis factor-α (TNF-α) tnf 1 -1

70. Vasodilation vdl 0 0

71. Vitamin B12 v12 0 0

72. Vitamin D3 vd3 0 0

https://doi.org/10.1371/journal.pone.0181536.t001
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state on its own. This demonstrated the robustness of bi-stability and the soundness of the set

of assumptions used in the model.

2. Contradictions. For all the contradictory interactions, simulations were run using posi-

tive or negative links. The interesting and surprising finding was that having or not having the

compensatory hyperinsulinemia link did not affect the bi-stability of the network or the signa-

tures of the two attractors. Since some researchers have argued for compensatory insulin resis-

tance in response to primary hyperinsulinemia [19], we reversed the causal arrow between

insulin resistance and insulin levels which again did not affect bi-stability. Similarly, reversing

between the assumptions that obesity causes insulin resistance or insulin resistance causes obe-

sity, or deleting the obesity-insulin resistance link altogether, did not affect bi-stability or the

attractor signatures except for the state of obesity (i.e. the node ‘adipose tissue’) itself. When

insulin and insulin action together down-regulated glucose, bi-stability was unaltered but

when insulin alone down-regulated glucose independent of insulin action, the system oscil-

lated with large periodicity (up to 32 cycles) and there were multiple resultant states. Therefore

inclusion of the insulin sensitivity-resistance axis was one of the critical conditions for the bi-

stability of the system.

For 10 out of the 11 up versus down-regulation contradictions examined, the system still

retained bi-stability with the up-regulation or down-regulation arrows. Eight out of the 10

contradicting interactions that retained bi-stability showed no effects on the attractor signa-

tures although the basins of attractions altered marginally (< 15%) in some of them. Two of

the interactions brought about marginal changes in the attractor signatures. The only up ver-

sus down-regulation contradiction that affected bi-stability was when endothelial nitric oxide

synthase (e-NOS) and neuronal nitric oxide synthase (n-NOS) action were considered a single

node. Different studies have found either up-regulating [22,23] or down-regulating [24–27]

action of NOS on aggression. Bi-stability was retained for the down-regulation link but not for

the up-regulation link. After segregating the actions of e-NOS and n-NOS, bi-stability was

retained. Since different studies report up or down regulating action of n-NOS on aggression,

the model was run with either of the links at a time. With both types of links, bi-stability was

maintained but the inclusion of n-NOS in the basin of attraction was affected.

Reactive oxygen species (ROS) is considered an important player in the pathophysiology of

T2DM. During redundancy filtering, ROS was filtered out since it was tightly linked to inflam-

mation and both shared identical incoming and outgoing links. But since ROS is believed to

be an important player, we simulated keeping ROS as a separate node. This change again did

not affect bi-stability and up-regulation of ROS led to insulin resistant state.

Glucagon has a direct up-regulation effect on insulin secretion [28], but through the agency

of kisspeptin, it has a down-regulation effect [29], making the net effect zero. The signal

between glucagon and insulin was therefore filtered out. However, since insulin and glucagon

are believed to be central molecules to T2DM we operated the model with and without these

links singly and in combination. The bi-stability remained robust to the inclusion or exclusion

of these links. The effect of glucose on beta cell mass also has contradictory literature. Glucose

is shown to stimulate proliferation of beta cells on the one hand [30] and on the other gluco-

toxicity is said to affect beta cell function [31]. Nevertheless the bi-stability of the model was

not sensitive to either of the assumptions.

Sustained perturbations

We perturbed each node singularly, in a sustained manner, and observed the downstream

effects. Sustained perturbation of the nodes in the network did not affect bi-stability. A fraction

of these perturbations led to stable short repetitive oscillations in the states of some nodes. Out
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of the 72 nodes 49 sustained perturbations gave identical results as respective point perturba-

tions. Remaining 23 sustained perturbations showed some changes in the attractor signatures

as compared to their respective point perturbations. Bi-stability was nevertheless maintained

in all cases.

Combining sustained and point perturbations

With each of the sustained perturbations in the background, every other node was point per-

turbed one at a time and simulations were run for a minimum of 300 cycles. Out of the 72 sus-

tained perturbations, 60 led to bi-stability although the signatures of the attractors changed

occasionally. Eleven sustained up-regulations gave rise to a single insulin sensitive attractor

and these were aggression, adiponectin, dopamine, ghrelin, growth hormone, insulin action,

melatonin, muscle strength, oestrogen, osteocalcin, and testosterone. And sustained up-regu-

lation of serotonin invariably led to the insulin resistant attractor. Sustained up-regulation of

the 11 nodes or down-regulation of serotonin never allowed the system to become insulin

resistant. Not only that, but aggression, dopamine, ghrelin, insulin action, muscle strength,

oestrogen and osteocalcin were able to completely reverse the states leading to the insulin sen-

sitive attractor if the simulations began from the insulin resistant attracter as the starting

conditions.

Although with combinations of perturbations the signatures of attractors could change,

there were significant associations between the states of several nodes. We clustered the nodes

based on the distance between pairs of nodes defined as the number of times the states of the

two nodes did not match across all possible combinations of perturbations. The 3 different

clusters obtained were (see S1 and S2 Figs for details of cluster analysis):

1. and, agr, ang, aox, bdn, btc, cck, cts, crh, dop, egf, edp, epo, fty, gap, glg, gng, gt1, hst, igf, inj,
ina, ktg, msl, ngf, nep, otg, ost, ocl, oxy, bgl, tet

2. ata, adp, msh, car, chl, cfn, dip, et1, ffa, fdi, gst, grh, inr, ins, lep, myo, nox, pgl, sfr, ser, tnf, tri,
gmo, noc

3. avp, bar, ctk, gab, ghr, hgh, il6, klt, lpa, mlt, sys, vdl, vd3, exe, glp, v12

Validation of the network model

These clusters suggested a way of validating the model. We expected all the nodes in a cluster

to be positively correlated to each other in real life data. Currently there are no studies that

provide quantitative data on all the nodes together. However different studies have looked at

different correlations. Of particular value are correlations between nodes that do not have a

direct link between them but they lie in the same cluster in the above classification. Demon-

strated correlations compatible with this expectations include myostatin to leptin [32], TNF-α
to triglycerides, plasma glucose to cholesterol [33], vitamin D3 to vasodilation [34] and growth

hormone to klotho [35]. We did not find any correlation in literature contrary to the model

expectations.

A comparison with the classical theory

The classical theory of insulin resistance states that obesity leads to insulin resistance, insulin

resistance tends to increase plasma glucose which stimulates increased insulin secretion. This

increased insulin secretion brings glucose back to normal leading to an insulin resistant-hyper-

insulinemic-normoglycemic stable state. Failure of compensatory hyperinsulinemia owing to
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beta cell exhaustion or dysfunction results in to hyperglycemia. We included only adipose tis-

sue, insulin, insulin action, beta cell mass and plasma glucose (Fig 3) as nodes in the model

and included all known and classically believed links. In this classical model, we failed to see

bi-stability under any condition. After any point perturbation in any of the five nodes, the sys-

tem returned to the initial basal state in not more than 4–5 cycles or showed stable oscillations

around the initial basal state. This is a typical behaviour of a homeostatic system. No point per-

turbation could change the basal state and lead to a stable insulin resistant state. Being a

smaller and simpler system it is easier to visualize the reasons. For example, when we up-regu-

lated adipose tissue mass, insulin resistance and subsequently plasma glucose increased. This

increased insulin levels and subsequently glucose returned to normal. As glucose returned to

normal, insulin could not remain elevated. Thus a normoglycemic-hyperinsulinemic state was

not stable. Further in a state of high insulin resistance, the lipogenic action of insulin was sup-

pressed and therefore adipose tissue was reduced. Reduction in adipose tissue normalized

insulin resistance and thus the system was back to its starting state. Even if we assume that

chronic overproduction of insulin affects beta cell function, beta cell mass remains in a homeo-

static state since glucose is known to stimulate beta cell proliferation. Further, owing to the

other homeostatic loops, both glucose and insulin return to normal thereby removing beta cell

stress. Inclusion of glucotoxicity, that is, considering pgl to btc a negative regulator, did not

drift the system away from homeostasis. Assuming beta cell loss as irreversible, that is, fixing

btc state to -1 resulted into oscillation of insulin between zero and -1 states but glucose

remained normal because of feedback loops operating through adp and ina. All the links in

this small network made effective negative feedback loops and therefore the system failed to

give a persistent insulin resistant state under any condition.

Fig 3. Classical model. Interactions among adipose tissue, insulin action, plasma glucose, plasma insulin

and beta cell mass according to the classical theory are shown with red arrows indicating up-regulation links

and cyan, down-regulation links.

https://doi.org/10.1371/journal.pone.0181536.g003
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Applications of the network model

1. Is there any key node?. To check the sensitivity of the model to the nodes involved in

the network and also to highlight the important nodes which when removed lead to the col-

lapse of bi-stability, we deleted each node one at a time and observed the effect of perturbing

every other node. A node under focus was frozen to the zero state all the time. This turned all

the incoming as well as outgoing links from the node ineffective and thereby the node was cut-

off from the rest of the network. This analysis also suggested whether tight homeostatic control

over any node is sufficient for homeostasis of the entire system. We found that in 71 of the 72

deletions, there was no deviation from bi-stability. The system showed a deviation from bi-sta-

bility only when the node fertility (fty) was deleted. Deletion of fty led to multiple stable states;

some being insulin sensitive and others being insulin resistant. Most of the correlates of insulin

resistance remained similar except that high cholesterol was now associated with insulin sensi-

tivity. To check whether any particular outgoing link of fty was responsible for this effect, we

deleted each of them individually. None of the links made by fty when individually deleted

affected the bi-stability. It seems to be a compound effect of the 3 links downstream to fty
namely up-regulation of EGF, oestrogen and oxytocin. It is interesting to note that freezing

glucose to the normal state did not ensure homeostasis of the entire network suggesting that

glucose homeostasis is not central and critical to the behaviour of the network.

2. Is there a key node combination?. In addition to single node deletion, we deleted com-

binations of nodes by randomly freezing to zero 10% of the nodes at a time. Out of 1000 such

simulations, bi-stability was conserved 81% of the times. Among the remaining 19%, there was

complete loss of stability 1.1% of the times. Among the deleted combinations that led to loss of

stability the nodes aggression, dopamine and fertility were overrepresented. Among the other

non-bi-stability outcomes 2.2% was contributed by uni-stability where the states of the nodes

were at and around the basal zero state indicating that the network was in a robust homeostatic

state. Among the combinations of deletions that gave robust homeostasis adiponectin, choles-

terol, fertility, histamine, insulin action, leptin and oxytocin were overrepresented suggesting

that these nodes in combination are critical for bi-stable behaviour of the system. It is interest-

ing to note that glucose did not appear in this list indicating that ensuring glucose homeostasis

along with a few other key nodes does not assure homeostasis of the entire system. See S3

Table for the list of combinations of deletions that led to homeostatic uni-stability and com-

plete loss of stability. In the remaining 15.7% cases tri, tetra or penta-stability was obtained in

which some states were insulin sensitive and others resistant.

3. Is there a critical missing link?. We tested the robustness of the bi-stability of the

model by random addition of a link between two randomly chosen nodes also. In 1,000 such

random addition trials, bi-stability was not altered except for 8 specific link additions. In 6 out

of the 8 there were 3 stable states instead of 2 and in only 2 cases there were multiple stable

states. None of the additions resulted in chaos or homeostatic return to the starting state. This

demonstrates further that the bi-stability is unlikely to be because of some critical missing link.

4. What makes the bi-stability robust?. Since there were only two resultant attractors in

the baseline model, the nodes could be classified as the ones whose up-regulation led to the

insulin sensitive attractor and the other whose up-regulation led to insulin resistant attractor.

Notably, point up-regulation of 40 of the 72 nodes, led to a stable state in which they remained

up-regulated. This is a positive feedback effect. Sixteen of the nodes resumed the zero state

although they drove the system to one of the two stable states. The remaining 16 showed an

overcompensation-like response, i.e. point up-regulation of these 16 nodes led to a state in

which they were down-regulated. Overall the network had a preponderance of positive feed-

back circuits which explains the robust bi-stable behaviour of the system.
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If the network is redrawn segregating the two groups of nodes (Fig 4), it can be appreciated

that there are significantly more positive links within group as compared to between groups

and there are significantly more negative links between groups as compared to within groups

(chi square = 37.33619, df = 3, p< 0.0001). This makes the bi-stability and the dichotomous

grouping of the nodes very robust. Within group positive and between groups negative links

will stabilize and reinforce the attractors; whereas within group negative and between groups

positive links will tend to destabilize the attractors. Since there were 216 stabilizing and 114

Fig 4. Basins of attraction. T2DM Signalling network segregated according to the point perturbations leading to the two attractors. The

outbound (white circle) and inbound (grey circle) portals are shown for each node. Red arrows indicate intra-group up-regulation links; cyan,

intra-group down-regulation links; purple, inter-groups up-regulation links; green, inter-groups down-regulation links.

https://doi.org/10.1371/journal.pone.0181536.g004
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destabilizing links, there is no wonder that the two attractors were highly stable and not sensi-

tive to changing a few nodes or links (Fig 5).

5. Towards robust targets for treatment of T2DM. The combined perturbation simula-

tion results give us possible new insights into long term effectiveness of a treatment. The criti-

cal question here is if a treatment target is sustainably locked into a desired state, how the

network behaves in presence and absence of other perturbations. An ideal treatment target

could be one which when locked should keep the system in an insulin sensitive state irrespec-

tive of any other perturbations. The different approaches currently targeted for treatment are

suppression of liver gluconeogenesis, restoration of beta cell mass, incretin action, enhance-

ment of insulin production, insulin supplementation, reduction in obesity, reduction in

plasma free fatty acid levels, normalizing plasma glucose, reducing oxidative stress and exer-

cise. None of these treatments was able to ensure an insulin sensitive state by sustained pertur-

bation. The states were rather decided by the accompanying point perturbations. Thus none of

these treatments were able to reverse the diabetic state in the long run although transient sup-

pression of plasma glucose could be obtained with many of them. One major line of attempted

treatment is to improve the beta cell function or introduce a new population of healthy beta

cells. The critical underlying questions are whether beta cell regeneration in T2DM is revers-

ible and whether improving beta cell function can reverse T2DM. When we operated the

model assuming beta cell dysfunction to be reversible, in the insulin resistant attractor, the

state -1 remained stable and up-regulating the state of beta cells, transiently (point perturba-

tion) or sustainably, did not bring the system back to the insulin sensitive state. This suggests a

possible solution to the beta cell paradox, that is, why beta cell dysfunction appears to be irre-

versible in T2DM when the cells have good regeneration capacity. In the model, other signals

coming from the network kept beta cell function down-regulated. Alternatively, we assumed

Fig 5. Link statistics. The bars represent the deviation from the expected number of links per cluster, the

expected being calculated assuming independence. First two columns show the stabilizing links and the next two

columns show the destabilizing links for the two clusters. The red and blue bars represent the insulin sensitive and

the insulin resistant basins of attraction, respectively.

https://doi.org/10.1371/journal.pone.0181536.g005

Bi-stability in type 2 diabetes signalling network

PLOS ONE | https://doi.org/10.1371/journal.pone.0181536 August 2, 2017 15 / 23

https://doi.org/10.1371/journal.pone.0181536.g005
https://doi.org/10.1371/journal.pone.0181536


beta cell dysfunction to be irreversible, that is, when beta cells achieved a state of -1, it was

retained -1 through all further cycles. Even under this assumption, bi-stability was attained

and the composition of the attractors was substantially the same.

In contrast, there were 11 nodes namely aggression (agr), testosterone (tet), dopamine

(dop), oestrogen (otg), osteocalcin (ocl), melatonin (mlt), ghrelin (ghr), muscle strength (msl),
adiponectin (and), insulin action (ina) and growth hormone (hgh) which when sustainably

up-regulated, ensured insulin sensitivity. All these nodes connect to insulin sensitivity by mul-

tiple pathways with positive regulator pathways far outnumbering negative regulatory path-

ways (Table 2). For example, aggression links directly and indirectly to the first tier players

from Fig 1 through EGF [6,36,37], IGF-1 [38,39], dopamine [40,41], muscle mass [42], bone

strength [43], adiponectin [44,45], testosterone [46,47] and other intermediates. Similar role is

shown to be played by oestrogen in females [47,48]. Osteocalcin, a marker of bone formation

[49], also increases insulin sensitivity in humans [50]. Melatonin is also known to enhance

insulin sensitivity [51], and also aggression [52]. Thus most of the above mentioned nodes that

could ensure insulin sensitive state were closely related to aggression and aggression may hold

the key to an insulin sensitive state as suggested by Belsare et al.[53], Watve [2] and Watve and

Yajnik [54].

We further examined how much time did each of the potential candidate nodes took for a

reversal from insulin resistant to sensitive state. In this race, oestrogen was the fastest actor

which made the transition in 3 cycles followed by ghrelin (4), aggression (5), dopamine (7),

muscle strength (24) and osteocalcin (59). If serotonin was down-regulated for at least 10

cycles, it also pushed the system from insulin resistant to insulin sensitive state. Applying a

combination of interventions could reduce the number of cycles required for transition from

insulin resistant to sensitive state. A minimum of 3 nodes were required to be simultaneously

up-regulated for bringing up the transition in one or two cycles. Eleven three-membered com-

binations containing agr along with two other from dop, tet, ghr, mlt, msl, otg, and hgh; dop
and otg with either tet or hgh could change the attractor from insulin resistant to the insulin

Table 2. Number of pathways from the novel target to insulin action.

Novel Target Total Pathways Positive / Negative ratio

and 49 3.090909091

agr 140 1.955555556

dop 167 2.1

ghr 154 1.375

hgh 107 2.225806452

ina 49 1.705882353

mlt 138 1.976744186

msl 41 3

otg 110 2.678571429

ocl 68 1.56

tet 135 1.62

ser 99 0.446153846

All pathways that link the 12 promising nodes to insulin sensitivity were mapped and listed. The 11 nodes

whose up-regulation increases insulin sensitivity, have a greater proportion of positive regulator pathways.

Serotonin, whose down-regulation increases insulin sensitivity, had a greater proportion of negative

regulator pathways. The 11 target to insulin action.l target to insulin action. The reference for each link and

pathways far outnumbering negative r.

https://doi.org/10.1371/journal.pone.0181536.t002
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sensitive state in a single cycle. Down-regulation of ser in combination with up-regulation of

agr and either dop, tet or ghr could give the same effect. Once the system attained the insulin

sensitive state by any of the above combinations of interventions, it could sustain itself against

any point perturbations even when the interventions were withdrawn.

When these interventions were applied assuming beta cell degeneration to be irreversible,

up-regulation of agr, dop, otg, ocl and ina; and down-regulation of ser could still lead to the

insulin sensitive state. When these interventions were applied when both beta cell and insulin

levels were kept fixed at -1, the results were identical. Thus the question whether beta cell

degeneration is reversible or irreversible did not seem to be central to the reversal of an insulin

resistant state to a sensitive one.

Discussion

Despite the limitation of the model owing to its qualitative nature, the results are realistic in

multiple ways. Running the model under different sets of assumptions, accommodating con-

tradictory empirical results and the sensitivity analysis demonstrates that the model is robust

and the results are not the artefactual outcome of any particular assumption. The model was

able to predict the clinically observed correlates of insulin resistance accurately. It also made

correct correlational predictions between pairs of variables that did not have a direct causal

connection. The classically perceived treatments targeting liver glucose production, insulin

sensitivity, insulin secretion including incretin action and beta cell function failed to bring

about a transition in the steady state in the model although they could temporarily improve

glucose control. This matches with the clinical observations that all these lines of treatments

have largely failed to cure diabetes or even control hyperglycemia in the long run [55]. Many

large scale clinical trials have revealed that normalizing blood glucose is not effective in avoid-

ing diabetic complications [4]. This finding is compatible with the model. Further, the model

demonstrates that it might be impossible, in principle, to prevent diabetic complications by a

sole focus on normalizing glucose. The ineffectiveness of aggressive glucose normalization tri-

als may not be because of failure to appropriately regulate glucose. Even if glucose is regulated

without hypoglycemic and other undesirable events, the complications may not be arrested

since normalization of glucose alone does not reverse the network state.

The model also accounts for foetal programming. If we consider the all zero baseline state

of the system as a foetal condition, certain stimuli faced in embryonic or early life can drive the

system to one of the two states which are difficult to reverse. This may account for develop-

mental origins of adulthood disease (DOHAD) [56] or predictive adaptive response [57]. Since

the model is based entirely on experimental data and it appropriately accounts for many realis-

tic phenomena, the unexpected outcomes of the model need to be considered seriously as new

possibilities. Empirical work in this direction is needed to test whether they work in reality.

Limitations of the model mainly come from 3 of its attributes that some of links might yet

have to be discovered, the experiments from which data are taken are carried out on different

model systems and that the model is discrete. Nevertheless, many predictions of the model

matched with observed data suggesting thereby that the network model works reasonably well

despite the limitations. This suggests that the novel and unexpected predictions of the model

need to be tested empirically.

The model essentially demonstrates that the pathophysiology of type 2 diabetes is orders of

magnitude more complex than the classical picture of insulin resistance and relative insulin

deficiency causing hyperglycemia. Insulin and glucose have been the two molecules central to

classical thinking but apart from the burden of history, there are no other grounds to treat

insulin and glucose to be more important in T2DM than any other nodes of the network. The
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behaviour of the system is decided more by the network structure than by one or a few key

molecules. In a network structure, it is possible to reach all nodes by starting from any random

node. Therefore, although we started assembling the network from insulin and glucose, it does

not mean the network is gluco-insulino-centric.

Because of the anastomoses of the network, the function lost by deleting a link can be com-

pensated by alternative paths. Since the number of links stabilizing the attractors far outnum-

ber the ones destabilizing it, a few missing links are unlikely to alter the behaviour of the

network. This may explain why knockouts such as MIRKO, or insulin suppressing agents

failed to increase fasting glucose in experiments [13,58]. It is possible in a network that one or

a few nodes play a central role, but if this is true, it should have been detected by systematic

deletion of nodes that we performed. The system was generally robust in this analysis and the

only node whose deletion or freezing made any changes in the behaviour of the system was

not related to energy homeostasis but to fertility and behaviour. This might be surprising for

the classical theory of T2DM but is expected by some of the upcoming evolutionary hypotheses

for the origin of T2DM [54,59]. Unless a single node or single link makes a critical difference,

a disorder is unlikely to originate in a single gene defect. Therefore it is no wonder then that

genome wide association studies are able to explain not more than 2% of obesity [60] and10%

insulin resistance [61] at a population level.

The multiply reinforced alternative stable states suggest that there could have been strong

selective forces to stabilize both the states under different contexts. Some of the evolutionary

hypotheses argue that insulin resistance is not an inevitable result of obesity but is a contextu-

ally adaptive state selected to face certain environments or to support certain coping strategies

[2,59]. Bi-stability indicates an adaptive and evolved insulin resistant state rather than a patho-

logical deviation from a homeostatic system [62].

Clinically the first important realization of the study is that a large number of signals can

potentially influence insulin sensitivity and the current emphasis on obesity alone is perhaps

overplayed and unwarranted. The means of transiting from the insulin resistant attractor to

the insulin sensitive one revealed by the model are substantially different from the traditional

line of thinking in clinical practice or in drug discovery. The model shows that none of the cur-

rent lines of treatment are able to make this transit. Instead the model suggests some non-con-

ventional lines of treatment. Of particular interest is the role of exercise. Sustained physical

activity alone did not have effects comparable to aggression in the model. Physical activity has

been classically considered to affect energy balance and reduce adiposity. Physical aggression

on the other hand has many other direct endocrine effects [53] and this effectively assured

insulin sensitivity in the model. This raises the possibility that exercises work more effectively

through the behavioural neuro-endocrine pathways rather than through calorie consumption.

In reality, many types of exercises have some or the other behavioural components and thereby

stimulate the neuro-endocrine pathways [63–67] in addition to burning calories. A testable

prediction of the model is that different exercises can be expected to have different endobolic

effects even if the caloric requirement is matched [53,68].

We can no more view complex disorders by piecemeal and expect to treat the disorder

effectively. The behaviour of a network can be substantially different from the behaviour of

smaller pieces of the network. The model suggests molecular targets such as adiponectin,

growth hormone, melatonin and testosterone for prevention of T2DM; and dopamine, ghre-

lin, oestrogen and osteocalcin for prevention as well as treatment of T2DM. But since all these

molecules are behaviourally regulated, it is likely that behavioural intervention may have a bet-

ter promise. It is quite likely that a paradigm shift is awaiting round the corner in the field and

we need to be open to this possibility.
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Supporting information

S1 Fig. Frequency distribution of distances of pairs of nodes. We clustered the nodes based

on Simple Matching Coefficient (SMC) between pairs of nodes defined as the number of times

the states of the two nodes matched across all possible combinations of perturbations. This led

to a SMC matrix of 71 X 70 nodes to which the basic set of 71 point perturbations and 71 sin-

gular sustained perturbations were added to make the total 5112. All the scores were normal-

ized by this total number 5112. Hence, every possible pair of nodes had a score from zero to

one. To view this scoring as a distance between the two nodes under consideration, we sub-

tracted that number from one. Hence, the pairs of nodes having a score nearer to zero mean

that the nodes in the pair are strongly correlated and hence closer to each other and the pairs

having a score of one denotes the longest possible distance and thereby no correlation between

the nodes in that pair. These scores were used to construct a frequency distribution. Since the

histogram shows two distinct peaks, it indicates clear clustering. The two peaks in the fre-

quency distribution of pair-wise distances correspond to the intra-group distance and the

inter-group distance respectively. We considered the first dip, i.e. 0.4 in the histogram as a

threshold and listed all the pairs which had a distance less than that threshold. Clustering was

made by associations starting with the first pair till the list was exhausted. In this way, 3 differ-

ent clusters were obtained.

(TIF)

S2 Fig. Dendrogram generated by DendroUPGMA. To compare the method of clustering

with a known method of clustering, we used DendroUPGMA (http://genomes.urv.cat/

UPGMA/), open source online software to cluster the nodes in our network and plot a dendro-

gram. The software uses UPGMA (Unweighted Pair Group Method with Arithmetic mean)

for clustering. We used the input data type as similarity matrix and fed in the 71 X 71 matrix

with the original scores out of 5112 for each pair of nodes. Clusters identified by both the clus-

tering protocols were identical.

(TIF)

S1 Table. Model organism used in each reference.

(DOCX)

S2 Table. Nodes and links with references.

(DOCX)

S3 Table. List of deletions of the 10% of the nodes that led to uni-stability and complete

loss of stability.

(DOCX)

S1 Text. Merger and exclusion of links according to criteria defined in the text.

(DOCX)

Acknowledgments

We would like to thank Pramod Patil, Manawa Diwekar-Joshi and Poortata Lalwani for com-

menting on an earlier draft of the manuscript. We would also like to thank Sutirth Dey, Pranay

Goel and Anu Raghunathan for their valuable input to the developing concept.

Author Contributions

Conceptualization: Milind Watve.

Bi-stability in type 2 diabetes signalling network

PLOS ONE | https://doi.org/10.1371/journal.pone.0181536 August 2, 2017 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181536.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181536.s002
http://genomes.urv.cat/UPGMA/
http://genomes.urv.cat/UPGMA/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181536.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181536.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181536.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181536.s006
https://doi.org/10.1371/journal.pone.0181536


Data curation: Shubhankar Kulkarni, Sakshi Sharda.

Formal analysis: Shubhankar Kulkarni, Sakshi Sharda.

Methodology: Shubhankar Kulkarni, Milind Watve.

Software: Shubhankar Kulkarni.

Supervision: Milind Watve.

Validation: Shubhankar Kulkarni.

Visualization: Shubhankar Kulkarni.

Writing – original draft: Shubhankar Kulkarni, Milind Watve.

Writing – review & editing: Shubhankar Kulkarni, Milind Watve.

References
1. Corkey BE. Diabetes: Have we got it all wrong? Diabetes Care [Internet]. 2012; 35(12):2432–7. Avail-

able from: http://care.diabetesjournals.org/content/35/12/2432.extract

2. Watve MG. Doves, Diplomats and Diabetes: A Darwinian Reinterpretation of Type 2 Diabetes and

Related Disorders [Internet]. Science & Business Media; 2013. 350 p. http://www.springer.com/life

+sciences/evolutionary+&+developmental+biology/book/978-1-4614-4408-4

3. Pories WJ, Dohm GL. Diabetes: Have we got it all wrong? Diabetes Care [Internet]. 2012; 35(12):2438–

42. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507594/

4. Turner RC, Holman RR, Cull CA, Stratton IM, Matthews DR, Frighi V, et al. Intensive blood-glucose con-

trol with sulphonylureas or insulin compared with conventional treatment and risk of complications in

patients with type 2 diabetes (UKPDS 33). Lancet [Internet]. 1998; 352(Ukpds 33):837–53. Available

from: http://www.ncbi.nlm.nih.gov/pubmed/9742976

5. Cheng C-W, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fasting-Mimicking Diet Promotes

Ngn3-Driven b-Cell Regeneration to Reverse Diabetes. Cell [Internet]. 2017; 168(5):775–788.e12.

Available from: http://dx.doi.org/10.1016/j.cell.2017.01.040

6. Brand SJ, Tagerud S, Lambert P, Magil SG, Tatarkiewicz K, Doiron K, et al. Pharmacological Treatment

of Chronic Diabetes by Stimulating Pancreatic b-Cell Regeneration with Systemic Co-administration of

EGF and Gastrin. Pharmacol Toxicol [Internet]. 2002; 91(6):414–20. Available from: http://www.ncbi.

nlm.nih.gov/pubmed/12688387

7. Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC. Direct evidence of attempted beta cell

regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia [Internet]. 2006

Aug [cited 2014 Jan 27]; 49(8):1838–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

16802132

8. Weir GC, Bonner-weir S. Five Stages of Evolving Beta-Cell Dysfunction During Progression to Diabe-

tes. Diabetes [Internet]. 2004; 53(December):S16–21. Available from: https://www.ncbi.nlm.nih.gov/

pubmed/15561905

9. Alemzadeh R, Jacobs W, Pitukcheewanont P. Antiobesity effect of diazoxide in obese Zucker rats.

Metabolism [Internet]. 1996 Mar; 45(3):334–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

8606640

10. Alemzadeh R, Slonim AE, Zdanowicz MM, Maturo J. Modification of insulin resistance by diazoxide in

obese Zucker rats. Endocrinology [Internet]. 1993; 133(2). Available from: http://press.endocrine.org/

doi/pdf/10.1210/endo.133.2.8344209

11. Alemzadeh R, Holshouser S, Massey P, Koontz J. Chronic suppression of insulin by diazoxide alters

the activities of key enzymes regulating hepatic gluconeogenesis in Zucker rats. Eur J Endocrinol [Inter-

net]. 2002 Jun; 146(6):871–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12039709

12. Alemzadeh R, Karlstad MD, Tushaus K, Buchholz M. Diazoxide enhances basal metabolic rate and fat

oxidation in obese Zucker rats. Metabolism [Internet]. 2008 Nov [cited 2014 Oct 12]; 57(11):1597–607.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/18940400

13. Alemzadeh R, Fledelius C, Bodvarsdottir T, Sturis J. Attenuation of hyperinsulinemia by NN414, a

SUR1/Kir6.2 selective K+-adenosine triphosphate channel opener, improves glucose tolerance and

lipid profile in obese Zucker rats. Metabolism [Internet]. 2004 Apr [cited 2014 Oct 27]; 53(4):441–7.

Available from: http://linkinghub.elsevier.com/retrieve/pii/S0026049503005328

Bi-stability in type 2 diabetes signalling network

PLOS ONE | https://doi.org/10.1371/journal.pone.0181536 August 2, 2017 20 / 23

http://care.diabetesjournals.org/content/35/12/2432.extract
http://www.springer.com/life+sciences/evolutionary+&+developmental+biology/book/978-1-4614-4408-4
http://www.springer.com/life+sciences/evolutionary+&+developmental+biology/book/978-1-4614-4408-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507594/
http://www.ncbi.nlm.nih.gov/pubmed/9742976
http://dx.doi.org/10.1016/j.cell.2017.01.040
http://www.ncbi.nlm.nih.gov/pubmed/12688387
http://www.ncbi.nlm.nih.gov/pubmed/12688387
http://www.ncbi.nlm.nih.gov/pubmed/16802132
http://www.ncbi.nlm.nih.gov/pubmed/16802132
https://www.ncbi.nlm.nih.gov/pubmed/15561905
https://www.ncbi.nlm.nih.gov/pubmed/15561905
http://www.ncbi.nlm.nih.gov/pubmed/8606640
http://www.ncbi.nlm.nih.gov/pubmed/8606640
http://press.endocrine.org/doi/pdf/10.1210/endo.133.2.8344209
http://press.endocrine.org/doi/pdf/10.1210/endo.133.2.8344209
http://www.ncbi.nlm.nih.gov/pubmed/12039709
http://www.ncbi.nlm.nih.gov/pubmed/18940400
http://linkinghub.elsevier.com/retrieve/pii/S0026049503005328
https://doi.org/10.1371/journal.pone.0181536


14. Hwang DY, Seo S, Kim Y, Kim C, Shim S, Jee S, et al. Significant change in insulin production, glucose

tolerance and ER stress signaling in transgenic mice coexpressing insulin-siRNA and human IDE. Int J

Mol Med [Internet]. 2007; 19(1):65–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17143549

15. Velasquez-Mieyer P, Cowan P, Arheart K, Buffington C, Spencer K, Connelly B, et al. Suppression of

insulin secretion is associated with weight loss and altered macronutrient intake and preference in a

subset of obese adults. Int J Obes Relat Metab Disord [Internet]. 2003; 27(2):219–26. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/12587002

16. Schreuder T, Karreman M, Rennings A, Ruinemans-Koerts J, Jansen M, de Boer H. Diazoxide-medi-

ated insulin suppression in obese men: a dose-response study. Diabetes, Obes Metab [Internet]. 2005;

7(3):239–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15811140

17. DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly

diagnosed type 2 diabetes. Diabetes Care [Internet]. 2013 Aug [cited 2014 Jan 29]; 36 Suppl 2:S127–

38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23882037

18. Maclean N, Ogilvie RF. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabe-

tes. 1955; 4(5):367–76. PMID: 13270659

19. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyper-

insulinemia the cart or the horse? Diabetes Care [Internet]. 2008 Feb; 31(2):262–8. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/18227495

20. Corkey BE. Banting Lecture 2011 Hyperinsulinemia: Cause or Consequence? Diabetes [Internet].

2012; 61(1):4–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22187369

21. Yamaoka T. Regeneration therapy of pancreatic β cells: Towards a cure for diabetes? Biochem Biophys

Res Commun [Internet]. 2002; 296(5):1039–43. Available from: https://www.ncbi.nlm.nih.gov/pubmed/

12207876

22. Demas GE, Kriegsfeld LJ, Blackshaw S, Huang P, Gammie SC, Nelson RJ, et al. Elimination of Aggres-

sive Behavior in Male Mice Lacking Endothelial Nitric Oxide Synthase. J Neurosci [Internet]. 1999; 19

(19):2–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10493775

23. Gammie SC, Nelson RJ. Maternal aggression is reduced in neuronal nitric oxide synthase-deficient

mice. J Neurosci [Internet]. 1999 Sep 15; 19(18):8027–35. Available from: http://www.ncbi.nlm.nih.gov/

pubmed/10479702

24. Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos VE, Dawson TM, Nelson RJ. Brain serotonin dys-

function accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad

Sci U S A [Internet]. 2001 Jan 30; 98(3):1277–81. Available from: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=14745&tool=pmcentrez&rendertype=abstract

25. Nelson R, Demas G, Huang P, Fishman M, Dawson V, Dawson T, et al. Behavioural abnormalities in

male mice lacking neuronal nitric oxide synthase. Nature [Internet]. 1995; 378(6555):383–6. Available

from: http://www.ncbi.nlm.nih.gov/pubmed/7477374

26. Kriegsfeld LJ, Dawson TM, Dawson VL, Nelson RJ, Snyder SH. Aggressive behavior in male mice lack-

ing the gene for neuronal nitric oxide synthase requires testosterone. Brain Res [Internet]. 1997; 769

(1):66–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9374274

27. Demas GE, Eliasson MJ, Dawson TM, Dawson VL, Kriegsfeld LJ, Nelson RJ, et al. Inhibition of neuro-

nal nitric oxide synthase increases aggressive behavior in mice. Mol Med [Internet]. 1997 Sep; 3

(9):610–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2230093&tool=

pmcentrez&rendertype=abstract

28. Ohneda A, Matsuda K, Iimura Y, Yamagata S. Glucagon-Induced Insulin Secretion in Normal andDia-

betic Subjects. Tohoku J Exp Med [Internet]. 1975; 116:103–10. Available from: https://www.jstage.jst.

go.jp/article/tjem1920/116/2/116_2_103/_pdf

29. Song W, Mondal P, Wolfe A, Alonso LC, Stamateris R, Ong BWT, et al. Article Glucagon Regulates

Hepatic Kisspeptin to Impair Insulin Secretion. Cell Metab [Internet]. 2014; 19(4):667–81. Available

from: http://dx.doi.org/10.1016/j.cmet.2014.03.005

30. Ferrer J. Glucose as a mitogenic hormone. Cell Metab [Internet]. 2011; 13(4):357–8. Available from:

http://dx.doi.org/10.1016/j.cmet.2011.03.014

31. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose Toxicity in ?-Cells: Type 2 Diabe-

tes, Good Radicals Gone Bad, and the Glutathione Connection. Diabetes [Internet]. 2003; 52:581–7.

Available from: http://diabetes.diabetesjournals.org/content/52/3/581.full-text.pdf

32. Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA. Myostatin knockout in mice increases

myogenesis and decreases adipogenesis. Biochem Biophys Res Commun [Internet]. 2002 Mar 1 [cited

2014 Sep 6]; 291(3):701–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11855847

33. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased Adipose Tissue Expression

of Tumor Necrosis Factor-alpha in Human Obesity and Insulin Resistance. J Clin Invest [Internet].

Bi-stability in type 2 diabetes signalling network

PLOS ONE | https://doi.org/10.1371/journal.pone.0181536 August 2, 2017 21 / 23

http://www.ncbi.nlm.nih.gov/pubmed/17143549
http://www.ncbi.nlm.nih.gov/pubmed/12587002
http://www.ncbi.nlm.nih.gov/pubmed/15811140
http://www.ncbi.nlm.nih.gov/pubmed/23882037
http://www.ncbi.nlm.nih.gov/pubmed/13270659
http://www.ncbi.nlm.nih.gov/pubmed/18227495
http://www.ncbi.nlm.nih.gov/pubmed/22187369
https://www.ncbi.nlm.nih.gov/pubmed/12207876
https://www.ncbi.nlm.nih.gov/pubmed/12207876
http://www.ncbi.nlm.nih.gov/pubmed/10493775
http://www.ncbi.nlm.nih.gov/pubmed/10479702
http://www.ncbi.nlm.nih.gov/pubmed/10479702
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14745&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14745&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/7477374
http://www.ncbi.nlm.nih.gov/pubmed/9374274
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2230093&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2230093&tool=pmcentrez&rendertype=abstract
https://www.jstage.jst.go.jp/article/tjem1920/116/2/116_2_103/_pdf
https://www.jstage.jst.go.jp/article/tjem1920/116/2/116_2_103/_pdf
http://dx.doi.org/10.1016/j.cmet.2014.03.005
http://dx.doi.org/10.1016/j.cmet.2011.03.014
http://diabetes.diabetesjournals.org/content/52/3/581.full-text.pdf
http://www.ncbi.nlm.nih.gov/pubmed/11855847
https://doi.org/10.1371/journal.pone.0181536


1995; 95(January):2409–15. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC295872/

pdf/jcinvest00026-0467.pdf

34. Ertek S, Akgül E, Cicero AF, Kütük U, Demirtaş S, Cehreli S, et al. 25-Hydroxy vitamin D levels and

endothelial vasodilator function in normotensive women. Arch Med Sci [Internet]. 2012 Feb 29 [cited

2014 Sep 6]; 8(1):47–52. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3309436&tool=pmcentrez&rendertype=abstract

35. Schmid C, Neidert MC, Tschopp O, Sze L, Bernays RL. Growth hormone and Klotho. J Endocrinol

[Internet]. 2013 Nov [cited 2014 Sep 6]; 219(2):R37–57. Available from: http://www.ncbi.nlm.nih.gov/

pubmed/24096965

36. Hakonen E, Ustinov J, Mathijs I, Palgi J, Bouwens L, Miettinen PJ, et al. Epidermal growth factor (EGF)-

receptor signalling is needed for murine beta cell mass expansion in response to high-fat diet and preg-

nancy but not after pancreatic duct ligation. Diabetologia [Internet]. 2011 Jul [cited 2013 Jan 24]; 54

(7):1735–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21509441

37. Sánchez O, Viladrich M, Ramı́rez I, Soley M. Liver injury after an aggressive encounter in male mice.

Am J Physiol Regul Integr Comp Physiol [Internet]. 2007 Nov [cited 2013 Feb 5]; 293(5):R1908–16.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/17761516

38. Sapolsky RM, Spencer EM. Insulin-like growth factor I is suppressed in socially subordinate male

baboons. Am J Physiol [Internet]. 1997; 273(4.2):1346–51. Available from: http://www.ncbi.nlm.nih.gov/

pubmed/9362298

39. O’Connell T, Clemmons DR. IGF-I/IGF-Binding Protein-3 Combination Improves Insulin Resistance By

GH-Dependent and Independent Mechanisms. J Clin Endocrinol Metab [Internet]. 2002 Sep 1 [cited

2013 Feb 7]; 87(9):4356–60. Available from: http://jcem.endojournals.org/cgi/doi/10.1210/jc.2002-

020343
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