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Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are
often captured in biological network representations where nodes represent a certain bioentity and edges the connections between
them.Whilemany tools tomanipulate, visualize, and interactively explore such networks already exist, only few of them can scale up
and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools
and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization,
and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness,
and postvisualization capabilities.

1. Background

Health and natural sciences have become protagonists in the
big-data world as high-throughput advances continuously
contribute to the exponential growth of data volumes. Nowa-
days, biological repositories expand every day by hosting
various entities such as proteins, genes, drugs, chemicals,
ontologies, functions, articles, and the interactions between
them, often leading to large-scale networks of thousands or
evenmillions of nodes and connections. As such networks are
characterized by different properties and topologies, graph
theory comes to play a very important role by providing ways
to efficiently store, analyze, and subsequently visualize them
[1–5].

Visualization and exploration of biological networks at
such scale are a computationally challenging task and many
efforts in this direction have failed over the years. Recent
review articles [3, 4, 6] discuss the challenges in the biological
data visualization field and list a catalog of standalone and
web-based visualization tools as well as the visual concepts
they are implemented to serve. While these resources are
valuable to capture the big picture in the field, get a sense of

the available tools, and spot the strengths and the weaknesses
of a tool of interest at a glance, no empirical feedback on the
tools’ scalability was obvious.

To shortly mention representative tools in the field, 2D
standalone applications like graphVizdb [7], Ondex [8],
Proviz [9], VizANT [10], GUESS [11], UCINET [12], MAP-
MAN [13], PATIKA [14], Medusa [15], or Osprey [16] as
well as 3D visualization tools such as Arena3D [17, 18]
and BioLayout Express [19] already exist. Each of them is
designed to serve a different purpose. For example, Ondex
is implemented to gather and manage data from diverse and
heterogeneous datasets, Proviz is dedicated to handle protein-
protein interaction datasets, VizANT focuses on metabolic
networks and ecosystems, Medusa is able to show semantic
networks and multiedged connections, GUESS supports
dynamic and time sensitive data, Osprey is implemented to
annotate biological networks, Arena3D is targeting multilay-
ered graphs, and BioLayout Express is designed for generic
advanced 3D network visualizations.

Despite the fact that such tools are widely used and have
great potential for further development, to our experience,
they are not recommended for large-scale network analysis in
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their current versions. UCINET windows application could
potentially be used for just visualization purposes. Its absolute
maximum network size is about 2 million nodes but, in
practice, most of its procedures are too slow to run networks
larger than about 5,000 nodes.

Among several existing tools that we tested, we find
Cytoscape (v3.5.1) [20], Tulip (v4.10.0) [21], Gephi (v0.9.1)
[22], and Pajek (v5.01) [23, 24] standalone applications to
be the top four candidates for visualization, manipulation,
exploration, and analysis of very big networks. For these
four tools, we empirically evaluate their pros and cons, we
comment on their scalability, user friendliness, layout speed,
offered analyses, profiling, memory efficiency, and visual
styles, and we provide tips and advice on which of their
features can scale and which of them is better to avoid.

In order to show a representative visualization generated
by these four tools, we constructed a graph consisting
of 202,424 nodes and 354,468 edges showing the habitat
distribution of 202,417 protein families across 7 habitats.
Data was collected from the IMG integrated genome and
metagenome comparative data analysis system [25] whereas
protein families originate from public metagenomes only.

A step-by-step protocol describing how these imageswere
generated is presented as Supplementary Material, available
online at https://doi.org/10.1155/2017/1278932. Comments on
problems which occurred during our analysis as well as
drawbacks and strengths of the visualization tools used for
the purposes of this review are extensively discussed.

2. Top Four Candidates for Large-Scale
Network Visualization

2.1. Gephi (Version 0.9.1). Gephi is free open-source, lead-
ing visualization and exploration software for all kinds of
networks and runs on Windows, Mac OS X, and Linux. It
is our top preference as it is highly interactive and users
can easily edit the node/edge shapes and colors to reveal
hidden patterns. The aim of the tools is to assist users in
pattern discovery and hypothesis making through efficient
dynamic filtering and iterative visualization routines. As a
generic tool, it is applicable to exploratory data analysis, link
analysis, social network analysis, biological network analysis,
and poster creation.

2.1.1. Scalability. Gephi comes with a very fast rendering
engine and sophisticated data structures for object handling,
thus making it one of the most suitable tools for large-
scale network visualization. It offers very highly appealing
visualizations and, in a typical computer, it can easily ren-
der networks up to 300,000 nodes and 1,000,000 edges.
Compared to other tools, it comes with a very efficient
multithreading scheme, and thus users can perform multiple
analyses simultaneously without suffering from panel “freez-
ing” issues.

2.1.2. Layouts. In large-scale network analysis, fast layout is a
bottleneck as most sophisticated layout algorithms become

CPU and memory greedy by requiring long running time
to be completed. While Gephi comes with a great variety of
layout algorithms, OpenOrd [26] and Yifan-Hu [27] force-
directed algorithms are mostly recommended for large-scale
network visualization. OpenOrd, for example, can scale up to
over a million nodes in less than half an hour while Yifan-Hu
is an ideal option to apply after the OpenOrd layout. Notably,
Yifan-Hu layout can give aesthetically comparable views
to the ones produced by the widely used but conservative
and time-consuming Fruchterman and Reingold [28]. Other
algorithms offered byGephi are the circular, contraction, dual
circle, random, MDS, Geo, Isometric, GraphViz, and Force
atlas layouts. While most of them can run in an affordable
running time, the combination of OpenOrd and Yifan-Hu
seems to give the most appealing visualizations. Descent
visualization is also offered by OpenOrd layout algorithm if
a user stops the process when ∼50–60% of the progress has
been completed. Of course, efficient parametrization of any
chosen layout algorithmwill affect both the running time and
the visual result.

2.1.3. Postvisualization Analysis. Edge-bundling and famous
clustering algorithms such as the MCL [29] do not come
by default with Gephi but can be downloaded from Gephi’s
plugin library (∼100 plugins). In addition, GeoLayout Gephi’s
plugin is very suitable to plot a network with geographical
information. Coming to dynamic network visualization,
Gephi is the forefront of innovation with dynamic graph
analysis. Users can visualize how a network evolves over time
by manipulating its embedded timeline. While visualization
of a network over time is something very useful, its current
algorithms are not suitable for large-scale networks. Similarly,
for large-scale networks it is highly recommended for users
to apply clustering algorithms using external command line
applications and then import the clustering results to a
visualization tool.

To study a network’s topology, Gephi comes with a
very basic but high quality network profiler showing basic
statistics about the network such as the number of nodes,
the number of edges, its density, its clustering coefficient,
and other metrics. Automatically calculated node attributes
such as node connectivity, clustering coefficient, betweenness
centrality, or edge weight and similarly are trivial tasks and do
not require long time to be calculated.

2.1.4. Editing. Gephi is highly interactive and provides clever
shortcuts to highlight communities, and shortest paths or
relative distances of any node to a node of interest are offered.
Moreover, users can easily adjust or interactively filter the
shapes and colors of the network’s edges and nodes according
to their attributes in order to reveal hidden patterns. It is
not the purpose of this review to tutor how to use such
applications as this can be found in the tool’s relevant help
pages. While Gephi is a great option for large-scale network
visualization, manual network importing, multiple network
handling, and manual node/edge/label editing can be tricky
as many options are well hidden in Gephi’s user interface or
supported by specific plugins.

https://doi.org/10.1155/2017/1278932
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Figure 1: Gephi visualization of a network consisting of 202,424
nodes and 354,468 edges showing the distribution of 202,417 protein
families across 7 habitats. A combination of OpenOrd and Yifan-Hu
force-directed layout algorithmwas used to calculate the node coor-
dinates. Each habitat and its adjacent edges are colored uniquely. A
step-by-step guide regarding the methods and the parametrization
that were used is extensively described in the supplementary file.

2.1.5. File Formats. Gephi can load networks in GEXF,
GDF, GML, GraphML, Pajek (NET), GraphViz (DOT), CSV,
UCINET (DL), Tulip (TPL), Netdraw (VNA), and Excel
spreadsheets. Similarly, Gephi can export networks in JSON,
CSV, Pajek (NET), GUESS (GDF), Gephi (GEFX), GML, and
GraphML [30] files. The easiest way to talk with Cytoscape
is through GraphML formats, with Tulip through GEFX
files and with Pajek through NET files. Unfortunately, in its
current version, communication with other tools through
other common file formats such as JSON fails.

2.1.6. Availability. Regardless of its very limited documen-
tation, Gephi is a great, generic, nondedicated to biology,
2D network visualization tool. It mainly emphasizes fast
and smooth rendering, fast layouting, efficient filtering, and
interactive data exploration and we believe that it remains
one of the best options for generic large-scale network
visualization. A network example visualized by Gephi is
shown in Figure 1. Gephi is available at: https://gephi.org/.

2.2. Tulip (Version 4.10.0). Tulip is one of the easiest-to-use
network visualization tools and a decent option for visualiza-
tion of larger-scale networks. Due to its simplicity, it is highly
recommended for nonexperts as it comes with an easy-to-use
interface. It is written in C++ and enables the development
of algorithms, visual encodings, interaction techniques, data
models, and domain-specific visualizations. Compared to
other tools, it offers very appealing visualizations especially
after enabling its great edge-bundling algorithm.

2.2.1. Scalability. In its current version, it is able to visualize
thousands of nodes with hundreds of thousands of edges in
an average computer and aims at becoming a great mediator
between graph analysis and visualization.While Tulip is a top

preference for medium-scale networks, to our experience it is
not as scalable as Gephi.

2.2.2. Layouts. Its great plethora of layout algorithms makes
it one of the best options for graph layout. At the moment,
it supports simple (circular, random), force-directed (i.e.,
Fruchterman and Reingold [28], Kamada and Kawai [31]),
hierarchical, multilevel, planar, and tree layout algorithms,
most of them optimized and implemented within the Open
Graph Drawing Framework (OGDF) [32]. As opposed to
the more conservative force-directed layout algorithms, Fast
Multipole Multilevel Layout is highly recommended for
large-scale networks. While its layouts are of a great quality,
in order to save time, the strategy to first calculate the nodes
layout with Gephi or Pajek and then import to Tulip is highly
recommended.

2.2.3. Postvisualization Analysis. By trying to bridge the gap
between the analysis and visualization, Tulip comes with
a rich pool of clustering and network topology analysis
algorithms. Among others, Tulip currently implements the
memory greedy but widely accepted greedy Markov Clus-
tering (MCL) [29] as well as the fast and memory efficient
Louvain Clustering [33] for unweighted graphs. In addition,
Tulip incorporates various traditional algorithms for network
exploration like algorithms to find the biconnected or the
strongly connected components or algorithms dedicated to
finding spanning trees or loops. Like before, for large-scale
network analysis, running clustering algorithms externally is
recommended.

In addition, Tulip comes with a very simple interface to
ask topological questions. K-core decomposition of a graph,
eccentricity centrality, degree, page rank, and betweenness
centrality are few of the offered options and nodes’ size or
color can be adjusted according to a selected topological
feature.

2.2.4. Editing. While Tulip does not comewith a great variety
of predefined color schemes, users can manually change the
color, the size, and the shape of any node, label, or edge
and save and reload the status of a network. Unfortunately,
it can process one network per session and users must
be careful as sometimes the visualization and the editing
panels do not coordinate. Unfortunately, simple tasks such as
interactively selecting the in/out edges of a node directly from
the visualization can take significant amount of time.

2.2.5. Edge Bundling. While Tulip’s renderer does not reach
Gephi’s or Cytoscape’s resolution, it comes with one of the
most appealing edge-bundling algorithms. Unfortunately, for
large-scale network analysis, its edge-bundling algorithm can
often become memory and CPU greedy so users must be
patient. Finally saving the status of a bundled view compared
to an unbundled view can lead to significantly higher storage
requirements (see supplementary file for examples).

2.2.6. File Formats. It accepts as input simple tab delimited,
Pajek, GEFX, GML, GraphViz, JSON, TLPB, and UCINET

https://gephi.org/
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Figure 2: Tulip visualization of the same network like in Figure 1.
The 7 habitats are highlighted and resized accordingly. An example
of the same network after applying edge bundling is presented in
the supplementary file. Nodes’ coordinates were calculated using the
Yifan-Hu layout algorithm from Gephi application.

files and exports to TLP, SVG, JSON, and GML formats. The
easiest way to talk with Pajek is through NET files, with
Cytoscape through GML or GraphML files, and with Gephi
throughGEFXfiles. Finally, Tulip comeswith a very powerful
generator of graphs of a user-defined size and topology.

2.2.7. Availability. Overall, Tulip is a generic 2D network
visualization tool with a self-explanatory user interface and is
suitable for large-scale node and edge layouting and analysis.
A network example visualized by Tulip is shown in Figure 2.
Tulip is available at: http://tulip.labri.fr/TulipDrupal/.

2.3. Cytoscape (Version 3.5.1). Cytoscape open-source Java
application is the most widely used 2D network visual-
ization tool in biology and health sciences. It supports
all kinds of networks (e.g., weighted unweighted, bipartite,
directed, undirected, and multiedged) and comes with an
enormous library of additional plugins (>250). It was initially
implemented to analyze molecular interaction networks and
biological pathways and was aiming at integrating these
networks with annotations, gene expression profiles, and
other state data. Although Cytoscape was originally designed
for biorelated research, now it serves as a generic platform
for complex network analysis and visualization by providing
a basic set of features for data integration, analysis, and
visualization.

2.3.1. Scalability. Cytoscape implementations after version
3.0.0 come with tremendous rendering improvements, thus
allowing Cytoscape to visualize large networks of hundred
thousand nodes and edges. Despite these improvements,
Cytoscape does not rank first for large-scale network analysis
as it cannot scale significantly when it comes to analysis.
Often Cytoscape’s clustering and layout routines need great
amount of memory and time. Therefore, for large-scale

network analysis, it is suggested to run such processes in com-
mand line outside Cytoscape platform and load the results
as node/edge attributes (groups in the case of clustering or
coordinates in the case of a layout). In addition, Cytoscape
is subject to Java’s memory and running time limitations as
most of its routines are implemented in Java.

2.3.2. Layouts. Like other tools, it comes with a very rich
variety of simple (grid, random, and circular) or more
sophisticated (force-directed, hierarchical) layout algorithms.
Notably, for large-scale network analysis, users must be
careful and change the default layout algorithm before
creating a view. A simple grid or a simple circular layout
is recommended as Cytoscape’s force-directed layouts are
memory and CPU greedy and the application might “hang.”
Another alternative could be OpenCL, one of the fastest
layouts algorithms inCytoscape. After version 3.2.0OpenCL-
based version is incorporated as a basic application. This
layout is up to 100 times faster than the standard Prefuse
layout and depends on the CyCL core app for OpenCL
support. Nevertheless, calculating a first layout with Gephi
or Pajek and then importing its results in Cytoscape can save
time.

2.3.3. Postvisualization Analysis. Cytoscape is the most suc-
cessful tool for bridging the gap between analysis and
visualization and it comes with a great plethora of lay-
out, clustering, and topological network analysis algorithms.
ClusterMaker plugin [34], for example, includes attribute
cluster algorithms such as AutoSOME Clustering [35] and
Eisen’s hierarchical and 𝑘-Means clustering [36] as well as
topology-based clustering algorithms such as affinity prop-
agation [37], community clustering (GLay) [38], MCODE
[39], MCL, SCPS (Spectral Clustering of Protein Sequences)
[40], and transitivity clustering [41]. Most clustering results
can be visualized as a newly constructed network preserving
the original edges, or as a heatmap. Like before, for large-
scale network analysis, users are encouraged to run such
algorithms externally.

In addition, Cytoscape incorporates one of the most
advanced network profilers to explore network topological
features. Users are able to view simple statistics like the
average connectivity, betweenness centrality, clustering coef-
ficient, and others. While such calculations are trivial for
large-scale networks, plotting a topological feature against
any other could be slow.

Finally, Cytoscape’s latest versions incorporate a rather
useful but slow and memory inefficient edge-bundling algo-
rithm, not recommended for large-scale analysis.

2.3.4. Editing. Cytoscape is a protagonist in offering prede-
fined visual styles and color schemes to create high quality
and aesthetically beautiful visualizations. Its zooming and
panning capabilities are very advanced and Cytoscape’s satel-
lite viewer makes it very easy for users to navigate and
orient when the network is drawn outside the main canvas,
something that is not trivial with Gephi. Finally, choosing
adjacent nodes and edges from the UI is very responsive.

http://tulip.labri.fr/TulipDrupal/
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Figure 3: Cytoscape visualization of the same network like in
Figure 1. The network consists of 202,424 nodes and 354,468 edges.
The 7 habitats are colored accordingly. Like in Figure 2, coordinates
were calculated using the Yifan-Hu layout algorithm from Gephi
application.

2.3.5. File Formats. Cytoscape accepts many different input
file formats such as its own CYS format, tab delimited, simple
interaction file format (SIF), nested network format (NNF),
graphmarkup language (GML), extensible graphmarkup and
modelling language (XGMML), SBML [42], BioPAX [43],
PSI-MI [44], GraphML, excel workbooks (.xls, .xlsx), and
JSON.The easiest way to talk with Tulip andGephi is through
a GML format.

2.3.6. Availability. Overall, Cytoscape is the best visualization
tool today for biological network analyses. Despite its user
friendliness, its rich documentation, and the tremendous
improvement of its user interface after version 3.0, familiarity
with the tool and its available plugins still requires a steep
learning curve for more advanced tasks. Cytoscape store
currently hosts more than 250 plugins, specifically designed
to address and automate complicated biological analyses.
Plugins for functional enrichment, Gene Ontology annota-
tions [45], gene name mapping, integration with biological
public repositories, efficient online data retrieval, pathway
analysis, direct network comparisons, differential expression,
and statistical analysis make Cytoscape unique of its kind
and therefore today it currently is and expected to remain
the number-one player for biological network analysis. A
network visualized by Cytoscape is shown in Figure 3.
Cytoscape is available at http://www.cytoscape.org/.

Finally, CytoscapeWeb [46] and Cytoscape.js are separate
projects. They are two very strong efforts aiming to incorpo-
rate Cytoscape’s main visual functionalities in browser-based
applications, something that of course is not suitable for large-
scale network analysis. Users can use Cytoscape and export
the networks in JSON format for Cytoscape.js.

2.4. Pajek (Version 5.01). Pajek is a generic, more than 20
years old, Microsoft Windows based network visualization
tool, initially implemented for social network analysis, yet

a very powerful application for analysis and visualization of
massive networks.

2.4.1. Scalability. Pajek can easily visualizemillion nodeswith
billion connections in an average computer by outperforming
any other available tool in the field. Pajek-XXL is a special
implementation of Pajek with emphasis on huge scale net-
work analysis. It needs at least 2-3 times less physical memory
than Pajek and most of Pajek’s memory intensive operations
are optimized to be much faster. The main philosophy of
Pajek-XXL is to extract smaller but most interesting and
informative parts of a larger network which can be further
analyzed and visualized with more advanced tools. The
highest possible number of vertices that Pajek64-XXL can
handle has been increased to 2 billion as for ordinary Pajek
the limit is 100 million. Pajek-XXL uses 32-bit (4 bytes)
integers for vertices numbers. Thus, the highest number of
vertices that Pajek-XXL can handle is set to two billion. If
network contains more vertices Pajek-3XL must be used.
Pajek-3XL uses 64-bit (8 bytes) integers for vertices numbers.
The highest number of vertices that Pajek-3XL can handle is
currently set to 10 billion but can easily be further increased.
Notably, the space needed to store a network in Pajek-3XL
and Pajek-XXL is exactly the same.

2.4.2. Layouts. Graph layout, node merging, neighborhood
detection, identification of strongly connected components,
clique finding,manipulation of bipartite graphs, searching for
shortest paths or maximum flows, clustering (i.e., Louvain),
and computing centralities of vertices and centralizations of
networks such as degree, closeness, betweenness, hubs and
authorities, clustering coefficients, and Laplacian centrality
are few of Pajek’s capabilities. Notably, Pajek is memory effi-
cient and very suitable for fast sparse network multiplication.

2.4.3. File Format. Pajek accepts very strict file input formats.
The easiest way to talk with Tulip and Gephi is through a .net
file

Pajek’s user interface is simple, easy to get familiar with,
and very responsive when it comes to analysis of massive
networks. It was never intended to be themost advanced visu-
alizer but it offers tremendous graph analyses methodologies
thus making it a great candidate for analysis of massive
networks and a great complement to the existing tools. A
network example visualized by Pajek is shown in Figure 4.
Pajek can be found at http://mrvar.fdv.uni-lj.si/pajek/.

3. Discussion

Despite the great plethora of available network visualization
tools, due to the continuous increase of the data volume
in health sciences, visualization and manipulation of large-
scale networks with million nodes and edges still remain
a bottleneck. While noninteractive libraries such as the
StanfordNetworkAnalysis Project (SNAP) [47], the outdated
Large Graph Layout (LGL) [48], NetworkX [49], or the
GraphViz [50] are preferred for backend calculations and
large-scale static visualizations and while alternative network
visualizations such as the ones offered by the Circos [51],

http://www.cytoscape.org/
http://mrvar.fdv.uni-lj.si/pajek/
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Table 1: Empirical evaluation of our top four interactive network visualization tools (Cytoscape, Gephi, Tulip, and Pajek) for large-scale
biological network analysis.

Cytoscape Tulip Gephi Pajek
Scalability ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

User friendliness ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Visual styles ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

Edge bundling ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ —
Relevance to biology ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

Memory efficiency ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Clustering ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Manual node/edge editing ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Layouts ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

Network profiling ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

File formats ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Plugins ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

Stability ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Speed ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Documentation ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ = weaker; ∗∗ = medium; ∗ ∗ ∗ = good; ∗ ∗ ∗∗ = strongest.

Figure 4: Pajek basic visualization of the same network like in
Figure 1. The network consists of 202,424 nodes and 354,468 edges.
Like in Figures 2 and 3, coordinates were calculated using the Yifan-
Hu layout algorithm from Gephi application. Notably for a massive
network it is highly recommended to first use Pajek layouting.

HivePlots [52], or BioFabric [53] can partially solve the
hairball effect, the implementation of user friendly interactive
tools to handle and visualize such large graphs still remains
a very complicated task. Therefore, for the purposes of this
review article, we tested several available standalone applica-
tions and concluded that Pajek, Tulip Gephi, and Cytoscape
are top candidates for large-scale network visualization and
analysis.

In conclusion, while Cytoscape is the best and the most
preferred tool for biological analyses, it has scalability and
memory issues and therefore it is not our top pick for large-
scale network visualization. On the contrary, we rank it first
for biological analyses as it is accompanied by a great plethora

of more than 200 plugins. Compared to Tulip, Gephi, and
Pajek, it has the richest palette of predefined color styles, the
most efficient collection of clustering algorithms, and the best
network profiler for intranetwork comparison of topological
features.

Gephi clearly outperforms Cytoscape in terms of scalabil-
ity and memory efficiency and, in our opinion, it is the best
generic visualization tool for layouting large-scale networks.
While it is fairly straightforward to use, sometimes node/edge
editing options are well hidden in its user interface thus
making it a bit confusing for the user. On the other hand,
Gephi offers very advanced visualizations by allowing users to
perform multiple tasks simultaneously, something that is not
always easy with Cytoscape or Tulip. Overall, we rank Gephi
as first when it comes to balance between large-scale network
visualization and basic analysis.

Tulip is our third best option for large-scale network
visualization. Its best characteristics are (i) the edge-bundling
layout and (ii) its simplicity in editing the node’s/edge’s
colors, labels, and attributes. Tulip is highly recommended for
beginners due to its self-explanatory user interface.

Finally, Pajek and Pajek-XXL are the most scalable tools
and highly recommended for basic visualizations of mas-
sive networks with >10 billion nodes, network sizes that
Cytoscape, Tulip, and Gephi cannot handle in their current
versions. Unfortunately, the lack of operating system interop-
erability as well as the lack of input file format flexibility and
the lack of appealing visualizations prevent Pajek from being
the top tool for advanced visualizations.

All the aforementioned observations are summarized
in Table 1. Even though they may vary from user to user
depending on the expertise and the case study, in our opinion,
Cytoscape, Tulip, Pajek, and Gephi still remain the best large-
scale network visualization and analysis tools in systems and
network biology.
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4. Conclusion

It is unfair and not straightforward to directly compare
visualization tools with each other as they are implemented to
serve different purposes. Nevertheless, as biological network
sizes increase over time, combining the complementary
advantages from different tools is a good strategy. While
several file formats to describe the structure of network
have been standardized, our experience showed that many
of them cannot be properly exported or imported across
several tools. In addition, even in the best cases where such
an import/export problem is absent, often node and edge
attributes cannot be transferred. Therefore, we believe that a
catholic network converted to accurately convert a file format
into any other by simultaneously keeping the maximum
information about the network’s components is mandatory.
This way, switching between tools and various visualizations
will become easier and more straightforward.

Additional Points

Availability of Data and Materials. The datasets used and/or
analyzed during the current study are available from the
corresponding author on reasonable request.
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