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Purpose: Segmentation of the prostate on MR images has many applications in prostate cancer man-
agement. In this work, we propose a supervoxel-based segmentation method for prostate MR images.
Methods: A supervoxel is a set of pixels that have similar intensities, locations, and textures in a 3D
image volume. The prostate segmentation problem is considered as assigning a binary label to each
supervoxel, which is either the prostate or background. A supervoxel-based energy function with data
and smoothness terms is used to model the label. The data term estimates the likelihood of a super-
voxel belonging to the prostate by using a supervoxel-based shape feature. The geometric relationship
between two neighboring supervoxels is used to build the smoothness term. The 3D graph cut is used
to minimize the energy function to get the labels of the supervoxels, which yields the prostate seg-
mentation. A 3D active contour model is then used to get a smooth surface by using the output of the
graph cut as an initialization. The performance of the proposed algorithm was evaluated on
30 in-house MR image data and PROMISE12 dataset.
Results: The mean Dice similarity coefficients are 87.2 � 2.3% and 88.2 � 2.8% for our
30 in-house MR volumes and the PROMISE12 dataset, respectively. The proposed segmentation
method yields a satisfactory result for prostate MR images.
Conclusion: The proposed supervoxel-based method can accurately segment prostate MR images
and can have a variety of application in prostate cancer diagnosis and therapy. © 2016 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.12048]
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1. INTRODUCTION AND PURPOSE

Prostate cancer is the second leading cause of cancer mortal-
ity in American men.1 It was estimated that in 2016 there
were 180,890 new cases of prostate cancer, and 26,120 deaths
from prostate cancer in the United States.1 Magnetic reso-
nance imaging (MRI) has become one of the most promising
methods for prostate cancer diagnosis and MR images has
also been used for targeted biopsy of the prostate. Segmenta-
tion of the prostate on MR images has many applications in
the management of this disease.2–4 Registration between tran-
srectal ultrasound (TRUS) and MRI can provide an overlay of
MRI and TRUS images for targeted biopsy of the prostate.5,6

There are extensive studies on prostate MR image seg-
mentation.3,7–16 Among these methods, active contour model
(ACM)-based methods have been widely used due to their
good performance.11,17,18 This method aims to evolve a curve,
subject to constraints from a given image, in order to detect
objects in that image. Kass19 proposed an active contour
model that depends on the gradient of the image in order to
stop the evolving curve on the boundary of the object. Chan
and Vese17 proposed a level set formulation of the piecewise
constant variant of the Mumford–Shah model20 for image
segmentation. Their model can detect an object whose
boundary is not necessarily defined by image gradient. Tsai18

presented a shape-based method for curve evolution to
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segment medical images. A parametric model for an implicit
representation of the curve is derived by applying the princi-
pal component analysis to a collection of signed distance rep-
resentations of the training data. The parameters are then
manipulated to minimize an objective function in order to get
the segmentations. Qiu11 proposed an improved ACM
method incorporated into a rotational slice-based 3D prostate
segmentation to decrease the accumulated segmentation
errors generated by the slice-by-slice method. A modified
distance regularization level set algorithm was used to extract
the prostate. Shape constraint and local region-based energies
were imposed to avoid the evolved curve to leak in regions
with weak edges. Given a good initialization, ACM could
yield a good segmentation result. However, it is a nontrivial
task to get a good initialization. Therefore, ACM is difficult
to get a global minimum of the energy function.

Another popular method for segmenting prostate seg-
mentation is graph cut-based algorithm. Graph cut (GC)21,22

is a global optimization tool, which gains more attentions
due to its efficiency. Egger12 proposed a graph-based
approach to automatically segment the prostate central
glands based on a spherical template. The rays travel
through the surface points of a polyhedron to sample the
graph nodes. The minimal cost on the graph was optimized
by graph cut, which results in the segmentation of prostate
boundaries and surface. Mahapatra and Buhmann13 pro-
posed a fully automated method for prostate segmentation
using random forests and graph cuts. The probability map
of the prostate was generated by using image features and
random forests classifier. The negative log-likelihood of the
probability maps was considered as the penalty cost in a
second-order Markov random field (MRF) cost function,
which was optimized by graph cuts to get the final prostate
segmentation. However, graph cut tends to leak at weak
boundary. Fig. 1 shows the limitations of the graph cuts and
the active contour model.

Combination of ACM and graph cut is a straightforward
method to overcome the drawbacks of both methods. The

graph cut-based active contour method23,24 has been proven
effective for object segmentation in the computer vision field.
They showed that the combination of graph cut and active
contour can alleviate the disadvantages of both algorithms.
Zhang et al.25 proposed a graph cut-based active contour
model for kidney extraction in CT images. The experiments
showed that the algorithm takes the advantages of graph cut
and active contour for kidney CT segmentation. In our
method, we combine graph cut and active contour in a cas-
cade manner, which could yield better performance compared
to an individual algorithm.

In this work, we propose a hybrid method, which combines
graph cut and active contour model. This hybrid method takes
the advantages from both GC and ACM, while it alleviates the
effect from both disadvantages. The proposed prostate segmen-
tation method is different from the aforementioned methods in
the following aspects: i) a 3D graph cuts and a 3D active con-
tour model are combined in a cascade manner, which can yield
accurate segmentation results. ii) The shape model is obtained
based on each MR volume individually, which further improve
the performance. This patient-specific shape model makes our
method more robust across different prostate MR image data-
sets. iii) To the best of our knowledge, there is no report on 3D
supervoxel-based graph cuts segmentation for the prostate in
MR images.

The remainder of the paper is organized as follows. In
Section 2, supervoxel-based prostate segmentation frame-
work is introduced, which is followed by the details for each
part of the proposed method. In Section 3, we show the
experimental results. We conclude this paper in Section 4.

2. METHOD

2.A. Framework of the proposed method

Figure 2 shows the framework of the proposed method that
consists of three parts: supervoxel generation, graph cuts, and
3D active contour model. The first part is the supervoxel gen-
eration, which is the basic processing unit in our method.

FIG. 1. Limitations of the graph cut method and the active contour model-based method for prostate segmentation. Blue curve is the ground truth from manual
segmentation by a radiologist, while the red curves are the segmented contours by the computer algorithms. Left figure is the segmentation result obtained by graph
cuts, while the right figure is the segmentation result obtained by active contour model. The graph cut method tends to leak at the location with low image contrast,
while the active contour model-based method may fall at local minima based on an inaccurate initialization. [Color figure can be viewed at wileyonlinelibrary.com]
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After getting the supervoxels, a neighborhood system is built
by connecting supervoxel to each other. The second part is
the supervoxel-based graph cuts. The supervoxel labeling
problem is considered as a minimization of an energy func-
tion by using graph cuts. A supervoxel-based shape data term
and a supervoxel-based smoothness term are computed to
construct energy function. The segmentation result obtained
by graph cuts tends to leak at the location with low image
contrast. Therefore, a 3D active contour model is introduced
to refine the segmentation obtained from graph cuts as the
third part of the proposed method.

2.B. Supervoxel

In this work, we consider each point in an MR slice as a
pixel instead of a voxel. A set of pixels, which have similar
intensities, locations, and textures in a slice, are called super-
pixel. Meanwhile, a set of pixels have similar intensities,
locations, and textures in an MR volume are considered as
supervoxel, which represents a 3D tube.

Ideally, superpixels with similar intensities, locations, and
textures across image sequence should have same labels.
However, most superpixel methods do not meet this require-
ment. To solve this problem, supervoxel is proposed to seg-
ment image slices into 3D tubes which can yield consistent
image segmentation through the whole image volume. Xu
and Corso26 studied five supervoxel algorithms and measured
the performance of these methods, which provides the details
on the generation of supervoxels.

There are two advantages of using supervoxel for the
proposed method. First, the supervoxel captures the local
redundancy in the 3D medical image, which yields a
small number of supervoxels. The small number of super-
pixels reduces the computational cost of the proposed
algorithm significantly, e.g., for a 3D prostate MR image
with a size of 320 9 320 9 100, the number of voxels is
over 10 million, while the number of supervoxels is only
about 20,000 in our method. Second, a supervoxel

containing more voxels makes the supervoxel-based feature
more reliable, which can minimize the risk of assigning
wrong labels to the supervoxels.

Figure 3 shows the supervoxel and their geometric rela-
tionships. In this work, supervoxel is defined as follows.

SPi ¼ fspji; j ¼ 1; . . .; jSPijg; i ¼ 1; . . .;K (1)

where K is the number of the supervoxels in an MRI volume.
jSPij is the number of slices contained in supervoxel i. spji is
an intersection between supervoxel SPi and slice j. In the
MRI volume, different supervoxels may have different begin-
ning slices and ending slices, which result in a different life
span.

As supervoxel is the basic processing unit of our method,
it should satisfy two requirements. First, it should be effi-
cient. Second, the number of supervoxels or the size of each
supervoxel should be adjustable. Based on the requirements,
simple linear iterative clustering (SLIC)27 algorithm is
adopted to obtain the supervoxel. Figure 4 shows an example
of supervoxel map of an MR volume.

Instead of generating 2D regions and reconnecting in the
third dimension, the supervoxels are directly generated in a
3D manner at one time. Here we give a brief introduction of
the 3D supervoxel generation. First, k initial cluster centers
are chosen on a 3D regular grid at the intervals of length

FIG. 3. Supervoxels and their geometric relationships. Different colored 3D
tubes represent three supervoxels in the slice sequence. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 2. The framework of the proposed method.
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S ¼ ffiffiffiffiffiffiffiffiffi
N=k

p
in all three dimensions. Second, the centers are

moved to the lowest gradient position in a small local region.
Third, the SLIC assigns each voxel to the new center based
on spatial proximity and intensity. Then the algorithm itera-
tively computes the new centers and assigns the voxels. The
iteration will stop after n iterations or until the distance
between the new centers and previous one is small enough.
As SLIC does not guarantee that the supervoxel are fully con-
nected, which means some isolated voxels are not assigned to
any supervoxels. Therefore, a postprocessing step enforces
connectivity by reassigning these voxels to nearby
supervoxels.

2.C. Graph cut

For graph cuts, it seeks a labeling that minimizes the
energy function as described below:

EðlÞ ¼ EdataðlÞ þ EsmoothðlÞ (2)

The data term EdataðlÞ evaluates the penalty for assigning
a particular pixel to the object or background according to

the prior knowledge; while the smoothness term EsmoothðlÞ
evaluates the penalty for assigning two neighboring pixels
different labels in term of the given image data. In general,
the data term is formulated as EdataðlÞ ¼

P
i2I DiðliÞ, where

Di evaluates how well the label li fits the pixel i given the
observed data. The choice of smoothness term is an impor-
tant issue. Ideally, it should make labels smooth in the inte-
rior of the object and preserve discontinuity at the
boundary of the object. Once the energy is defined, the
graph cuts algorithm can be used to find a global minimum
efficiently.

In our work, the prostate segmentation is considered as a
labeling problem, where each supervoxel in the MR volume
will be assigned a label lp; lp 2 f1; 0g. Label 1 represents the
prostate, while Label 0 corresponds to the background. The
labels can be obtained by minimizing the energy function
defined on an undirected graph G = (V,E). V is a set of ver-
tices correspond to supervoxels, and the edge E connects
neighboring superpixels in a 3D neighborhood system, which
will be introduced later. Our supervoxel-based energy func-
tion is formulated as follows:

FIG. 4. Top: Four consecutive slices from a typical MR volume. Middle: The corresponding supervoxel maps. The second row shows the boundaries of supervox-
els. Bottom: The colored supervoxel maps, while same color through four slices means the same supervoxel. [Color figure can be viewed at wileyonlinelibrary.com]
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EðlÞ ¼
X
p2SP

DðlpÞ þ c �
X

fp;qg2N
Vðlp; lqÞ (3)

where SP is a set of supervoxels, N represents the 3D neigh-
borhood system, {p,q} stands for two neighboring supervox-
els in the 3D neighborhood system. The data term D
quantifies the distance of each supervoxel to a proposed
shape model. The smoothness term V quantifies how likely
two supervoxels have the same labels. The parameter c bal-
ances the weight between the data term and the smoothness
term. The graph cut method was implemented by using the
public library “maxflow-v3.01".28 The default weight param-
eter is fixed to c = 0.2 in all of our experiments. Empirically,
this weight is found to provide good results for all MR
images.

2.C.1. Shape model-based data term

To build the data term, a shape model is proposed to
obtain the supervoxel-based shape feature. The basic idea is
that the supervoxel is close to shape model will have a high
probability to be labeled as the prostate. The shape model of
the prostate is obtained based on user intervention, which
could capture the shape variability more accurately for an
individual prostate. However, the automatic methods use pop-
ulation information to train a model to capture a statistical
shape of the prostate on MR images. For segmenting the
prostate on a new MR image, the patient-specific shape
model plays more important role than statistical shape to
guide the algorithm to segment the prostate. Therefore, the
patient-specific shape model makes our method more robust
across different datasets. In addition, it can obtain more con-
sistent segmentation results than other automatic methods
that are based on population information.

There are three steps to get the shape model. First, three
key slices are selected from a 3D MR image, which are from
the apex, base, and middle regions of the prostate. Second,
four points are marked by the user for each of these three key
slices. For each key slice, the four points are located at the
boundary of the prostate. An initial prostate contour in one
key slice can be determined through these four points. There-
fore, three contours are obtained for the apex slice, based
slice, and middle slice, respectively. Third, two semiellipsoids
are fitted based on these three contours. One is toward to the
apex slice based on the contours in the apex and middle
slices, the other is toward to the base slice based on contours
in the base and middle slices. Note that these two fitted sur-
faces of semiellipsoids are not accurate for the prostate, but it
is good enough to be used for computing the shape feature.

Once the semiellipsoids are obtained, the prostate and
background shape data terms can be defined as follows.

Dðlp ¼ 1Þ ¼ � log pðSFpjlp ¼ 1Þ
Dðlp ¼ 0Þ ¼ � log pðSFpjlp ¼ 0Þ (4)

where SFp represents the mean value of shape feature of a super-
voxel. pðSFpjlp ¼ 1Þ and pðSFpjlp ¼ 0Þ are calculated by using

a distance transform based on the fitted semiellipsoids as
follows.

pðSFpjlp ¼ 1Þ ¼ 1� pðSFpjlp ¼ 0Þ ¼ 1
1þ expð�zÞ

z ¼jðd � �Þ
(5)

where d is the distance of a voxel to the surface of the fitted
semiellipsoids, which computed by a fast implementation.29j
controls the contrast between the inside and outside of the
shape model. e controls the fatness of the shape model. In our
experiments, the parameters j and e are set as 20 and 0.1 for
all images, respectively.

The distance-based shape model is difficult to find the
accurate boundaries between the prostate and the background
by using voxels. Because the voxels on the both close sides of
the prostate contour have a very similar distance to the fitted
ellipsoids, it is difficult to separate these voxels based on the
distance from the shape model. In contrast to voxels, super-
voxels on the both close sides of prostate contour have distin-
guishing distance. Therefore, supervoxel is needed by shape
model for segmenting prostate in our method.

In the proposed method, the shape feature is used to repre-
sent the supervoxels. Based on the feature of each supervoxel,
the similarity of two neighboring supervoxels can be mea-
sured, which is smoothness term of the energy function in the
GC method. In addition, the shape model can also describe
the likelihood of each supervoxel belonging to the prostate or
background, which is the data term of the energy function.
Figure 5 shows the supervoxel-based data term computed
based on the shape model.

2.C.2. Smoothness term

The affinity of two neighboring supervoxels SPp and SPq

are used to build the smoothness term. Therefore, the
smoothness term is defined as follows.

Vðlp; lqÞ ¼ jlp � lqj SPp \ SPq

maxðjSPpj; jSPqjÞ (6)

where jSPpj and jSPqj are the number of slices of supervoxels
SPp and SPq, respectively. SPp \ SPq represents the number
of common slices between two neighboring supervoxels. The
smoothness term encourages that supervoxels have similar
affinities and share more common slices to be labeled as
same labels.

2.D. 3D Active contour model

The graph cut algorithm is an efficient method. However,
the output of graph cut may be not satisfactory when the
supervoxel algorithm cannot find the boundary of the prostate
accurately. Because the supervoxel algorithm only uses local
information in a small region to cluster voxels into a 3D
supervoxel, it is hard to find the prostate boundary accurately,
especially when the background has similar intensities and
textures to that of the prostate. To solve this problem, the
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segmentation result obtained from the graph cut should be
refined. In our method, 3D ACM is adopted to refine the
prostate surface. Before presenting the 3D active contour
model, a 2D active contour is reviewed first.

Let Ω denote the image domain, where X � RN . Consider-
ing an image I contains two regions, the object region to be
segmented is denoted x, the other is background region. The
following model is proposed:

min
x;c1;c2

Z
x
jIðx; yÞ � c1j2dxdyþ

Z
Xnx

jIðx; yÞ � c2j2dxdy

þ lj@xj ð7Þ

The last regularizing term @x represents the curve C
weighted by a constant l, and c1 is the average value of I
inside of x, while c2 is the average value of I outside of x.
Chan and Vese simplified the Mumford–Shah function as the
following energy function:

min
U;c1;c2

ð
Z
X
jIðx; yÞ � c1j2HðUðx; yÞÞdxdy

þ
Z
X
jIðx; yÞ � c2j2ð1� HðUðx; yÞÞÞdxdy

þ l
Z
X
jrHðUðx; yÞÞjdxdyÞ ð8Þ

where H is the Heaviside function. Φ is a level set function,
whose zero level set C = {x,y:Φ(x,y) = 0} segments the
image into two regions, the object region {Φ(x,y) > 0} and
the background region {Φ(x,y) < 0}. The minimization of
the energy is achieved by finding the level set function Φ and
the constants c1 and c2.

For 3D segmentation, the energy function is defined as
follows:

min
x;c1;c2

Z
x
jIðx; y; zÞ � c1j2dxdydzþ

Z
Xnx

jIðx; y; zÞ
� c2j2dxdydzþ lj@xj (9)

Now, @x represents the surface S weighted by a constant
l. Following 2D simplification, the functional is simplified
as the following energy function:

min
U;c1;c2

ð
Z
X
jIðx; y; zÞ � c1j2HðUðx; y; zÞÞdxdydz

þ
Z
X
jIðx; y; zÞ � c2j2ð1� HðUðx; y; zÞÞÞdxdydz

þ l
Z
X
jrHðUðx; y; zÞÞjdxdydzÞ

(10)

Based on this model, the 3D active contour model could
get smooth surface of the prostate, which can cover the short-
age of the graph cut.

The work of Zhang et al.30 was used in our method, which
integrates edge and region-based segmentation in a simple
equation as follows.

U ¼ aðI � lÞ þ bdivðgrUÞ (11)

Φ is a signed distance function, I is the image to be seg-
mented, g = g(|∇I|) is boundary feature map related to the
image gradient. a and b are predefined parameters to bal-
ance these two terms. 3D ACM is implemented by using a
2D/3D image segmentation toolbox.31 The parameters used
in the toolbox are set as a = 1e�6 and b = 1 for all of our
experiments.

Instead of dealing with the entire MR volume, ACM only
considers an inner and outer region on both sides (15 voxels)
from the fitted surfaces for detection of prostate. The number
of iterations of 3D ACM is set as five in our experiment. If
there is no change on the surface between two iterations, the
algorithm will stop early. The local evolution and small num-
ber of iterations guarantee that the ACM only smooths the
segmented contour without changing the segmented contours
in a major way.

2.E. Segmentation evaluation

The proposed method was evaluated based on four quanti-
tative metrics, which are Dice similarity coefficient
(DSC),32,33 relative volume difference (RVD), Hausdorff dis-
tance (HD), and average surface distance (ASD).9,34 The
DSC is calculated as follows:

DSC ¼ 2jVg \ Vaj
jVgj þ jVaj (12)

FIG. 5. The supervoxel-based data term. The first image is one original image slice of the prostate MR. The second image is the corresponding supervoxel map.
The third image is the foreground shape data term. If the supervoxels are assigned as the foreground, the penalties of the shape model are shown in color. Darker
region represents a low penalty, while brighter region represents a high penalty. The fourth image is the background shape data term. The color has same meaning
with the foreground shape data term. [Color figure can be viewed at wileyonlinelibrary.com]
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where jVgj is the number of pixels of the prostate from the
ground truth and jVaj is the number of pixels of the prostate
from the segmentation of our method.

The relative volume difference is computed as follows:

RVD ¼ 100� jVgj
jVaj � 1

� �
(13)

The RVD evaluates the algorithm whether tends to over-
segment or undersegment the prostate. RVD is positive, if the
algorithm undersegments the prostate and vice versa. To
compute the HD and ASD, a distance from a pixel x to a sur-
face Y is first defined as:

dðx; YÞ ¼ min
y2Y

kx� yk (14)

The HD between two surfaces X and Y is calculated by:

HDðX; YÞ ¼ maxfmax
x2X

dðx; YÞ;max
y2Y

dðy;XÞg (15)

The ASD is defined as:

ASDðX; YÞ ¼ 1
jXj þ jY j

X
x2X

dðx; YÞ þ
X
y2Y

dðy;XÞ
 !

ð16Þ

where |X| and |Y| represent the number of pixels in the surface
X and Y, respectively.

3. EXPERIMENTAL RESULTS

3.A. Data

3.A.1. Our own dataset

The proposed method was evaluated on our in-house pros-
tate MR dataset, which consists of 30 T2-weighted MR vol-
umes. Transverse images were used in the experiments. The
voxel sizes of the volumes are from 0.875 mm to 1 mm. The
field of view varies from 200 9 200 mm2 to 333 9 500
mm.2 No endorectal coil was used for our data acquisition.
Each slice was manually segmented three times by two expe-
rienced radiologists. Majority voting is used to obtain the
final ground truth from the six ground truths.

3.A.2. PROMISE12 dataset

In addition, the PROMISE12 challenge dataset35 is used
in our experiment, which has 50 training and 30 test MR
images. The dataset is transversal T2-weighted and from mul-
ticenter and multivendor. The MR images are acquired under
different acquisition protocols, such as slice thickness and
image size. The size of MR image is 512 9 512 (voxel size is
0.4 9 0.4 9 3.3 mm3) or 320 9 320 (voxel size is 0.6 9 0.6
9 3.6 mm3).

3.A.3. ISBI dataset

The National Cancer Institute (NCI) Cancer Imaging Pro-
gram in collaboration with the International Society for

Biomedical Imaging (ISBI)36 has launched a grand chal-
lenge involving 60 prostate MR images for training. The
training dataset consists of axial scans with half obtained at
1.5 T with endorectal coil and other half at 3 T without
endorectal coil. The T2-weighted MR sequences were
acquired with 4 mm or 3 mm thickness, while the voxel size
varies from 0.4 mm to 0.625 mm. The image size is from
320 9 320 to 400 9 400.

3.B. Implementation details

The proposed method was implemented in MATLAB
codes and C++ codes. The algorithm runs on an Ubuntu
14.04 desktop with an Intel Xeon CPU (3.4GHz) and 96 GB
memory. Our code is not optimized and does not use parallel
programming or multithread. The segmentation time is about
40 seconds for one 3D prostate MR image.

The user interaction time for manual segmentation varies
between an experienced radiologist and a technician. The
selection of the key slices and the initial points requires less
than 30 seconds for a radiologist and about 1 minute for the
trained technician.

3.C. Qualitative results

The qualitative results on our in-house MR images and
the PROMISE12 MR images are shown in Fig. 6. Blue
curves are ground truths from manually segmentations,
while the red curves are the segmentations of the proposed
method.

These images have different voxel sizes and image sizes,
which shows the robustness of our method for different MR
images. The qualitative results on our dataset and PRO-
MISE12 dataset show that the supervoxel-based method is
able to obtain satisfactory segmentation results.

3.D. Quantitative results

3.D.1. Our own dataset

The quantitative evaluation results on our in-house 30 MR
image volumes are shown in Table I. The values of four met-
rics, which are DSC, RVD, HD, and ASD, are posted in the
table.

The proposed method yields a DSC of 87.19 � 2.34%,
while it varies from 82.77% to 90.95%. It shows that the
proposed method has a high accuracy and robustness. The
mean RVD is negative, which shows that the proposed
method tends to yield an oversegmented prostate. However,
the value of mean RVD is �4.58%, which is very close to
zero. This small RVD shows that the proposed method has a
good balance between oversegmentation and undersegmen-
tation. The value of HD measures the maximum distance
between two surfaces, which is 9.92 � 1.84 mm. The ASD
is 2.07 � 0.35 mm, which shows that the proposed method
is able to segment the prostate with a relative small average
surface distance.
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3.D.2. PROMISE12 dataset

Table II shows the segmentation results by the proposed
method on PROMISE12 dataset,35 which consists of 50 MR
volumes. The proposed approach yielded a DSC of 88.15 �
2.80%, while the maximum is 92.92% and minimum is
81.80%. The RVD is 2.82 � 9.56%, while HD is 5.81 � 2.01
mm, and ASD is 2.72 � 0.77 mm. Details of the results are
listed in Table II.

3.E. Comparison between supervoxel-based and
voxel-based methods

To evaluate the advantage of using supervoxels compared
with that of using voxels, we performed an experiment using
our in-house dataset. The DSC was used to evaluate the

comparison results. In the experiment, both methods use the
same framework of the proposed method. The DSC of the
supervoxel-based method is 87.2 � 2.3%. For the voxel-based
method, the DSC is 75.3 � 3.7%. Because the segmentation
result of the voxel-based graph cut method is not good
enough to be the initialization of ACM, the final result is
worse than the supervoxel-based method.

3.F. Comparison with other methods and automatic
version of the proposed method

The PROMISE12 dataset is used for comparing our
method with other prostate segmentation methods. Eight
methods are used for the comparison, which are Imorphics,37

ScrAutoProstate,38 SBIA,39 grislies,40 Robarts,41 ICProstate-
Seg,42 Utwente,43 and the automatic version of the proposed
method.

The proposed method can be implemented in a fully
automatic version. The straightforward way is that an
automatic method is applied to substitute the user inter-
vention to obtain the initialization for graph cuts. Mil-
letari et al.43 proposed a convolutional neural network-
based method for automatically segmenting the prostate
on MR images. Therefore, the segmentation result of
Milletari’s method was selected as an initialization for
the shape model of graph cuts in the proposed method.
The implementation of this method is publicly available.44

We used the default parameters of Milletari’s method.
Table III shows the comparison results in terms of

DSC and HD. The results were shown as mean � stan-
dard deviation. DSC is available for all the methods,
while HD are not available for all. Therefore, the hyphen
is used in the table, which means that the corresponding
measures are not reported in the papers. The proposed
method gives the second higher DSC and the second
lower standard deviation among all the methods.

TABLE I. Quantitative results of the proposed method using our own dataset.

PT# DSC RVD HD ASD

Avg. 87.19 �4.58 9.92 2.07

Std. 2.34 7.59 1.84 0.35

Max 90.95 12.99 13.75 2.68

Min 82.77 �16.75 6.93 1.28

(DSC(%), RVD(%), HD(mm), and ASD(mm))

TABLE II. Quantitative results on PROMISE12 dataset.

DSC RVD HD ASD

Avg. 88.15 2.82 5.81 2.72

Std. 2.80 9.56 2.01 0.77

Max 92.92 20.68 11.40 4.43

Min 81.80 �15.96 1.25 1.62

FIG. 6. The qualitative results on two datasets. Top: Segmentation results on our in-house MR images. Bottom: Segmentation results on the PROMISE12 MR
images. [Color figure can be viewed at wileyonlinelibrary.com]
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ScrAutoProstate38 has the highest DSC of 90%, and very
low standard deviation of 1.1%. For the HD, our method
is at the second place. Although, ScrAutoProstate method
has the highest DSC and Imorphics method has the low-
est HD, our method has a relative good performances in
terms of both DSC and HD at the same time.

3.G. Effect of the supervoxel size

Different supervoxel sizes have different performances.
Bigger supervoxels contain more pixels to calculate features,
which makes the supervoxel-based features more robust. But
they may contain multiple classes, which may not be repre-
sentative of one class. Smaller supervoxels contains less pix-
els, which are more homogeneous and the extracted features
are representative of a single class. However, they may not
always provide a sufficient number of voxels to calculate
robust features.

For the SLIC method, the third dimension (z direction) of
the 3D supervoxel must be same as the first dimension (x
direction) and the second dimension (y direction) of the 3D
supervoxel. This constraint leads to a poor quality of the 3D
supervoxel. Therefore, the size of supervoxel on the xy-plane
and z-plane is set separately, instead of using the same step
size.

To evaluate the effect of supervoxel size on segmentation
performance, our dataset is used in this experiment. Figure 7
shows the performance for different supervoxel sizes in terms
of DSC(%) and HD(mm). This experiment shows that a good
performance is achieved when the supervoxel size on the xy-
plane is around 150.

3.H. The effect of the manual initialization

To evaluate the influence of the manual initialization,
we performed two experiments using our in-house

dataset. The first experiment is evaluated the number of
the points marked by the user on each key slice. The
second experiment is to evaluate the effect of selecting
three key slices, which are apex, base, and middle
key slices. DSC is used as the metric to evaluate the
influences.

For the first experiment, different numbers of the points
marked by the user are chosen for performing the experiment.
Figure 8 is the evaluation result, which indicates that the pro-
posed method is not sensitive to the number of points marked
by the user.

For the second experiment, the user selects three key
slices for the ellipsoid fitting. To individually evaluate the
effect of selecting each key slice, two slices around each
key slice are selected to run the algorithm, e.g., for evalu-
ating the apex key slice Apex(i), two slices Apex(i-1) and
Apex(i+1) are individually selected as the apex key slice
to run the algorithm, where i presents the index of the
slice. Fig. 9 shows the evaluation result, which indicates
that the proposed method is not sensitive to the selection
of the three key slices.

TABLE III. Comparison with seven other prostate MR segmentation methods and with automatic version of our method using the PROMISE12 dataset.

Ours grislies ScrAutoPro Utwente Imorphics Robarts ICProSeg SBIA Ours+Auto

DSC 88.2 � 2.8 86 � 6 90 � 1.1 81 � 12 88 � 3 85 � 5 84.6 � 4.3 85 � 4.4 87.8 � 2.9

HD 5.8 � 2.0 9.5 � 2.7 – 7.3 � 4.9 4.1 � 1.4 6.4 � 4.2 – – 6.2 � 2.5

(a) (b)

FIG. 7. The effect of the supervoxel size on the xy-plane. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. The effect of the number of initial points on segmentation
performance. [Color figure can be viewed at wileyonlinelibrary.com]
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3.I. The effect of combining GC and ACM

To evaluate the performances of the supervoxel-based
GC method and the ACM without supervoxel-based GC,
we performed a segmentation experiment using PRO-
MISE12 dataset. Figure 10 shows the performances of
the supervoxel-based GC algorithm, ACM algorithm with-
out supervoxel-based GC, and the proposed hybrid
method. For the ACM algorithm without supervoxel-based
graph cut, the semiellipsoids, which are fitted based on
manual alignment, are used as the initialization. For the
supervoxel-based GC method, the segmentation results are
directly evaluated, which is not processed by the ACM
algorithm.

Figure 10 shows the average DSC of these two methods
and our hybrid method. The DSC of the ACM without super-
voxel-based GC is 72.35%, which is not satisfactory. This is
because the initialization obtained without supervoxel-based

GC is not good for ACM. For the supervoxel-based GC algo-
rithm, the DSC is 81.67%, which is still not ideal. For the
proposed hybrid method with both supervoxel-based GC and
ACM, the performance is improved significantly, which is
increased to 88.15%.

Figure 11 shows the segmentation result of GC and the
final segmentation result improved by using ACM.

3.J. The robustness comparison

To compare the robustness of our semiautomatic method
with the automatic segmentation methods, a comparison
experiment was performed. The implementations of most
automatic methods in the PROMISE12 challenge are not
available. Therefore, we chose a public available method
called V-net43,44 for the robustness comparison, which is an
automatic method with a comparable performance to our
method and the top two methods of the PROMISE12 chal-
lenge on PROMISE12 dataset.

Three datasets are used to compare the robustness of our
semiautomatic method and the automatic V-net method. The
data include our in-house dataset with 43 MR images, the
PROMISE12 dataset with 50 MR images, and the ISBI data-
set with 60 MR images. The DSC is selected as the metric to
evaluate the robustness. The segmentation results of two
methods on three datasets are listed in Table IV.

The DSC of our semiautomatic method varies from 87.19
to 88.23 on three datasets, while the DSC of V-net is from
81.47 to 87.12. It shows that our method is more robust than
the V-net method, which yields more consistent segmentation
results. Our method has user intervention for initialization,

(a) (b) (c)

FIG. 9. The influences of selecting three key slices on the final results. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Comparison of three segmentation methods: GC only, ACM only, and
the proposed hybrid method. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 11. The first image is one original slice of prostate MR. The second image is the corresponding supervoxel map. The third image is the segmentation result
of GC. The fourth image is the final segmentation result improved by using AC. The darker contour is the ground truth, while the brighter contour is the final seg-
mentation result. [Color figure can be viewed at wileyonlinelibrary.com]
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and could capture the shape variability more accurately
across different datasets for an individual MR image. For seg-
menting prostate on a new MR image, our patient-specific
shape model plays an important role to guide the algorithm to
segment the prostate accurately.

4. CONCLUSION

We proposed a supervoxel-based segmentation method for
prostate MR images. The experiments on our own dataset
and public dataset showed that the proposed method is able
to accurately segment the prostate in MR volumes. Compared
with a pixel-based method, the proposed supervoxel-based
algorithm significantly reduces the number of the computing
points for MR volume segmentation. Meanwhile, the pro-
posed method makes the graph cuts algorithm to be compe-
tent for handling big 3D medical data. The framework of the
proposed method can be applied to segment other organs.

Experimental results on three different MR image datasets,
including 30 in-house patient data, 50 PROMISE12 data, and
60 ISBI MR Images, with different acquisition protocols
from multiple centers and multiple vendors, showed that the
proposed method can segment the prostate accurately in
terms of four quantitative metrics. In addition, the proposed
method generated low inter-observer variability introduced
by manual initialization in term of DSC, which shows a high
reproducibility. Another advantage of the proposed method is
that it generated consistent segmentation result across three
different datasets. This is important to deploy our method for
image-guided biopsy in multiple centers. The experimental
results of the proposed method shows that it has a potential to
be used for image guided prostate interventions.

The automatic methods depend on the population informa-
tion, which cannot cover all kinds of prostate shapes on MR
images. Although, the public dataset PROMISE12 collected
from different centers with different protocols, the diversity of
this dataset is still not enough. We use patient-specific shape
information obtained from user intervention, which could alle-
viate the drawback of these automatic methods. In addition, the
models trained by the automated methods on a specific dataset
do not work well on the other new datasets that are not seen
before. For a new dataset, automated methods need to be
trained on the new dataset, which makes the deployment of
these methods difficult. In contrast, our semiautomated method
has a high reproducibility across different datasets, which is
easy to be deployed in multiple centers.

The segmentation time of the ScrAutoProstate method is
1.1 second based on C++ implementation with paralleliza-
tion. The computing time of the proposed method can be

reduced by using C/C++ implementation of shape feature
extraction and active contour instead of current MATLAB
codes. Furthermore, parallel computing can be used on multi-
ple CPU processors to accelerate the proposed method.
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