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Abstract

Diabetic kidney disease (DKD) is a serious disease that presents a major health problem 

worldwide. There is a desperate need to explore novel biomarkers to further facilitate the early 

diagnosis and effective treatment in DKD patients, thus preventing them from developing end-

stage renal disease (ESRD). However, most regulation mechanisms at the genetic level in DKD 

still remain unclear. In this paper, we describe our innovative methodologies that integrate 

biological, computational, and statistical approaches to investigate important roles performed by 

regulations among microRNAs (miRs), long non-coding RNAs (lncRNAs), and messenger RNAs 

(mRNAs) in DKD. We conducted fully transparent, rigorously designed experiments. Our robust 

and reproducible results identified hsa-miR-223-3p as a candidate novel biomarker performing 

important roles in DKD disease process.
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1. Introduction

The International Diabetes Federation (IDF) report indicated that in 2011 there were 366 

million diabetic patients worldwide — this number was estimated to increase to 552 million 

in 2030. In addition, the prevalence of diabetes has significantly increased in both developed 
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and developing countries [1,2]. For example, diabetes patients in China were approximately 

113.9 million in 2013 [3]. Moreover, research has demonstrated that diabetes is the most 

common disease causing chronic kidney disease (CKD), and diabetic patients have a 2.6-

fold risk to develop CKD compared to non-diabetic patients. In fact, diabetic kidney disease 

(DKD) is one of the most important microvascular complications of patients with diabetes 

mellitus (DM) [4]. In most cases, there are no specific clinical manifestations during the 

early stage of DKD. More seriously, there are currently no effective methods to prevent 

DKD patients from developing kidney failure, which is also known as end-stage renal 

disease (ESRD), an important cause of death in diabetic patients.

The gold diagnostic criterion of various kidney diseases is to perform pathological biopsy on 

renal tissues, which unfortunately has high risk of patient injury. Quantitative test of urinary 

micro-protein is one popular non-invasive diagnostic indicator. But there are quite some 

limitations in this method due to various factors such as: the complexity of the protein, the 

variation caused by post-translational modifications, the stability of the specimen, and so 

forth. Especially, for patients at the early stage of nephropathy, the false negative rate of 

urinary micro-protein test is particularly high. Therefore, there is an urgent need to explore 

novel biomarkers that are both sensitive and specific to guide early diagnosis of DKD in an 

effective manner; it is then possible to give early intervention and proper treatment to 

diabetic patients to prevent the progression from DKD to ESRD.

Towards this end, we will need to significantly enhance our understanding of the genetic 

foundation underlying DKD disease process. Thus, it is necessary to develop more advanced 

methodologies that are capable of integrating biological, computational, and statistical 

approaches in a seamless manner; only in this way will it be possible for us to explore a 

more accurate representation of biological processes that regulate DKD and the progression 

from DKD to ESRD. That said, we report in this paper our efforts in effectively combining 

biological experiments, semantics-oriented computational analysis, and statistical analysis to 

better investigate important roles performed by regulations among microRNAs (miRs), long 

non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs) in DKD disease process.

The rest of this paper is organized as follows. Section 2 summarizes related work; Section 3 

describes in detail our methodologies; Section 4 reports our findings along with discussion; 

and finally, Section 5 concludes with important future work.

2. Related work

2.1. Related work in mechanisms performed by miRs and lncRNAs in DKD

Although far from being completely elucidated, the genetic regulation mechanisms 

performed by various miRs and lncRNAs in DKD have attracted a lot research efforts.

According to the experimental results in vitro animal models reported in [5,6], miR-192 

expression increases in DKD kidney tissue, and inhibition of miR-192 expression (or 

knockout of miR–192) can reduce the discharge proteinuria and renal fibrosis in mice with 

type 1 diabetes. On the other hand, the expression of the same miR is reduced in DKD 

patients. In fact, miR-192 expression was shown to be negatively correlated with renal 

Zhang et al. Page 2

Methods. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tubular interstitial fibrosis and renal function decline. The research in [7] demonstrates that 

high glucose station can stimulate TGF-β1/Smad3 signal pathways of kidney cells and thus 

cause higher miR–21 expression. Lacking of Smad3 can prevent cells from up-regulating 

miR-21 in response to TGF-β1/Smad3 signal pathways, which promotes renal fibrosis. As a 

result, inhibition of miR-21 may be a therapeutic approach to suppress renal fibrosis. 

Another study [8] has shown that miR–21 expression was down-regulated in the kidney 

tissue of type 2 diabetic mouse model. When excessive miR-21 expression was inhibited, the 

occurrence of apoptosis can be found in animal model. Interestingly, the role of miR-29 in 

DKD has conflicting conclusions [9]: the expression of miR-29 in diabetes patients can be 

observed both increased or decreased.

Although a small number of lncRNAs have been functionally characterized [10,11], it 

remains questionable whether the majority is biologically meaningful or merely 

transcriptional noise. The few lncRNAs that have been characterized to date exhibit adverse 

range of functions and expression in specific cell types and/or localization to specific 

subcellular compartments. In recent years a number of studies [12–14] have found that quite 

some lncRNAs are associated with the onset of diabetes. In particular, the islet tissue 

specific anti-sense lncRNAs were reported to be associated with the pathogenesis of diabetes 

such as neonatal diabetes. In addition, MALAT1, ANRIL/CDKN2BAS, HI-LNC25, and 

KCNQ1OT1 were reported to closely associated with type 2 diabetes susceptibility genes. 

Research [15] has also shown that, whereas many lncRNAs are interacted with protein 

functions in chromatin remodeling and gene transcription, some lncRNAs function by 

regulating miR functions. While lncRNAs can be used as miR precursors, they can also be 

combined with miRs and participate in miR regulation network, thus affecting more 

functional gene expression.

2.2. Related work in semantic technologies

In biomedical investigation, when we need to integrate large amounts of data from 

semantically heterogeneous sources, semantic technologies that are based on domain 

ontologies can render great assistance.

Bio-ontologies have been widely utilized nowadays, such as: Gene Ontology (GO) [16], the 

most successful and widely used bio-ontology with three independent sub-ontologies 

(biological processes, molecular functions, and cellular components); Non-Coding RNA 

Ontology (NCRO) [17,18], an Open Biological and Biomedical Ontologies (OBO) [19] 

candidate reference ontology in non-coding RNA (ncRNA) domain; and Ontology for 

MIcroRNA Target (OMIT) [20–22], an application ontology to provide the community with 

common data elements and data exchange standards in the miR research.

Part of our proposed methodologies in this paper are closely related to semantic search [23], 

which usually requires the utilization of structured knowledge to model/interpret search 

queries, by using formal logic for example. One popular idea in numerous semantic search 

systems ([24–28] for example) is to expand the query keywords utilizing synonyms and 

other relations not originally part of the query. A second way to implement semantic search 

is to translate the original keyword-based search into some formal semantic queries through 

the adoption of domain ontologies.
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2.3. Related work in statistical tools applied in biomedical and clinical domain

Statistical tools have been effectively promoted biomedical and clinical research for a long 

history [29,30]. Commonly adopted statistical methods include linear regression analysis, 

receiver operating characteristic (ROC) curve, and the calculation of area under the curve 

(AUC). In [31], the authors discussed several issues in the calculation, use, meaning, and 

presentation of AUC in diabetes research. Nathan et al. [32] used different linear regression 

models to help define the mathematical relationship between A1C and average glucose (AG) 

levels and determine whether A1C could be expressed and reported as AG in the same units 

as used in self-monitoring. Ku and Kegels [33] adopted ROC-AUC to evaluate the 

performance of the Finnish Diabetes Risk Score and two modifications in community 

screening for undiagnosed type 2 diabetes in the Philippines. Stiglic et al. [34] discovered 

that American Diabetes Association risk test achieved the best predictive performance in 

category of classical paper-and-pencil based tests with an AUC of 0.699 for undiagnosed 

diabetes and 47% of persons selected for screening. Their results demonstrated a significant 

difference in performance with additional benefits for a smaller number of subjects selected 

for screening when statistical methods are used. In [35], to figure out whether studies of 

predictors of response should adjust for baseline HbA1c, the authors utilized linear 

regression to facilitate the exploration of the relationship between baseline HbA1c and the 

change between pre-baseline and baseline HbA1c values.

3. Methods

3.1. Overview of our methodologies

Our methodologies are exhibited in Fig. 1, consisting of five steps.

• Step 1. Microarray test for initial screening: Among plasma samples from DKD 

and DM patients vs. controls, we used the microarray method to simultaneously 

detect different expression levels of miRs (using Agilent chips) and lncRNAs 

(using Affymetrix HTA2.0 chips), resulting in the first-round screened miRs and 

lncRNAs, respectively. We then utilized GeneSpring package (version 13.1 by 

Agilent Technologies) [36] to perform the statistic analysis: mean ± standard 

deviation (SD) for normal distribution; single-factor analysis of variance for 

comparison among different groups; and least significant difference (LSD) test 

for comparison between a pair.

• Step 2. Co-expression analysis for 2nd-round screening: We performed miR-

lncRNA-mRNA co-expression network analysis based on Pearson correlation 

coefficient calculation. A total of 300 differentially expressed molecules were 

returned: top 100 miRs, top 100 lncRNAs, and top 100 mRNAs (in terms of their 

connection degrees). Next, we utilized the igraph software package [37] to 

construct a network connection diagram. Following this, we obtained a set of 

second-round screened miRs.

• Step 3. Semantics-oriented computational analysis: OmniSearch [22,38,39] is an 

analytical software tool based upon domain ontologies and semantic 

technologies. For each miR in the second-round screened list from Step 2, we 
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used the OmniSearch tool to obtain a set of target mRNAs integrated from 

various miR target prediction and validation databases. Besides, OmniSearch 

also provided us with a rich set of additional data for each target mRNA, 

including GO annotations, PubMed publications, relevant MeSH terms, involved 

pathways, and ncRNA sequences. By analyzing the federated knowledge 

returned from the OmniSearch tool, we further filtered out more likely miRs as 

candidate biomarkers.

• Step 4. Biological validation: We performed real-time quantitative PCR (qPCR) 

to detect plasma expression levels of miRs returned from Step (3). By comparing 

the different expression levels of miRs among different groups (DKD, DM, and 

control), we obtained a set of miRs that were biologically validated to be down-

regulated in DKD patients.

• Step 5. Statistical analysis: We used linear regression model to identify those 

miRs whose expression levels have statistically significant associations with 

DKD disease process. We then conducted statistical analysis via ROC curve on 

miR expression, followed by the calculation of AUC to estimate the diagnostic 

value of candidate miRs in DKD. Based on the AUC result (using a two-sided P 

value < 0.05 as statistical significance), we generated a final list of miRs as 

candidate novel biomarkers in DKD.

3.2. Greater technical details and materials

3.2.1. Subject selection—All 85 subjects (informed consent signed) were recruited from 

First Affiliated Hospital of Kunming Medical University. We selected three different 

cohorts: DKD patients, DM patients, and healthy persons (as controls). The first two cohorts 

were recruited from the Department of Endocrinology, and the last cohort was recruited 

from the Physical Examination Center.

Our selection criteria on DKD patients were: (1) urinary albumin excretion rate greater than 

30 mg/24 h; (2) urinary albumin/creatinine ratio (ACR) between 30 and 300 mg/g; and (3) 

without hypertension, other causes of renal insufficiency, severe hepatic insufficiency, or 

blood system diseases.

3.2.2. Lab examination—Blood samples were obtained by venipuncture into tubes 

containing EDTA in the morning after a 10-h overnight fast, and plasma samples were 

immediately placed at 4 °C and centrifuged according to a standardized protocol (spun at 

3500×g for 15 min), aliquoted and stored at −80 °C within two hours until analysis. 

Hemoglobin A1C (HbA1C) was measured by automated high-performance liquid 

chromatography system (Primus Ultra2, Trinity Biotech, Bray, Co Wicklow, Ireland). 

Aspartate amino transferase (AST), alanine aminotransferase (ALT), creatinine, fasting 

plasma glucose (FPG), and lipid profiles including total triglyceride (TG), total cholesterol 

(TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol 

(LDL-C) were assessed using an automated Hitachi-008 system (Hitachi, Chiyoda, Tokyo, 

Japan). Estimated glomerular filtration rate (eGFR) was calculated via MDRD Study 

creatinine Equation.
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3.2.3. miR techniques (including qPCR)

• miRs were isolated from plasma using the miRNeasy Mini Kit (Qiagen, Catalog 

No. 217004, Germany) according to the manufacturer’s specifications. 700 µl 

Qiazol lysis reagent were added to 200 µl of plasma and incubated at room 

temperature for five minutes. 1 µl of cel-miR-39 (TIAGEN, CR100-01,China) 

were spiked in plasma as an exogenous internal control. After mixing, 140 µl of 

chloroform were added, followed by 15 s of overtaxing. After incubation for 

three minutes at room temperature, the samples were centrifuged for 15 min at 

12000g and 4 °C. The upper phase (approximately 500 µl) was transferred to a 

new tube, and 750 µl 100% ethanol were added. miR samples were eluted from 

the columns in 25 µl RNase-free water and stored at −80 °C. The yield of RNA 

was determined using a NanoDrop 2000 spectrophotometer (Thermo Scientific, 

USA).

• 6 µl isolated miR were used for reverse transcription to synthesize 

complementary DNA (cDNA) using miR-specific primers and the miR reverse 

Ntranscription kit (TIAGEN, KR211-02, China). The 20 µl RT reaction mix was 

then held at −20 °C.

• After reverse transcription, an amplification step using SYBR Green miR assays 

(TIAGEN, FP411-02, China) was performed. miRs were analyzed using real-

time qPCR for all three cohorts. Based on reproducible results for miR primer 

(TIAGEN, CD201-0099, China), real-time qPCR was performed using Rotor-

Gene Q (Rotor-Disc) Instrument (Qiagen, Germany) with 10 µl PCR reaction 

mixture that included 1 µl of cDNA, 5 µl of 2×miRcute miR premix (TIAGEN, 

China), 0.2 µl of forward primer, 0.2 µl of reverse primer, and 3.6 µl of nuclease-

free water. Reactions were incubated in a 72-well optical plate (Qiagen, 

Germany) at 94 °C for two minutes, 94 °C for 20 s followed by five cycles of 

64 °C for 20 s, 72 °C for 34 s, 40 cycles of 94 °C for 20 s, and 60 °C for 34 s. 

Each sample was run in triplicate for analysis. At the end of these qPCR cycles, 

melting curve analysis was performed to validate the specific generation of the 

expected PCR product.

• For all qPCRs, a maximum of 40 cycles were performed and the cycle number at 

which the amplification plot crossed the cycles threshold (CT) was calculated. 

Relative expression levels were calculated using miR levels after normalization 

to spiked-in cel-miR-39. Expression differences were calculated using the mean 

value of the controls as the factor for normalization to internal control. Note that 

all calculations were conducted using the 2−ΔΔCt method.

3.2.4. Semantics-oriented computational analysis—The OmniSearch analytical 

software was built upon semantic technologies (including semantic data annotation, 

semantic data integration, and semantic search) that are based on two domain ontologies, 

Ontology for MIcroRNA Targets (OMIT) [20–22] and Non-Coding RNA Ontology (NCRO) 

[17,18]. OmniSearch was developed to handle the significant challenge of effective miR data 

integration and knowledge acquisition. Three miR target prediction databases (miRDB [40], 
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TargetScan [41], and miRanda [42]) and one miR validated target database (miRTarBase 

[43]) have been integrated in OmniSearch. This software tool provides with us a “one-stop” 

visit that enables a convenient, side-by-side comparison among results from numerous miR 

target prediction/validation databases, as well as the federated knowledge semantically 

integrated from other relevant data sources including GO annotations, PubMed publications, 

relevant MeSH terms, involved pathways, and ncRNA sequences. Previous research [22,38] 

has demonstrated that OmniSearch has many advantages over conventional miR target 

search, especially with regard to the accuracy (effectiveness) and efficiency of software 

output. According to the computational analysis based on the consolidated knowledge 

returned from the OmniSearch software tool, we further filtered out more likely miR 

candidates in an effective and efficient manner.

3.2.5. Statistical analysis—Statistical analysis was performed using SPSS version 23 

software (SPSS Inc., Chicago, IL). Shapiro–Wilk tests were used to assess normality of 

continuous variables. The Student’s t-tests or non-parametric tests were used to compare 

continuous variables (normally vs. non-normally distributed) across three cohorts (DKD 

patients, DM patients, and health controls). Real-time qPCR data were reported in the 

format of mean ± SD after logarithmic transformation to normal distribution. Quantitative 

data were compared using the one-way ANOVA with post hoc LSD correction (adjustments, 

resp.) for multiple comparisons (multivariate analysis, resp.). To evaluate the expression 

signature of specific miR concentrations, multivariate linear regression analysis was 

adopted. Standardized coefficients B and their standard errors (SEs) were obtained. Receiver 

operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used 

to estimate the diagnostic value of the candidate miRs.

4. Experimental results and discussion

4.1. Background information and routine lab results on all subjects

The background information of all 85 subjects along with their routine lab examination 

results are exhibited in Table 1.

4.2. Microarray test results

Fig. 2 is the result on Affymetrix HTA2.0 chips. We used T test to calculate both the 

significant difference (P value) and standardized signal multiple fold change value. If the 

fold change was greater than or equal to 1.5 and the P value was less than or equal to 0.05, 

the corresponding lncRNA was selected. We identified a total of 127 lncRNAs, among 

which 101 were up-regulated and 26 were down-regulated. In Fig. 2, the x axis corresponds 

to log2 (fold change), the y axis corresponds to −log10 (P value), and blue and red dots 

represent differentially expressed lncRNAs.

Fig. 3 is the result on Agilent miR microarray chips. Similarly, we used T test to calculate P 

value and fold change. If the fold change was greater than or equal to 2.0 and the P value 

was less than or equal to 0.05, the corresponding miR was selected. We identified a total of 

88 miRs, among which 47 were up-regulated and 41 were down-regulated. Similarly to Fig. 
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2, the x axis in Fig. 3 corresponds to log2 (fold change), the y axis corresponds to −log10 (P 

value), and blue and red dots represent differentially expressed miRs.

4.3. miR-lncRNA-mRNA co-expression analysis results

Fig. 4 demonstrates a miR-lncRNA-mRNA co-expression network obtained in our 

experiments, which includes a total of 88 candidate miRs. We first calculated the Pearson 

correlation coefficient between pair-wise genes with a threshold value of 0.85. That is, a pair 

of genes will only be considered for further analysis if the absolute value of their Pearson 

correlation coefficient is equal to or greater than 0.85. Next, for each gene that passed the 

threshold filtering, we counted its number of connected genes, and the top 20 genes were 

treated as core genes, which were then utilized by the igraph software to generate the final 

list of 32 candidate miRs. Information on these second-round filtered miRs is detailed in 

Table 2.

4.4. Semantics-oriented computational analysis results

Figs. 5–7 demonstrate query search results from the friendly OmniSearch user interface for 

hsa-miR-223-3p, hsa-miR-106b-5p, and hsa-miR-103a-3p, respectively. Besides, using hsa-

miR-223-3p as an example, Figs. 8 and 9 further exhibit additional data integrated in 

OmniSearch. Such comprehensive, federated knowledge provided us with additional clues to 

further screen candidate miRs. To be more specific: (1) hsa-miR-223-3p was estimated to be 

involved in the inflammatory reaction of vessel, angiogenesis, and platelet activation. (2) In 

addition, the relative expression of hsa-miR-223-3p was down-regulated in patients with 

CKD stages 4 and 5 compared to healthy controls. These extra clues enabled us to infer that 

hsa-miR-223-3p may be associated with the pathogenesis of diabetic nephropathy, thus 

serving as a candidate DKD biomarker. Consequently, we chose hsa-miR-223-3p for further 

validation and analysis.

4.5. Real-time qPCR results

It is clearly demonstrated in Fig. 10 that, systemic expression levels of hsa-miR-223-3p were 

significantly reduced in DKD and DM patients compared with healthy controls, with the P 

values of 0.016 and 0.002, respectively.

4.6. Statistical analysis results

Table 3 exhibits our statistical analysis results from linear regression model. There were 

statistically significant associations between has-miR-223-3p expression and DKD disease 

process. Associations that were statistically significant or showed a trend towards 

significance are highlighted in bold fonts in the table.

Additionally, we calculated the AUC of ROC curve for log has-miR-223-3p expression in 

SPSS 23.0, and the result was 0.760 (P = 0.001, 95% Confidence Interval = 0.626–0.894), as 

demonstrated in Fig. 11. This result along with those outcomes demonstrated in Table 3 (B = 

−0.144; Std. Error = 0.046; Beta = −0.402; t = −3.108; and P Value = 0.004) provided us 

with further evidence that, has-miR-223-3p has important regulation roles in DKD patients 

compared with healthy controls.

Zhang et al. Page 8

Methods. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Conclusions

DKD is a disease causing major health problems worldwide. Not only there are no specific 

clinical manifestations during the early stage of DKD, but also more seriously, currently 

there exist no effective methods to prevent DKD patients from developing ESRD. There is 

an urgent need to discover novel biomarkers to facilitate the early diagnosis and effective 

treatment in DKD patients. It is then possible to intervene ESRD development in DKD 

patients. Towards this end, we need to better understand various regulation mechanisms at 

the genetic level in DKD disease process. In this paper, innovative methodologies are 

presented to integrate biological, computational, and statistical approaches to investigate 

miR-lncRNA-mRNA regulations in DKD. Based on our fully transparent methodologies, 

rigorous and reproducible experiment design, and robust and promising results, we have 

successfully discovered that hsa-miR-223-3p performs important roles in DKD disease 

process, thus serving as a candidate novel biomarker. This finding will further facilitate our 

understanding of various genetic regulation mechanisms on the pathogenesis and 

progression of DKD.

An immediate piece of future work along this line of research is, we will recruit more 

subjects and then apply our methodologies on a larger size of different cohorts. In particular, 

the DKD patients included in this paper are all early-stage ones (with ACR less than 300 

mg/g). If we also recruit late-stage DKD patients in our future research, it is possible to 

obtain even more statistically significant associations between miRs and DKD process, as 

well as significantly different miR expression levels between DKD and DM patients.

Another interesting future work is for us to conduct a comparative study to further 

demonstrate the advantage of using our proposed methodologies by comparison with other 

state-of-the-art methods.

In the long run, we plan to conduct qPCR and statistical analysis on candidate lncRNAs. By 

combining lncRNA ROC with miR ROC, we might be able to discover additional novel 

biomarkers in DKD disease.
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Fig. 1. 
Overview of our combined approach to investigate genetic regulation mechanisms in DKD.
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Fig. 2. 
Affymetrix HTA2.0 outcome: differentially expressed lncRNAs of DKD patients compared 

to controls.
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Fig. 3. 
Agilent miR microarray outcomes: differentially expressed miRs of DKD patients compared 

to controls.
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Fig. 4. 
miR-lncRNA-mRNA co-expression network.
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Fig. 5. 
Query search results for hsa-miR-223-3p in OmniSearch interface.
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Fig. 6. 
Query search results for hsa-miR-106b-5p in OmniSearch interface.
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Fig. 7. 
Query search results for hsa-miR-103a-3p in OmniSearch interface.
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Fig. 8. 
Other federated data for hsa-miR-223-3p.
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Fig. 9. 
Pathway analysis for hsa-miR-223-3p.
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Fig. 10. 
Expression levels of has-miR-223-3p among three cohorts.
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Fig. 11. 
ROC curve for log hsa-miR-223-3p expression signature to discriminate DKD patients from 

health controls.
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Table 1

Clinical background of patients and controls in our experiments.

DKD Patients
(n = 27)

DM Patients
(n = 30)

Controls
(n = 28)

Age (years) 55.09 ± 12.01 53.23 ± 7.89 33.17 ± 10.83

Gender (male/female) 14/10 18/12 17/11

BMI (kg/m2) 24.31 ± 2.92 24.41 ± 2.95 21.76 ± 3.08

DM Duration (years) 7.21 ± 4.36 6.18 ± 5.07 —

eGFR (ml/min/1.73 m3) 107.67 ± 27.74 110.43 ± 27.73 100.66 ± 10.43

FPG (mmol/L) 10.79 ± 3.91 12.07 ± 2.68 5.19 ± 0.73

2 h-PPG (mmol/L) 17.51 ± 4.97 19.99 ± 7.21 —

ALT (IU/L) 17.55 (10.44, 27.30) 20.00 (14.79, 41.50) 24.80 ± 20.66

AST (IU/L) 16.95 ± 8.01 17.85 ± 6.32 24.52 ± 8.49

UA (umol/L) 361.18 ± 95.11 321.64 ± 63.21 336.29 ± 56.49

TC (mmol/L) 3.99 ± 0.87 4.29 ± 0.64 4.53 ± 0.56

LDL-C (mmol/L) 2.74 ± 0.99 2.82 ± 0.559 2.44 ± 0.49

TG (mmol/L) 1.63 ± 0.79 3.14 ± 1.71 1.12 ± 0.63

HDL-C (mmol/L) 1.01 ± 0.84 0.97 ± 0.15 1.57 ± 0.41

C-peptide (ng/mL) 1.27 ± 0.72 1.26 ± 0.69 —

HbA1c (%) 8.94 ± 1.89 8.64 ± 1.58 —

Urinary ACR (mg/g) 51.51 (31.71, 67.67) 13.92 ± 6.21 —

WBC (× 109/L) 6.04 ± 1.38 5.92 ± 1.28 4.91 ± 0.47

Hb (g/L) 147.18 ± 17.15 146.84 ± 12.37 148 ± 13.67

Abbreviations in the table: body mass index (BMI); diabetes mellitus (DM); estimated glomerular filtration rate (eGFR); fasting plasma glucose 
(FPG); two hours after post-prandial plasma glucose (2 h-PPG); alanine aminotransferase (ALT); aspartate amino transferase (AST); uric acid 
(UA); total cholesterol (TC); low-density lipoprotein cholesterol (LDL-C); total triglyceride (TG); high-density lipoprotein cholesterol (HDL-C); 
hemoglobin A1C (HbA1C); albumin/creatinine ratio (ACR); white blood cell (WBC); and hemoglobin (Hb).

Notes: Data of normal distribution were expressed in the format of [mean ± SD]; other data were expressed in the format of [median (25%, 75%)].
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Table 2

The second-round selection of miRs through co-expression analysis.

Selected
miR

Co-expression
Degree

Selected
miR

Co-expression
Degree

hsa-miR-223-3p 86 hsa-miR-6831-5p 71

hsa-miR-106b-5p 86 hsa-miR-5195-3p 71

hsa-miR-103a-3p 83 hsa-miR-7106-5p 71

hsa-miR-126-3p 83 hsa-miR-4253 70

hsa-miR-27a-3p 83 hsa-miR-4484 70

hsa-miR-29a-3p 83 hsa-miR-659-3p 70

hsa-miR-29c-3p 83 hsa-miR-6802-5p 70

hsa-miR-425-5p 83 hsa-miR-19b-3p 68

hsa-miR-93-5p 83 hsa-miR-4496 68

hsa-miR-1249-5p 83 hsa-miR-6865-5p 67

hsa-miR-2276-3p 83 hsa-miR-150-5p 66

hsa-miR-1225-5p 71 hsa-miR-15a-5p 66

hsa-miR-345-3p 71 hsa-miR-15b-5p 66

hsa-miR-3679-5p 71 hsa-miR-17-5p 66

hsa-miR-4281 71 hsa-miR-185-5p 66

hsa-miR-4442 71 hsa-miR-4306 66
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