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The Lewis acids Ga(C6F5)3, In(C6F5)3 and Ga(C6Cl5)3
are prepared and their Lewis acidity has been
probed experimentally and computationally. The
species Ga(C6F5)3 and In(C6F5)3 in conjunction with
phosphine donors are shown to heterolytically split
H2 and catalyse the hydrogenation of an imine.
In addition, frustrated Lewis pairs (FLPs) derived
from Ga(C6F5)3 and In(C6F5)3 and phosphines
react with diphenyldisulfide to phosphoniumgallates
or indates of the form [tBu3PSPh][PhSE(C6F5)3]
and [tBu3PSPh][(μ-SPh)(E(C6F5)3)2] (E = Ga, In). The
potential of the FLPs based on Ga(C6F5)3, In(C6F5)3
and Ga(C6Cl5)3 and phosphines is also shown in
reactions with phenylacetylene to give pure or
mixtures of the products [tBu3PH][PhCCE(C6X5)3]
and R3P(Ph)C=C(H)E(C6X5)3. A number of these
species are crystallographically characterized. The
implications for the use of these species in FLP
chemistry are considered.

This article is part of the themed issue ‘Frustrated
Lewis pair chemistry’.

1. Introduction
While classic Lewis acids and Lewis bases usually
form strong adducts [1], in 2006, we disclosed that
the intramolecular Lewis acid/Lewis base pair
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Scheme 1. Representative reactivity of phosphine/borane FLPs with small molecules.

(Mes2P)C6F4(B(C6F5)2) cleanly cleaves the dihydrogen molecule under mild conditions [2].
Subsequently, we showed this ability to heterolytically split H2 could be generalized to
combinations of phosphines and boranes where steric demands precluded dative bond formation
[3]. This finding swiftly led to the discovery of the first metal-free hydrogenation catalysts that
involve main group species activating H2 and delivering it to a variety of unsaturated organic
substrates [4–10].

In the intervening decade, these findings have garnered considerable attention, and indeed,
frustrated Lewis pair (FLP) chemistry has broadened dramatically [8–10]. Indeed, a broad range
of polar and non-polar unsaturated substrates have been shown to undergo FLP hydrogenations.
Moreover, asymmetric FLP catalysts have been developed leading to highly selective metal-free
hydrogenations [11–18]. FLPs have been shown to react with a variety of other small molecule
substrates, including olefins and alkynes, CO2, N2O, SO2, RNSO and NO [8,10,19,20]. Recently,
this unique reactivity has been extended to C–H bond activation as well as to provide new
strategies for organic and radical chemistry [21]. The concept of FLP chemistry has also been
applied in transition-metal chemistry, applied to develop synthetic models for hydrogenases,
unveiled new strategies for polymer syntheses and found analogies in the mechanisms of surface
reaction chemistry [8] (scheme 1).

While much of the above FLP chemistry exploits boron-based Lewis acids, the Al-based Lewis
acid Al(C6F5)3 has also been explored in FLP reactions with alkynes [22], olefins [23–25], H2 [26],
CO2 [27–30] and N2O [31]. At the same time, the Fontaine [32] and Uhl [33–37] groups have
explored the FLP chemistry of intramolecular Al/P systems, of the form R2PCH2AlMe2 and
RHC=C(PR′

2)(AlR′′
2), respectively.

Ga and In Lewis acids have been used as homogeneous catalysts in a number of organic
transformations [38]. For example, gallium triflate catalyses Friedel–Crafts alkylations and
acylations, epoxyolefin cyclizations, Mukaiyama aldol condensations and ketone reductions [38–
46]. Indium(III) Lewis acids have also been shown to effectively promote Diels–Alder reactions
between various dienes and dienophiles in water, as well as Michael reactions between amines
and α,β-ethylenic compounds [47]. Despite these applications of gallium and indium Lewis acids,
the application of these heavier group 13 reagents in FLP chemistry has received less attention
[48–50]. In such efforts, Gandon and co-workers [48] have exploited Ga species to effect the
hydroarylation and hydrogenation of olefins, while Aldridge and co-workers [49] have described
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the catalytic reduction in CO2. In related work, the Ozin group [51] has recently described the
activation of H2 and CO2 at the surface of heterogeneous nanocrystalline hydroxylated indium
oxide (In2O3−x(OH)y) as a catalyst [51–53]. These authors propose that the activation of these
molecules occurs via an FLP-like mechanism, in which proximal surface separated Lewis acidic
indium and Lewis basic InOH sites act to activate H2. These advances notwithstanding, the
paucity of gallium and indium applications in FLP chemistry has inspired us to probe the
Lewis acidity of gallium and indium derivatives with perhalogenated substituents. In addition,
we have investigated the FLP reactivity of these species in the reactions with H2, disulfides
and alkynes.

2. Results and discussion
The Lewis acids E(C6F5)3•tol (E = Ga 1, In 2) and E(C6F5)3•OEt2 (E = Ga 3, In 4) were prepared
using a modification of a patented preparation [54] (scheme 2). This involved the reaction
of Zn(C6F5)2•tol with GaCl3 or InCl3. This afforded the direct isolation of 1 and 2 while
recrystallization of the product from ether afforded 3 and 4. In the case of 2, the nature of
the toluene adduct was confirmed crystallographically (figure 1). The structural data affirm an
η1-interaction with toluene with an In–C distance of 2.634(2) Å. The In–C bond lengths to the
C6F5 rings were found to range from 2.155(2) to 2.168(2) Å. The geometry at indium is pseudo-
tetrahedral with C–In–C angles of 119.46(7)°, 110.80(7)° and 115.94(7)° between the aryl rings,
while the C–In–C angles between the aryl rings and the coordinated toluene carbon atom are
105.84(7)°, 101.65(7)° and 100.06(7)°. These data are similar to those previously reported for the
Al analogue [55].

Recrystallization of 1 from diethyl ether afforded crystals of the corresponding ether adduct
Ga(C6F5)3•OEt2 3. An X-ray crystallographic study of 3 reveals a structure that, as expected,
shows a pseudo-tetrahedral geometry at gallium, with a Ga–O bond length of 2.018(2) Å (figure 2).

The species Ga(C6Cl5)3 5 was prepared in a fashion analogous to that described by Ashley
et al. [56] for the preparation of the boron analogue. Treatment of C6Cl6 with nBuLi in n-hexane
was followed by addition to a solution of GaCl3 at −78°C. Warming to room temperature and
stirring overnight followed by workup and Soxhlet extraction afforded 5 in 86% yield (scheme 2).
Electron ionization mass spectrometric data for 5 were consistent with the constitution of this
species although it was shown to decompose at 280°C. This compound proved challenging
to characterize spectroscopically due to the quadrupolar nature of Cl atoms; nonetheless, its
subsequent reactivity provided further support for its formulation (vide infra).

Efforts to garner some information about the relative Lewis acidity were undertaken by
employing the Gutmann–Beckett method [57,58]. When a 1 : 1 ratio of 1 and Et3PO were mixed in
dichloromethane, the 31P NMR resonance of coordinated Et3PO was shifted 17.9 ppm downfield
of free Et3PO. The analogous reaction with 2 and Et3PO resulted in a downfield shift of 18.7
ppm in the 31P NMR spectrum. Both values are smaller than those seen for the corresponding
experiment using B(C6F5)3 (�δ = 26.6 ppm). This is consistent with the diminished Lewis acidity
of 1 and 2 in comparison to B(C6F5)3 [59]. Applying the same test to 5 was unsuccessful as a
very weak adduct was formed with Et3PO as evidenced by the observation of only a very broad
resonance in the 31P NMR spectrum. Similarly, Ashley et al. [56] reported that B(C6Cl5)3 did not
form an adduct with Et3PO.

To further address the issue of relative Lewis acidity, the fluoride ion affinities (FIAs) were
computed at the B3LYP/Def2TZVP(GD3BJ) level of theory [60–62] (table 1). For the series of
species E(C6F5)3, the computed FIAs are consistent with the greater Lewis acidity of the Al species
and a decrease for the series of Al, Ga and In species. The perchlorinated species is computed to
have a significantly lower FIA. It is important to note that these calculations reflect the electronic
features at Ga and fail to account for the increased steric demands of the C6Cl5 rings.

Compounds 1 and 2 form adducts with the tertiary phosphine tBu3P. In the case of 1 and
tBu3P, storage of the mixture at −35°C resulted in precipitation of a white solid, 6. The 19F NMR
spectrum of this product showed a decreased gap between the resonances attributed to the meta



4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20170014

........................................................

3 Zn(C6F5)2

3 C6Cl6 3 C6Cl5Li

5

GaCl3 Ga(C6Cl5)3
3 nBuLi
–3 LiCl –3 LiCl

2 ECl3 Et2O

–3 ZnCl2

2 E(C6F5)3• tol 2 E(C6F5)3• OEt2
E = Ga 1, In 2 E = Ga 3, In 4

Scheme 2. Synthesis of 1–5.

Figure 1. Molecular structure of 2. H-atoms have been omitted for clarity. C, black; In, grey; F, pink.

Figure 2. Molecular structure of 3. H-atoms have been omitted for clarity. C, black; Ga, turquoise; O, red; F, pink.

Table 1. Computed fluoride ion affinities.

FIA

Lewis acid (kJ mol−1)

B(C6F5)3 426
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Al(C6F5)3 535
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ga(C6F5)3 445
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In(C6F5)3 413
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ga(C6Cl5)3 385
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and para fluorine atoms, which is indicative of four rather than three coordinate group 13 Lewis
acid centres which contain C6F5 ligands. The 31P NMR spectrum displayed a signal at 58.6 ppm.
These data support the formulation of the product 6 as the adduct (tBu3P)Ga(C6F5)3. Crystals
of 6 suitable for X-ray diffraction were grown by vapour diffusion of n-pentane into a toluene
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Figure 3. Molecular structure of 6. H-atoms have been omitted for clarity. C, black; P, orange; Ga, turquoise; F, pink.

tBu3P + 2 Ga(C6F5)3•Tol
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2 9

8

Scheme 3. Stoichiometric/catalytic reactions of 1 or 2with H2.

solution (figure 3). X-ray crystallographic data confirmed the proposed formulation and revealed
a Ga–P bond length of 2.635(4) Å. This is significantly longer than the typical covalent Ga–P bond
distances of approximately 2.4 Å [63].

The analogous reaction of 2 with tBu3P afforded a clear colourless solution that showed 19F
resonances consistent with the quaternization of the indium centre, while the 31P NMR spectrum
showed a shift in the resonance to 67.1 from 62.0 ppm for the free tBu3P. These data confirmed the
formation of the product (tBu3P)In(C6F5)3 7. While this species is observable in solution, attempts
to isolate it afforded consistently impure product.

The quintessential reaction of FLPs is the reaction of such combination of Lewis acid and base
with H2 [3]. Exploring this reactivity with 1 and 2 was thus undertaken. The reaction of 1 with
tBu3P in a 2 : 1 ratio in toluene under 4 atm of H2 afforded the species [tBu3PH][(Ga(C6F5)3)2(μ-
H)] 8 (scheme 3). The 1H NMR spectrum shows a doublet with a coupling constant of 427
Hz at 5.02 ppm, and the 31P NMR spectrum displayed the corresponding doublet at 60.8 ppm,
consistent with the protonated phosphonium cation. The 19F NMR spectrum showed three
resonances at −122.9, −155.9 and −163.7 ppm, corresponding to the C6F5 rings, consistent with
the formation of a four coordinate gallium centre. In this case, the bridging hydride was observed
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Figure 4. Molecular structure of 8. H-atoms have been omitted for clarity. C, black; P, orange; Ga, turquoise; H, grey; F, pink.

[tBu3PSPh][(C6F5)3ESPh]

[tBu3PSPh][((C6F5)3E)2(m-SPh)]

(SPh)2 + E(C6F5)3•tol + tBu3P –tol

+E(C6F5)3

E = Ga 10, In 12

E = Ga 1, In 2

E = Ga 11, In 13

Scheme 4. Reactions of 1 or 2with diphenyl disulfide.

at 3.70 ppm as a broad singlet, presumably as a result of the quadrupolar gallium nuclei (69Ga
and 71Ga, I = 3/2). Elemental analysis and X-ray crystallography confirmed the formation of 8
(figure 4). The structure is directly analogous to the aluminium analogue [26], with a Ga–H–Ga
angle of 175(2)° and an average Ga–H distance of 1.68(1) Å in the anion.

In the case of 2, addition of 1 equivalent of Mes3P in toluene under 4 atm of H2 at 25°C
resulted in complete consumption of In(C6F5)3. The 31P NMR spectrum revealed the presence of
two approximately equimolar species in solution: one new species exhibiting a doublet at −27.4
ppm with a coupling constant of 478 Hz, and a second resonance attributed to free Mes3P at
−36.5 ppm. The corresponding 1H NMR spectrum showed a doublet at 8.24 ppm with a coupling
constant of 478 Hz, characteristic of the [Mes3PH]+ cation. The 19F NMR spectrum showed three
resonances at −117.4, −155.9 and −162.5 ppm, consistent with the formation of a four coordinate
indium centre. Interestingly, when a 1 : 2 ratio of Mes3P and In(C6F5)3•tol was used, complete
consumption of both starting materials was observed. These results were consistent with the
formulation of 9 as [Mes3PH][(In(C6F5)3)2(μ-H)] (scheme 3). The bridging hydride was observed
in the 1H NMR spectrum at 4.82 ppm as a broad singlet, presumably because of the proximity to
113In and 115In, both of which are quadrupolar with a nuclear spin of 9/2.

This demonstration of the activation of H2 probed questions about the potential utility of
1 and 2 in catalytic hydrogenation. To this end, attempts were undertaken to hydrogenate N-
benzylidene-tert-butylamine (tBuN=CHPh). A bromobenzene solution of 1 or 2 was added to 20
equivalents of imine substrate. To the resulting solutions, 4 atm of H2 was added and the mixtures
were heated at 130°C overnight. 1H NMR data revealed that 1 catalysed the complete reduction
in the imine to the amine, while 2 afforded 85% conversion.

Analogous participation in the heterolytic activation of disulfides has been previously reported
for FLPs derived from phosphine and B(C6F5)3. In similar reactions, 1 or 2 were combined with
diphenyl disulfide and tBu3P. The 19F NMR spectrum showed resonances attributable to two
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Figure 5. Molecular structure of 15. H-atoms have been omitted for clarity. C, black; P, orange; Ga, turquoise; F, pink.

species suggesting the formation of the anions in [tBu3PSPh][PhSE(C6F5)3] (E = Ga 10, In 12)
and [tBu3PSPh][(μ-SPh)(E(C6F5)3)2] (E = Ga 11, In 13) (scheme 4) in ratios of 1 : 0.34 and 1 : 0.22,
respectively. In the reaction of In(C6F5)3, the 31P NMR data showed a single resonance at 84.6
ppm attributable to the cation [tBu3PSPh] [64]. Measuring the 19F spectrum at 60°C shows that
the two sets of peaks from the two species coalesce into a single resonance, while at −60°C, the
ratio of the indium products was altered to 1 : 0.45. These data suggest the presence of equilibria
between these anions. Varying the ratios of 2 to diphenyl disulfide and tBu3P to 0.5 : 1 : 1 showed
that the resonances attributable to 12 dominated, while the peaks attributed to 13 were enhanced
when five equivalents of 2 was used instead. These data stand in contrast with the corresponding
reaction of B(C6F5)3 that yields only [tBu3PSPh][PhSB(C6F5)3] [64].

A classical reaction of FLPs involves either FLP addition to a terminal acetylene or
deprotonation of the alkyne to give the phosphonium alkynylborate. The analogous reaction
of 1 with an equimolar amount of tBu3P and phenylacetylene in toluene resulted in the
formation of an oil at room temperature after 15 min. The 31P NMR spectrum indicated the
presence of a minor amount of (tBu3P)Ga(C6F5)3 adduct as evidenced by the signal at 58.8
ppm. In addition, a major species 14 gave rise to a doublet at 59.9 ppm with 1JPH = 429
Hz attributable to the cation [tBu3PH]. Meanwhile, a new singlet peak appeared at 40.7
ppm in the 31P NMR spectrum attributable to a new species 15. This latter peak correlated
to a doublet (J = 30 Hz) in the 1H NMR spectrum. This latter observation is reminiscent of
the previous report [22] describing the reaction of Al(C6F5)3, (o-tol)3P and phenylacetylene
which was shown to give the addition of the FLP to the alkyne affording the zwitterionic
product (o-tol)3P(Ph)C=C(H)Al(C6F5)3, which gave a doublet in the 1H NMR at 8.05 ppm
with 3JPH = 43 Hz [22]. Thus, compounds 14 and 15 are proposed to be the analogous
species [tBu3PH][PhCCGa(C6F5)3] and tBu3P(Ph)C=C(H)Ga(C6F5)3, respectively (scheme 5). On
warming the mixture to 40°C overnight, partial conversion of 14 to 15 was observed as evidenced
by the 31P NMR spectra. These data suggest that 14 is the kinetic product and this slowly
transforms to the thermodynamic product 15. The formulation of compound 15 was confirmed
by single-crystal X-ray diffraction (figure 5). The structure shows addition of phosphine and
gallium to the alkyne in an E-fashion, with phosphine adding to the substituted carbon of the
alkyne. The phenyl ring is oriented parallel to one of the C6F5 rings with a distance of 3.6 Å,
suggesting π–π stacking interaction between the two rings. The trans-orientation of the Ga and
P fragments stands in contrast with the cis-addition previously observed by the Uhl group in
[PhCH=C(P(C6H3Me2)2)(EtBu2)(PhCH=CH)] (E = Al [33], Ga [50]).

In the analogous reaction of 2 with tBu3P and phenylacetylene, stirring for 20 min at
room temperature and removing all the volatiles afforded a white solid. The 1H NMR
spectrum revealed a characteristic doublet at 3.64 ppm (1JPH = 432 Hz) and the 31P NMR
spectrum also contained a doublet at 57.9 ppm (1JPH = 432 Hz). The 19F NMR spectrum showed
three resonances at −116.3, −157.0 and −162.1 ppm, consistent with the formation of a four
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tBu3P + E(C6F5)3•Tol
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PtBu3
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Scheme 5. Reactions of 1 or 2with phosphine and alkyne.

Figure 6. Molecular structure of 17. H-atoms have been omitted for clarity. C, black; P, orange; In, grey; F, pink.

coordinate indium centre. These results suggest the formation of the simple deprotonation
[tBu3PH][PhCCIn(C6F5)3] 16 (scheme 5). However, another set of 19F resonances was also
observed, suggesting the formation of the addition product tBu3P(Ph)C=C(H)In(C6F5)3 17. This
addition product is formed typically in about 15–20% of the total yield. While separation of these
products proved challenging, crystals of 17 were obtained from a solution in an NMR tube. The
subsequent crystallographic study confirmed the formulation of 17 (figure 6). The structure of 17
is analogous to 15 with an In–C distance of 2.204(4) Å and a new P–C bond length of 1.850(4) Å.
It is interesting to note that the initially formed ratios of 14 : 15 and 16 : 17 are 1 : 1.5 and 1 : 4.5,
respectively, reflecting the greater Lewis acidity of 1 over 2.

In our efforts to examine the reactivity of 5, reactions with phosphine and H2 were challenged
by product solubility difficulties. However, the reaction of 5 with PPh3 and phenylacetylene at
room temperature gave a yellow solution, from which crystals were isolated in 30% yield. The
1H NMR spectrum showed a doublet at 8.85 ppm with 3JPH = 41 Hz and a 31P{1H} signal at
20.2 ppm. Mass spectral data showed a peak corresponding to the mass ion consistent with the
formulation of 18 as Ph3P(Ph)C=C(H)Ga(C6Cl5)3 (figure 7). This was further supported by the
determination of the crystal structure of 18, which showed the addition of phosphine and gallium
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Figure 7. Molecular structure of 18. H-atoms have been omitted for clarity. C, black; P, orange; Ga, turquoise; Cl, green.

to the alkyne in an analogous fashion to 15 and 17. The newly formed Ga–C bond to the linker
was found to be 2.020(3) Å, while the P–C bond to the olefin carbon is 1.810(3) Å.

It is noteworthy that combinations of B(C6F5)3 and Al(C6F5)3 and tBu3P in reactions with
phenylacetylene lead exclusively to the deprotonation products [tBu3PH][PhCCB(C6F5)3] and
[tBu3PH][PhCCAl(C6F5)3]. A proposed mechanism for these reactions [65] involves an initial
π-interaction of the alkyne with the Lewis acid. This prompts increased acidity of the alkynyl
proton. The present results imply the decreased Lewis acidity of the gallium and indium Lewis
acids prompting competitive addition of phosphine to the β-carbon. In addition, the longer Ga–
C and In–C bond lengths diminish the steric congestion about the alkyne, allowing addition to
compete with deprotonation.

3. Conclusion
The Lewis acids Ga(C6F5)3, In(C6F5)3 and Ga(C6Cl5)3 were prepared and shown to exhibit lesser
Lewis acidity than the boron and aluminium species B(C6F5)3 and Al(C6F5)3. Nonetheless, these
species participate in FLP chemistry in conjunction with phosphine donors. These species are
shown to heterolytically split H2, catalyse the hydrogenation of an imine, effect the heterolytic
cleavage of diphenyldisulfide and effect reactions with alkynes. Interestingly, the larger size of
gallium and indium results in hydride- and thiolate-bridged anions, while the lower Lewis acidity
prompts the formation of mixtures of deprotonation and addition products in the reactions with
phenylacetylene. These data extend the range of Lewis acids that effect FLP chemistry and current
efforts are directed at exploring further aspects of gallium and indium species in hydrogenation
chemistry.
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