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The conjugated dienamine 4 selectively adds Piers’
borane [HB(C6F5)2] to give the enamine/borane
system 5, which features a boratirane structure by
internal enamine carbon Lewis base to boron Lewis
acid interaction. Compound 5 behaves as a C/B
frustrated Lewis pair and undergoes typical addition
reactions to benzaldehyde, several nitriles and to
sulfur dioxide.

This article is part of the themed issue ‘Frustrated
Lewis pair chemistry’.

1. Introduction
Frustrated Lewis pairs (FLPs) undergo cooperative
reactions with a variety of small molecules [1–3]. Most
notably, they often split dihydrogen [4–6], and many
FLPs were shown to selectively add to a variety of
organic and inorganic π-systems. FLPs are composed
of Lewis acid/base pairs which are effectively hindered
(often in an equilibrium situation) from neutralizing
Lewis adduct formation. This is mostly done by attaching
very bulky substituents at both the Lewis acid and
the Lewis base component of the pair. While the
Lewis acid is mostly boron based [1–3] (with increasing
attention on alternatives such as strongly electrophilic
metal [7–10] or phosphonium systems [11]) the Lewis
base component is mostly a bulky phosphane or amine
[1–3] and sometimes ethers have been successfully
used [12–14]. In some cases, substrates containing the
group 15 heteroatoms have taken a dual role in the
catalytic hydrogenation process, namely as the reagent
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Scheme 1. Trapping of the non-visible N/B FLP by the H2-splitting reaction of the respective enamine/borane adduct 2.

and at the same time the Lewis base [15]. It must be noted that carbon Lewis bases
have seldom been used in FLP chemistry, with notable exceptions being the N-heterocyclic
carbene/B(C6F5)3 and related systems described by Stephan, Tamm, and others [16–27] and
Alcarazo’s carbodiphosphorane/B(C6F5)3 analogues [28–32]. α-Boryl carbanions might formally
be candidates for new C/B FLP developments [33,34], but usually their conjugative interaction
is so pronounced that they serve as borata alkenes (with their characteristic chemistry) [35–37]
rather than as FLP systems.

We thought that enamines might be interesting candidates for C/B FLP design and
development, especially if such systems became available by a simple hydroboration route.
However, there were some principal problems that needed to be overcome. We had
previously shown that many enamines just form carbon/boron Lewis base/Lewis acid
adducts (scheme 1); the adduct formation is often reversible and then allows simple enamine
hydroboration to give N/B FLPs, a reaction that is often only detected by its subsequent
H2-splitting reaction [38–41]. It requires a different substrate design to overcome this common
enamine/HB(C6F5)2 behaviour. This we have done, and the first results of this new development
are described below.

We chose the conjugated N,N-diisopropyl dienamine 4 as our substrate (see the electronic
supplementary material for its synthesis). It bears a pair of geminal methyl groups at the terminal
diene sp2-carbon atom and we hoped to direct the subsequent hydroboration away from the
usual enamine regiochemistry. This was actually the case. We reacted a solution of the dienamine
4 in pentane with an equimolar amount of HB(C6F5)2 [42,43]. The borane does not completely
dissolve in this solvent and the hydroboration reaction takes place from the suspension that is
formed. After 30 min at r.t., the reaction was complete and an orange precipitate had formed.
It was isolated as a solid with a 62% yield and characterized by C,H,N elemental analysis, by
spectroscopy and by X-ray diffraction (single crystals were obtained at −36°C from a toluene
solution layered with pentane).

The X-ray crystal structure analysis (figure 1) shows that the hydroboration reaction of the
dienamine 4 had indeed proceeded with the expected ‘inversed’ regiochemistry. The hydride had
been added to the terminal dimethyl-substituted diene carbon atom C4 and, consequently, the
B(C6F5)2 group was bonded to the adjacent carbon atom C3. The structure of the product can
probably best be described by a resonance hybrid of the mesomeric forms 5/5′ (scheme 2). The
B1–C3 bond is quite short at 1.552(2) Å (cf. B1–C21/C31: 1.610(2) Å) and the B1–C3 vector leans
over towards carbon atom C2 (angle C2–C3–B1: 67.8(1)°). There is clearly a bonding interaction
between B1 and C2, although it is probably weak (1.726(2) Å). We note a characteristic delocalized
bond lengths pattern of the remaining 5/5′ framework (C2–C3: 1.541(2) Å, C1–C2: 1.392(2) Å,
N1–C1: 1.315(2) Å). The C2–H/C3–H hydrogen atoms at the distorted boratirane [44–48] ring
are trans-oriented at the framework.
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Figure 1. Molecular structure of the dienamine hydroboration product 5/5′ (thermal ellipsoids are shown with 30%
probability).

The nuclear magnetic resonance (NMR) spectra of system 5/5′ in d6-benzene solution show
a 11B NMR feature at δ −8.1, i.e. in the typical tetracoordinated borate range. Consequently,
compound 5/5′ shows the 19F NMR resonances of a pair of diastereotopic C6F5 substituents
at boron with small �δ19Fm,p chemical shift differences of 6.4 and 5.6 ppm, respectively. The
iPr2N = CH-unit shows 1H/13C NMR signals at δ 6.04/170.3 and the boratirane C2–H/C3–H 1H
NMR signals occur at δ 2.31/1.87.

A variety of FLPs undergo 1,2-addition reactions to benzaldehyde and other organic carbonyl
compounds [49–51]. Compound 5 reacts analogously. It forms the addition product 6 upon
exposure to benzaldehyde at r.t. overnight. We isolated the product after work-up with a 67%
yield. The X-ray crystal structure analysis shows that a five-membered heterocycle had been
obtained by B–O and C–C bond formation (figure 2). It features the three large substituents in
a trans-, trans-orientation, namely the phenyl group at C13, the iminium cation moiety (N1–C1:
1.291(3) Å) at C2 and the isopropyl group at C3.

Compound 6 shows an iminium type 1H/13C NMR pair of signals at δ 8.52/184.2, a 11B NMR
feature in the borate anion range (δ 2.2), 19F NMR signals of a pair of diastereotopic C6F5 groups
at boron as well as six 1H NMR methyl signals.

The C/B FLP 5/5′ reacts in a similar way with organic nitriles. The reaction with acetonitrile is
a typical example. The C/B FLP was prepared in situ by treatment of the dienylamine 4 with Piers’
borane (pentane, r.t. 2 h) and then acetonitrile was added (approx. 1.1 equiv.) and the reaction
mixture stirred overnight at r.t. Work-up gave the product 8a (R: CH3) with an approximately
57% yield. We assume that first the primary nitrile addition product 7a is formed, which then
undergoes a tautomerization reaction under the applied reaction conditions. The X-ray crystal
structure analysis of 8a shows the formation of the N-containing five-membered heterocycle
(figure 3). It shows the following bond lengths of the conjugated core: N1–C1: 1.338(3) Å, C1–
C2: 1.385(3) Å, C2–C13: 1.429(3) Å, and C13–N2: 1.313(3) Å, which indicates a largely delocalized
structure of the central N2C3 π-system reminiscent of a Zincke-aldimine-type derivative [52].
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Scheme 2. Preparation of the system 5/5′ and its reactions as a C/B FLP.

Compound 8a/8a′ shows the 13C NMR (d8-toluene, 253 K) feature of the N1–C1 unit at δ 142.2
(1H: δ 6.58) and of the C13–N2 unit at δ 179.8 (1H: δ 7.30 NH) and it features the 11B NMR signal at
δ −3.1. The C/B FLP 5/5′ reacts similarly with pivalonitrile to give the product 8b, which shows
similar structural and spectroscopic parameters (see the electronic supplementary material for
details).

P/B FLPs are known to often typically react with simple binary main group element oxides
[53,54]. Therefore, we have exposed our compound 5 to sulfur dioxide in order to find out if it
undergoes a related SO2 C/B FLP addition. Actually, it does (scheme 3). Exposure of the C/B FLP
system 5/5′ to SO2 (1.5 bar) in d6-benzene gave a full conversion to the C/B FLP SO2 addition
product 9. Crystals suitable for crystal structure analysis were obtained from a saturated toluene
solution layered with pentane at room temperature.

The X-ray crystal structure analysis of the C/B FLP SO2 addition product 9 shows a central
five-membered heterocycle that was formed by addition of the boron Lewis acid to oxygen
and the enamine carbon to sulfur (figure 4). It features an envelope-shaped conformation with
boron being the tip (angle between the O1–S1–C2–C3/O1–B1–C3 planes: 144.5°). The bond angle
at boron amounts to O1–B1–C3 102.1(2)°. The sulfur shows a sum of bond angles of ΣS1OOC

309.8(2)°. In compound 9, the endocyclic sulfur–oxygen bond length is 1.559(2) Å, whereas the
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Figure 2. A projection of the molecular structure of the benzaldehyde addition product 6 to the C/B FLP (thermal ellipsoids
are shown with 15% probability). Selected bond lengths (Å) and angles (°): O1–C13: 1.402(3), O1–B1: 1.488(3), N1–C1: 1.291(3),
C1–C2: 1.462(3), C2–C3: 1.552(3), C2–C13: 1.572(3), C3–B1: 1.674(3), C3–C4: 1.531(4), C13–O1–B1: 109.2(2), C1–N1–C10: 124.1(2),
N1–C1–C2: 129.3(2), C3–C2–C13: 101.6(2), C2–C3–B1: 100.6(2).
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Figure 3. Molecular structure of compound 8a (thermal ellipsoids are shown with 30% probability).

exocyclic S=O linkage is much shorter at 1.483(2) Å. The newly introduced S=O bond is oriented
cis-coplanar with the iminium substituent (N1–C1: 1.289(4) Å) at the adjacent carbon atom C2 (θ
O2–S1–C2–C1: 11.4(2)°) and it is oriented trans to the isopropyl substituent at C3.

In solution (d6-benzene), we monitored the NMR signals of a single diastereomer of 9. It
features the 1H NMR signals of the trio of C1–H/C2–H/C3–H hydrogen atoms at δ 7.69, 4.09
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Figure 4. A view of the molecular geometry of the C/B FLP SO2 adduct 9 (thermal ellipsoids are shownwith 30% probability).

and 3.14, in addition to a total of six isopropyl CH3 doublets and the 19F NMR signals of a pair of
diastereotopic C6F5 groups at boron (11B NMR: δ 9.3).

We have synthesized the enamine-derived C/B FLP system 5 by a very convenient
hydroboration route, namely the reaction of the substituted conjugated dienamine 4 with Piers’
borane (HB(C6F5)2). The presence of the terminal geminal dimethyl substituents directed the
hydroboration reaction completely to form the C3-based borane. Characteristically, the borane
Lewis acid forms a weak C···B bond with its adjacent enamine-type C(sp2) centre, giving a
distorted boratirane structure. This arrangement is similar to a variety of weakly bonded P···B
or N···B situations, and, consequently, our newly formed C/B FLP undergoes typical FLP
addition reactions with a variety of added organic π-systems. In the case of the benzaldehyde
addition reaction, a stereochemical outcome is obtained that results from a typical minimum
steric interaction approach of the PhCHO reagent to the C···B boratirane unit. The trans-CH–
CH arrangement of the latter is also retained to eventually yield the product 6. In the case of
the nitrile addition reactions, the stereochemistry of the C/B FLP addition reaction cannot be
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followed due to the rapid subsequent tautomerization process giving rise to the formation of
the delocalized nitrogen-containing π -system. Actually, the C/B FLP even adds to SO2, giving
a typical FLP sulfur dioxide adduct. This study shows that this new type of C/B FLP is easily
prepared and shows typical FLP features. We will explore its chemistry further and will see if it
helps us to discover new FLP reactions.
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