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Abstract

Widespread inconsistencies are commonly observed between physicians’ ordinal classifications in 

screening tests results such as mammography. These discrepancies have motivated large-scale 

agreement studies where many raters contribute ratings. The primary goal of these studies is to 

identify factors related to physicians and patients’ test results which may lead to stronger 

consistency between raters’ classifications. While ordered categorical scales are frequently used to 

classify screening test results, very few statistical approaches exist to model agreement between 

multiple raters. Here we develop a flexible and comprehensive approach to assess the influence of 

rater and subject characteristics on agreement between multiple raters’ ordinal classifications in 

large-scale agreement studies. Our approach is based upon the class of generalized linear mixed 

models. Novel summary model-based measures are proposed to assess agreement between all, or a 

subgroup of raters, such as experienced physicians. Hypothesis tests are described to formally 

identify factors such as physicians’ level of experience that play an important role in improving 

consistency of ratings between raters. We demonstrate how unique characteristics of individual 

raters can be assessed via conditional modes generated during the modeling process. Simulation 

studies are presented to demonstrate the performance of the proposed methods and summary 

measure of agreement. The methods are applied to a large-scale mammography agreement study 

to investigate the effects of rater and patient characteristics on the strength of agreement between 

radiologists.
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1. Introduction

Diagnostic and screening tests are used in a broad range of medical settings to assess 

patients’ disease status. The accuracy of these procedures depend on subjective 
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interpretation of test results by radiologists. However, substantial discrepancies between 

radiologists’ classifications are often reported in breast cancer screening and many other 

settings [1–6] providing strong incentives to search for accurate and consistent classification 

procedures. Efforts to improve the effectiveness of screening tests have led to the 

implementation of large-scale agreement studies with the important goal of identifying 

characteristics of the raters and subjects, such as rater training and experience or patient age, 

that may contribute to variability between raters’ classifications of test results [2,4,7–9]. 

Large-scale agreement studies incorporate the classifications of many raters each 

independently grading a sample of patients’ test results, or some subset thereof.

Ordered categorical scales are commonly used to classify screening and diagnostic test 

results. For example, breast density is rated on mammograms using to an ordinal four-

category BIRADS scale (fatty, scattered areas, heterogeneously dense, extremely dense) 

[10], and prostate cancer biopsies are classified according to a five-point Gleason grading 

scale [4,8]. However, assessing consistency between raters in agreement studies when an 

ordinal scale is used for classification purposes can be challenging. Further issues arise when 

multiple raters (more than two or three) contribute ratings. Some existing summary measures 

are commonly used to provide informative single number summaries of agreement between 

many raters’ ordinal classifications. These include Fleiss’ kappa for multiple raters which 

requires all subjects have an equal number of ratings [11], the intraclass correlation 

coefficient (ICC) which is equivalent to a weighted Cohen’s kappa in the case of two raters 

[12], Kraemer’s kappa coefficient [13], an AC2 statistic [14] and versions of Cohen’s 

weighted kappa [15–17]. However, these simple summary measures are not able to 

incorporate information on rater and patient characteristics that may impact agreement, and 

furthermore, some are sensitive to similar prevalence and marginal distribution issues as the 

original Cohen’s kappa [18–20].

Some modeling approaches also exist to investigate the effects of rater and item 

characteristics on agreement between ordinal classifications of multiple raters. Williamson et 

al [21] and Gonin et al [22] describe methods based upon generalized estimating equations 

which can incorporate rater and item characteristics to assess their impact on agreement 

[18,21] and association [22] respectively, and can accommodate unbalanced data. Again, 

similar to existing summary measures, both approaches rely on Cohen’s kappa-like 

statistics, and are prone to the well-known flaws of Cohen’s kappa measures, including a 

dependency on the underlying prevalence of disease [18–20]. Hsaio et al [23] developed a 

Bayesian hierarchical model for binary classifications with a nested random effects structure 

using ICC measures to describe correlation between classifications instead of kappa 

agreement measures. In many agreement studies, patients’ test results are classified by a 

small fixed number of raters, for example, two or three. The aforementioned methods 

including fixed terms for each rater can be used to appropriately describe the strength of 

agreement between raters in these smaller-scale studies. Some of these methods may 

potentially be extended to assess agreement in larger-scale studies with many raters by 

incorporating random effects. In this current paper we focus on large-scale agreement 

studies where classifications by several raters (usually more than three) who may be 

randomly sampled from their population of typical raters can be incorporated, allowing for 

statistical inference at the population level. A further Bayesian hierarchical modeling 
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approach [24] incorporates a nested random effect structure and patient-level covariates but 

provides no summary agreement measures. Log-linear models [25,26] can also be used to 

assess the impact of rater and patient characteristics on agreement between a small number 

of raters, say two or three at most, for categorical classifications.

Our proposed methods fill a gap in the current agreement literature to provide a flexible 

modeling approach and summary measure to assess the impact of rater and subject 

characteristics on agreement between multiple raters. Our approach, based upon the class of 

generalized linear mixed models (GLMMs) [27,28] flexibly incorporates rater and subject 

characteristics to identify key factors impacting consistency between experts. Novel model-

based summary measures are developed to assess and compare the strength of agreement 

between all raters, or between subgroups of raters (for example, experienced and 

inexperienced raters) and subjects (for example, mammograms of older versus younger 

patients). Our proposed summary measures of agreement are appealing in their simplicity of 

interpretation, adjust appropriately for chance agreement, and eliminate many biases 

observed in the use of Cohen’s kappa statistics. Unlike Cohen’s kappa statistic and its 

extensions, the proposed measures are unaffected by the underlying disease prevalence [28]. 

In contrast to other approaches, any number of subjects and raters’ classifications can be 

incorporated without increasing the complexity of the modeling process. An important 

strength is that conclusions can be generalized to the underlying populations of raters and 

items when raters and study participants are randomly sampled from their respective 

populations. It is assumed each rater independently classifies the same sample of subjects’ 

test results using to an ordinal classification scale, although missing and unbalanced data can 

be accommodated [29].

The remainder of the paper proceeds as follows. In the next section we describe the model-

based agreement approach incorporating rater and subject characteristics. We demonstrate 

how to fit the proposed model and obtain parameter estimates for an agreement dataset using 

the statistical software package R [30]. In Section Three summary measures of agreement 

for assessing the effects of rater and subject characteristics are developed, while in Section 

Four, simulation studies are reported to establish the properties and behavior of the proposed 

methods and summary measure of agreement. Section Five discusses hypothesis tests to 

formally test the strength of agreement between subgroups of raters and for assessing the 

impact of factors on agreement. Following in Section Six we explain how unique 

characteristics of individual raters and patients in the study can be evaluated through 

conditional modes generated as part of the modeling process. The proposed methods are 

applied to a large-scale breast cancer agreement study in Section Seven, concluding with a 

brief discussion in Section Eight.

2. Models of Agreement

2.1. Ordinal agreement model incorporating rater and patient factors

An ordinal GLMM with fixed and random effects provides a flexible framework to assess 

effects of rater and item characteristics on agreement between multiple raters in a 

population-based setting. It is assumed a random sample of J raters each independently 

classifies the same random sample of I items using an ordinal classification scale with C 
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categories. A classification provided by the jth rater for the ith item is denoted as Yij = c (i = 

1,…, I; j = 1,…, J; c = 1,…, C). The ordinal GLMM model with a probit link function 

models an unobserved continuous latent variable Wij associated with the true underlying 

disease severity of the ith patient, and is linked to the jth rater’s ordinal classification Yij via 

a series of strictly increasing threshold values  that separates the real line into 

C+1 categories, with  and  ( ). A rater’s classification 

of an item, Yij, falls into category c when the latent variable Wij takes a value between 

and . For identification purposes, wlog, the intercept term  is set to 0 in the GLMM [31]. 

The ordinal GLMM model takes the form:

(1)

where item and rater random effect vectors for the ith item and jth rater are ui = (ui0, ui1,…, 
uip) and vj = (vj0, vj1,…, vjq) respectively. Crossed random effects for each item and rater, ui0 

and vj0 (i = 1,…, I; j = 1,…, J) are always included in (1) to account for the dependency 

induced by the study design where each rater views every item. Additional random terms 

may be included for rater and item characteristics to examine their effects on the agreement 

between raters, for example, rater’s experience. Vectors z1 of size (p+1) × 1 and z2 of size (q
+1) × 1 represent design structures of the random effect vectors. Rater and item random 

effect vectors are assumed to follow multivariate normal distributions with covariance 

matrices Σu and Σv of dimensions (p+1) × (p+1) and (q+1) × (q+1) respectively with ui ~ 

MVN(0, Σu) and vj ~ MVN(0, Σv) where

For simplicity, we denote linear combinations of the random effects for items and raters as 

 and  with corresponding variances  and 

. Variance components for item random effects can be 

interpreted as follows: a large value of  denotes test results which vary substantially with 

regard to distinguishability of disease status; for example, cancer is clearly visible on some 

mammograms, while on others it is less obvious. Low or moderate-valued item variance 

components indicate less variability in distinguishability of disease status in test items. 

Large rater effect variance components reflect a population of raters who vary widely in the 

way they classify subjects, with some very conservative raters (i.e. not assigning many high 

score ratings), while other raters are very liberal, assigning higher score ratings. A rater 
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variance component close to 0 indicates a population of raters who classify subjects very 

similarly. More complex random effect structures can be incorporated if desired, though a 

richer dataset with more raters and subjects will be required as the random effect structure 

increases in complexity.

Characteristics of raters and items can also be incorporated as fixed terms  into 

the GLMM model (1) where xi = (xi1, xi2,…, xir) and xj = (xj1, xj2,…, xjs) refer to vectors of 

item and rater characteristics for the ith item and jth rater respectively. Vectors β1 and β2 

refer to corresponding fixed coefficients vectors for items and raters. A fixed effect for a 

rater or item may be informative if that characteristic is linked with the underlying disease 

prevalence, reflected by the distribution of classifications across the ordered categories. For 

example, if older patients experience an increased prevalence of breast cancer, patient age 

can be included as a fixed effect to adjust overall cutoff thresholds  to reflect the 

higher probability of an elevated score. Examples are provided in Sections 4 and 5 for 

further clarification.

2.2. Fitting the Ordinal Generalized Linear Mixed Model

The ordinal GLMM in (1) is fitted quickly and efficiently using the ordinal package in R to 

estimate the parameter vector of interest,  = . These 

parameter estimates form an important component of the summary measures of agreement 

developed in the next section.

The ordinal R package uses an approximate maximum likelihood procedure, multivariate 

Laplacian approximation for estimation purposes, yielding  = 

 [30]. Due to the presence of high-dimensional integrals in 

the marginal likelihood function with a crossed random effect structure, no closed-form 

solution is available, and adaptive quadrature fitting approaches which are commonly used 

for fitting GLMMs becomes infeasible in this setting [32–34]. The form of the marginal 

likelihood function for the ordinal GLMM in (1) is:

where indicator function  if  and 0 otherwise. Let  be 

the second-order derivative of the log-likelihood function l(θ; u, v, y) evaluated at the 

approximate maximum likelihood estimates of θ. The matrix H is generated during the 

model-fitting process and large-sample approximate standard errors for parameter estimates 

are estimated by taking the square-roots of the diagonals of H, 
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. Parameter estimation of the fixed coefficient vectors β1 and 

β2 and standard errors se(β1) and se(β2) are routinely output from the ordinal package in R, 

providing an assessment of whether rater and item characteristics provide a significant 

adjustment to threshold estimates .

3. A Population-Based Measure of Agreement

Agreement measures for ordinal classifications provide a useful summary of exact 

agreement between raters, i.e. how much of the time experts classify a patient’s test result 

into the same category. When experts and patients are randomly sampled from their 

respective populations, a population-based measure of agreement describes how often an 

expert’s classification of a subject agrees with what other experts would have typically 

reported (inter-rater reliability), after correcting for chance agreement [35].

In this section we focus on developing summary measures for assessing agreement between 

raters based upon the ordinal GLMM in (1). In a study with a diverse range of radiologists, it 

is often of interest to study the strength of agreement between groups of raters or items. For 

example, we may be interested in whether raters provide more consistent classifications of 

test results of older patients compared with those of younger patients. We can incorporate 

these characteristics as additional random effects into the ordinal GLMM. To examine 

overall agreement between all raters, a GLMM without any additional fixed or random effect 

terms can be used [28].

We now define two important concepts, observed and chance agreement, which form the 

basis for the proposed model-based measure of agreement.

3.1. Observed and Chance Agreement in the Model-Based Setting

A population-based measure of observed agreement, p0, is the uncorrected long-run 

proportion of time that raters j and j′ (j ≠ j′) classify patients into the same category. When 

raters are randomly selected, classifications made by the jth and j′th raters on a subject are 

interchangeable, and any pair of raters’ classifications has a distribution that is invariant 

under permutations of the experts [35]. In the population-based setting, this is written as

where raters j and j′ (j ≠ j′) share the same or a different set of characteristics, and both 

raters classify the same ith item. Under the GLMM framework, observed agreement is 

(derivations are in Appendix A):
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(2)

where k and k′ denote the constant terms  and  and total 

variances are  and . Terms  and  are 

natural measures of variability taking values between 0 and 1 which increase in value when 

variability amongst items is large relative to variability between raters. The random variable 

z is a variable. When raters j and j′ (j ≠ j′) share the same characteristic of interest 

(such as experience level), . Chance agreement pc is the probability that two different 

raters j and j′ (j ≠ j′) classify two different items i and i′ (i ≠ i′) into the same category 

simply by coincidence. Generally, raw agreement rates such as p0 are inflated when chance 

agreement is high; therefore we seek a model-based chance-corrected measure of agreement 

in Section 3.2. In order to do so, we first provide an expression for chance agreement in the 

population-based setting:

(3)

3.2. A Model-Based Measure of Agreement

A model-based chance-corrected measure of agreement  based on the ordinal GLMM in 

(1) can be used to assess levels of agreement between a subgroup of raters or items. The 

summary measure  is a linear function of observed agreement p0 in (2) and adjusted to 

minimize the effects of chance agreement pc in (3). The minimum value of chance 

agreement, , is obtained by finding threshold values  ( and 

) which minimize the expression for chance agreement pc in (3). When raters j and 

j′ (j ≠ j′) come from the same group of raters, the minimum value for pc is 1/C (see 

Appendix C for proof). This is achieved when the thresholds take values 

 for c=1,…,C−1. These threshold values 

 are then incorporated into the expression for  in (4). The 

measure is scaled to lie between 0 and 1, and takes the following form:
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(4)

where  and ,  and . For category c = 1 the 

second term in brackets is set to 0, and the first term in brackets for category c = C is set to 

1. The proposed measure  takes values between 0 and 1 and is easily interpreted in a 

similar manner to Cohen’s kappa and Fleiss’ kappa [11, 15]. A value close to 1 suggests 

strong chance-corrected agreement while a value close to 0 indicates no to weak chance-

corrected agreement between raters in the population. Landis and Koch [36] present a table 

that provides a suitable guide for interpreting the proposed measure of agreement. The 

summary measure, estimated as using the parameter estimate GLMM vector  in Section 

2.2 avoids some of the weaknesses observed in Cohen’s kappa including being robust to the 

underlying prevalence of disease and differing marginal distributions of raters.

The variance of the estimated summary measure ,  is derived using the 

multivariate delta method. As  is a function of  with  the 

covariance matrix for , can be written as:

For estimation purposes, the matrix H generated during the GLMM model-fitting process 

described in Section 2.2 provides approximate estimates of . A sample dataset and R 

code is provided by the authors in the Supplementary materials to demonstrate how to use 

the proposed methods for an agreement dataset.

4. Simulation Studies

Extensive simulation studies were conducted to assess parameter estimation for the GLMM 

and to examine properties of the proposed model-based measure of agreement. We examined 

effects of increasing sample size (numbers of raters and items) and varying values and 

characteristics of rater and item variance components on the resulting bias and standard 

errors of the ordinal GLMM parameter estimates and properties of the proposed summary 

agreement measure.
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4.1. Generating the Simulated Datasets

For each simulation scenario, one thousand datasets were randomly generated according to 

the ordinal GLMM in (1) by first calculating the true probabilities of being classified into 

each category c = 1,…,C, with the number of categories C = 5 where

(5)

Random effect vectors ui ~ MVN(0, Σu) and vj ~ MVN(0, Σv) (i = 1,…, I; j = 1,…, J) were 

randomly generated using the mvrnorm function in R using specified values of the variance 

components. The rmultinom function in R was then used to randomly generate n = I*J (I 
ratings per expert) observations Yij = c using the multivariate normal probabilities in (5). 

Each dataset was then fitted using the clmm function in the R ordinal package. The proposed 

summary measures and standard errors were then estimated using these GLMM parameter 

estimates. Simulation studies were conducted for each of the following three ordinal GLMM 

models, with rater and item characteristics incorporated in varying ways into each model. 

We also include results for an overall summary measure  modeling agreement between all 

J raters and I subjects (with no covariates or additional random effects) for each set of 

simulations.

a.  with  and

b.  with  and

c.

Here, the binary rater covariate xj, representing, for example, level of rater experience, was 

included in models (a) and (c) and generated using rbinom(J, 0.5). Similarly a binary item 
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covariate xi which could indicate, for example, age of patient (young or old), was included 

in models (b) and (c) and generated using rbinom(I, 0.5).

Simulation scenarios and parameters were chosen to reflect values that may be present in 

real agreement studies. Fixed parameters  and  were set at 1 in models (b) and (c). 

Variance components were set at  and . 

Parameters describing correlation between the random effects,  and  were set at 

(−0.25, 0, 0.25).

4.2. Results of Simulation Studies

Simulations results are presented in Tables 1(a) and (b) and Supplementary Tables 1(c) to (f) 

and 2(a) to (f). (Supplementary Tables can be found in the Supplementary Materials online). 

Tables 1(a) to (f) present summary results for the proposed model-based kappa  including 

estimates of  for subgroups of raters and items for all simulation studies. Tables 2(a) to (f) 

present summaries of the estimation of the ordinal GLMM parameter vector  and proposed 

model-based kappa estimates  for each simulation study. Estimated standard errors (est 

S.E.) for each parameter is reported as the mean of the standard error estimates from each of 

the one thousand simulated datasets. The standard deviation of the observed one thousand 

estimates (obs S.E.) is also presented for each parameter. {Tables 1(a), (b) here}

4.2.1. Estimation of Fixed Parameters—Fixed effects parameters in models (a) to (c) 

were consistently estimated with minimal or no bias in all simulation studies. Mean 

estimated standard errors of the fixed effects (est S.E.) for each set of simulations took very 

similar values to the observed standard errors (obs S.E.) thus for the fixed effects we display 

only the mean estimated standard errors.

4.2.2. Estimation of Random Components—Similar to the fixed effects, item and 

rater intercept variance components  and  were estimated with minimal or no bias 

throughout all simulation settings. The additional item variance component  in models (b) 

and (c) (reflecting variability attributed to the binary covariate xi =1) was slightly 

overestimated on average in each simulation scenario when overall rater variability was high 

relative to variability amongst items. Overestimation of  was also observed in smaller 

samples when overall item variability was high relative to variability amongst raters, with 

substantial improvement for larger sample sizes. The additional rater variance component 

 was also generally overestimated in simulation scenarios for smaller sample sizes with 

some underestimation for larger sample sizes. The correlation coefficient representing the 

strength of association between the item random effects  was consistently 

underestimated where variability amongst raters was larger than the variability between 

items, with some improvement observed in larger sample sizes. When variability amongst 

items was larger compared to rater variability,  was slightly underestimated in smaller 

sample sizes with little or no positive bias observed in larger sample sizes. Estimation of the 

rater correlation coefficient  representing the strength of association between rater 

random effects v0j and v1j in models (a) and (c) was slightly to moderately biased in the 

simulation scenarios. When variability amongst raters was larger compared to variability 
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amongst items,  tended to be underestimated in the smaller sample sizes with some 

overestimation in larger sample sizes. When variability amongst items was relatively larger 

than the rater variability,  was again underestimated in smaller sample sizes with some 

improvement observed in larger sample sizes.

Estimation of variance components in GLMMs can be challenging due to the analytical 

intractability of the model, where the high dimensionality of the likelihood function has no 

closed form [34]. Approximate likelihood procedures for fitting a GLMM and parameter 

estimation such as a Laplacian approximation method are then often used [27, 34, 37], 

where the Laplacian approximation approach is considered a viable approach with good 

properties in many settings [34]. It has been demonstrated in prior research studies that 

underestimation and bias of variance components may occur in the use of approximate 

maximum likelihood approaches such as the Laplacian approximation, as we observed in 

our simulation studies, particularly in our estimation of the additional rater random effect 

and correlation coefficients  and .

Observed standard errors for all variance components were often a little larger than their 

mean estimated standard errors, with some improvement noted with increasing sample sizes. 

In general, ordinal GLMMs incorporating increasing numbers of random effects exhibited 

slightly more bias in the estimation of random effect parameters. This suggests that richer 

datasets incorporating more raters and items are required when many rater and item 

characteristics are included in the ordinal GLMM for reasonable parameter estimation.

4.2.3. Estimation of the Proposed Summary Measure of Agreement—Despite 

some biases observed in the estimation of additional random effects components, estimation 

of the proposed measure of agreement  proved to be consistently very stable and unbiased 

in all the simulation scenarios examined with only negligible bias at most, as displayed in 

Tables 2(a) − (f). Corresponding standard errors  for each simulation scenario were 

also very stable, with observed standard errors (calculated as the standard deviation of the 

1000 ’s) sometimes slightly larger. {Tables 2(a) – (b) here}

Histograms of the one thousand estimated kappa measures, , for each simulation scenario 

demonstrate that the distribution of  is reasonably well-approximated by a normal 

distribution in each case. Some slight bias and slight right-tailed skewness was observed in 

some of the distributions of  under models (b) and (c) which may be attributed to the 

approximate nature of the multivariate Laplacian estimation procedure used.

To evaluate whether 95% confidence intervals for  calculated as [ − 1.96×se( ), 

+ 1.96×se( )] achieved the nominal level of coverage, we calculated the percent of the one 

thousand simulated datasets whose confidence intervals contained the true value of  in the 

simulation scenarios for the overall kappa and model (b). These results are presented in 

Supplementary Table 3 (in Supplementary materials online). The overall  for the simplest 

model with no covariates yielded coverage probabilities a little below or close to 95%, while 

in model (b) with a patient characteristic, the coverage probabilities were more conservative 

due to some slight bias and slight right-tailed skewness in the corresponding histograms of 

the estimates of  as observed in the histograms.
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4.2.4. Estimation using the Bayesian MCMCglmm Package—The Bayesian 

MCMCglmm package in R provides an alternative approach for fitting the ordinal GLMM in 

(1). Simulation studies demonstrated that this method generally yielded reasonably unbiased 

estimates of the fixed effects, however markedly more severely biased variance components 

were observed for the MCMCglmm approach, especially for the additional rater random 

effect  and correlation coefficient  in small and large sample sizes when compared 

with the ordinal package, thus we focused on using the ordinal package for our estimation.

5. Application to a Large-Scale Breast Cancer Agreement Study

A large-scale mammography study was recently conducted by Beam et al [2]. Each of 104 

U.S. radiologists classified a sample of 148 mammograms according to a modified BIRADS 

ordinal scale five-point scale (C = 5) (1 = normal to 5 = probably malignant). Several 

radiologist and patient characteristics, including each radiologist’s number of years of 

experience, recent volume of mammograms (number read annually), gender, and patient’s 

age were collected in the study. The goal of our study is to investigate whether these factors 

have a significant impact on agreement using the proposed models and measures of 

agreement. Hypothesis tests are then described to formally test whether these characteristics 

significantly impact agreement between radiologists.

To demonstrate that our approach can flexibly be applied to address a broad range of clinical 

questions, we fit six agreement models to this breast cancer dataset using the ordinal 
package in R. Results are presented in Tables 2 and 3 and Figure 1. Models ranged from a 

simple ordinal GLMM with no covariates modeling agreement between all raters (model (i) 

in Table 2), to an agreement model incorporating several rater and item characteristics (Table 

3). Models (ii) to (v) reflect the ordinal GLMMs described in simulation studies in Section 

4. Rater and item characteristics include a binary indicator of level of inexperience of 

radiologist (xj = 0 is 10 or more years’ experience, xj = 1 is less than ten years’ experience), 

annual volume of mammography reading (xj = 0 for <2500 mammograms; xj = 1 for ≥2500 

mammograms read per year on average), radiologist gender (1 = male, 2 = female) and the 

age of the patient (xi = 0 for patients aged less than 60 years, xi = 1 for patients aged 60+ 

years). Proposed measures of agreement  were calculated for each scenario, incorporating 

rater and item characteristics.

In the simplest model (i), the estimated variance component describing overall variability 

between mammograms is  = 2.442, while the variance component for raters is  = 

0.158 hence . This indicates that across all raters and mammograms, variability 

attributed to the distinguishability of disease on mammograms is much greater compared to 

variability amongst radiologists. In model (ii) we focused on assessing the effects of rater 

inexperience on agreement. Model-based measures of agreement for experienced and 

inexperienced radiologists are estimated as = 0.243 (s.e. = 0.012) and = 0.235 

(s.e. = 0.012) respectively. These indicate only weak to moderate chance-corrected 

agreement between each group of radiologists, with experienced radiologists associated with 

a mild and insignificant increase in agreement. Agreement between radiologists when 

assessing mammograms of younger patients in model (iii) is similar for each agegroup of 
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patients with  = 0.333 (s.e. = 0.020) and = 0.329 (s.e. = 0.020), suggesting that 

patient age does not significantly impact levels of agreement between radiologists.

Model (iv) explored agreement between small groups of raters and patients, for example, 

when younger patients are graded by inexperienced radiologists, and when older patients are 

graded by experienced radiologists. Fixed terms were also incorporated for rater’s 

inexperience (xj = 0 or 1) and patient’s age (xi = 0 or 1). Patient age was found to have a 

significant association with severity of disease (  = 0.034 (0.012), p = 0.003), where older 

patients were more likely to be more highly classified using the BIRADS ordinal scale. In 

contrast, radiologist’s experience level was not significantly linked with the BIRADS rating 

(  = −0.055 (0.092), p = 0.556). Only small differences were observed between the 

estimated measures of agreement when younger patients were graded by inexperienced 

radiologists (  = 0.100 (s.e. = 0.010)) and when older patients were graded by 

experienced radiologists (  = 0.107 (s.e. = 0.013)) in both cases yielding low 

chance-corrected levels of agreement between radiologists.

Table 3 presents a full analysis of the Beam mammography study with several rater and 

patient characteristics included to assess their impact on agreement. Variability between 

subjects’ mammograms (  = 2.746) is higher than between radiologists, with subject’s 

age contributing only a small amount to the overall variability among classifications (  = 

0.719). Overall variability amongst raters remained small ( = 0.154) with rater 

characteristics of experience, volume and gender each contributing small amounts to the 

overall variability observed. We observed a higher level of agreement amongst experienced 

male radiologists with a high reading volume (  = 0.306 (s.e. = 0.016)) 

compared with inexperienced male radiologists with a low reading volume 

(  = 0.254 (s.e. = 0.019)).

5.1. Hypothesis Testing of Rater and Item Characteristics

Hypothesis tests are described for formally testing whether rater and item characteristics of 

interest have an important role in determining the levels of agreement between radiologists. 

Factors identified as important will help to raise awareness regarding where improvements 

can be made in training of radiologists which may lead to stronger consistency between 

raters. Variance components of the random effects play a central role in these hypothesis 

tests since they break down overall variability between all classifications into specific 

components which impact agreement. We base our hypothesis testing on methods described 

in Molenberghs and Verbeke [38], and recommended likelihood ratio tests rather than Wald 

or Score tests which may be less stable in this setting [38, 39].

We first tested whether variability between raters’ classifications contributes significantly to 

the overall variability observed between all classifications by testing whether the rater 

random intercept variance component is 0, i.e. we wish to test H0:  = 0 in the simplest 

model (i) with no covariates. Boundary issues arise when testing variance components due 

to the requirement that variances must take non-negative values [38,40]. We conduct a one-

sided likelihood ratio test comparing model (i) to a simpler model with only an item random 
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effect term. The null distribution of the test statistic is a weighted sum of chi-squared 

distributions and has a 0.5*(  + ) distribution [38]. The corresponding p-value is 

calculated by averaging the p-values of obtaining the likelihood ratio test (LRT) statistic 

from comparing the two GLMM models based upon the chi-squared distributions with 0 and 

1 degrees of freedom. For the Beam mammography study, the LRT test-statistic = 1303.1 

obtained from the anova test in R, and p-value < 0.001. This hypothesis test provides 

evidence that the rater variance intercept  is an important component of the model, and 

that variability exists between the raters’ classifications.

To examine whether the level of rater experience (xj = 0 or 1) contributes to the variability 

between raters’ classifications, and thus the agreement between raters, we conducted a 

hypothesis test H0:  = 0, where  is the variance between raters that can be 

attributed to raters’ level of experience and  is the correlation between the two rater 

variance components  and . We thus compared our models (i) and (ii) for the Beam 

study from Table (3). Using the methods of Molenberghs and Verbeke, we obtained a LRT 

statistic of 1.905 which was tested against the null distribution 0.5*(  + ) to yield a p-

value of 0.277, indicating that the level of rater experience was not a significant factor in 

describing the variability between raters’ classifications. This result is supported by the 

estimated model-based kappas for experienced and inexperienced raters respectively which 

were fairly close in value with  = 0.235 (s.e. = 0.015) and  = 0.243 (s.e. = 

0.015).

We also conducted a hypothesis test to examine the influence of the level of experience of 

radiologists (inexperienced versus experienced) when classifying the mammograms of older 

patients only (model iv) in Table 4. This entailed testing the hypothesis H0:  = 0 

using the ordinal GLMM model (iv) which includes fixed and random effects terms for 

patient age, which we set as xi = 1 for older patients, where patient’s age is also included as 

a fixed effect to adjust for the effects of increased prevalence of breast cancer for older 

patients. Comparing models (iv) and (v) we obtained a LRT statistic of 1.858 which was 

tested against the null distribution 0.5*( 

+ ) to yield a p-value of 0.284, indicating no significant influence of the level of rater 

experience when classifying the mammograms of older patients.

In summary, the above scenarios demonstrate the flexibility of the proposed approach for 

conducting a broad range of hypothesis tests depending upon the clinical questions of 

interest.

6. Traits of Individual Raters

The accuracy of a patient’s test result depends upon subjective interpretation by a 

radiologist, and as noted, there is often substantial variability amongst radiologists. For 

example, some radiologists may liberally assign higher scores indicating more severe 

disease status, while others are more conservative and rarely assign higher scores to patients. 

The ordinal GLMM in (1) provides a valuable opportunity to evaluate the performance of 
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individual raters in a study. This is achieved by examining the random effects of individual 

raters,  . Predictions of rater estimated effects  are generated 

as part of the modeling process as conditional modes (also known as posterior Bayesian 

modes) in the ordinal package clmm using a Newton-Raphson algorithm, which are the 

modes of the distributions for the random effects given the observed data and estimated 

model parameters. A corresponding measure of uncertainty for each estimated effect, the 

conditional variance, is computed from second order derivatives of the conditional 

distribution of the random effects.

Figure 2 presents boxplots comparing the conditional modes of experienced versus 

inexperienced radiologists in the Beam mammography study [2]. Thirty-two inexperienced 

and seventy-two experienced raters were included in the study. The plots demonstrate that 

inexperienced raters had a broader range of conditional modes than experienced raters, 

leading to lower consistency amongst inexperienced raters. The conditional modes of 

individual raters   can also be used to identify individual raters in the study 

who are liberal or conservative in their ratings relative to other raters. In the Beam study, all 

raters displayed modest behavior in their classifications. Further boxplots of conditional 

modes   for older and younger patients are presented in Figure 3. These plots 

show that younger patients are classified with less overall variability than older patients, and 

have a lower probability of being classified into a higher BIRADS category.

7. Discussion

With large-scale agreement studies becoming increasingly widespread in clinical settings, 

there is a necessity for the development of statistical methods for assessing levels of 

consistency between raters and to examine the impact of factors on agreement. Identification 

of influential factors in common screening tests provides valuable insight into how the 

reliability of these procedures might be improved. However, investigating the effects of rater 

and patient characteristics on agreement between multiple raters’ ordinal classifications is 

challenging in large-scale agreement studies. This is due in part to the dependency that 

arises when many raters contribute ratings on the same set of patients’ test results, and to the 

ordinal nature of the classification scale.

Currently, very few statistical approaches currently exist for modeling these types of ordered 

classifications in population-based studies and for assessing whether characteristics such as 

rater training or experience exert an important influence on the consistency between raters. 

Due to a lack of available methods to study effects of rater and subject characteristics on 

agreement, many research studies instead have elected to report several pairwise kappa 

measures for selected subgroups of interest, leading to a loss of power and efficiency and 

complexity in interpretation. Our approach models all classifications simultaneously in a 

unified manner, leading to a more powerful study.

In this paper we proposed a comprehensive and flexible model-based approach to address 

these issues, where raters can classify all or a subset of the patients’ test results. Novel 

summary measures of agreement are described to assess consistency amongst all raters in 

the study, or between raters in a specified group, such as those who are experienced at 
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reading mammograms. Unbalanced or incomplete study design data can also be 

accommodated. In contrast to other approaches, increasing the number of raters and items 

does not add complexity to the modeling process. Our proposed summary measures are 

appealing in their simplicity of interpretation, adjust appropriately for chance agreement, 

and eliminate many biases observed in the use of Cohen’s kappa and its extensions, a 

commonly reported measure of agreement. Simulation studies demonstrated that the 

proposed summary measures are estimated with little or no bias under a range of scenarios 

including varying sample sizes and variance components. Results can also be generalized to 

the underlying populations of raters and patients if the raters and study participants are 

randomly sampled from their respective populations.

The proposed approach and summary measures have also been applied to a variety of other 

agreement studies with varying features, including smaller sample sizes of patients and 

raters and sparse classifications. For example, the Gonin and Lipsitz study [22] includes just 

12 raters and 38 patients, where patients each received between 1 and 9 ratings in total, and 

also in datasets where each rater classified only a subset of the patients [6]. We found that 

our approach can flexibly accommodate the smaller sample sizes and unbalanced data in 

these settings. Ibrahim notes that GLMMs can accommodate unbalanced data [29]. 

However, it is important that at least three raters are included to ensure that the variance 

components can be estimated, and that as more patient and rater characteristics are 

incorporated into the model, it is ideal to have a larger dataset to ensure stability of the 

model estimation of the variance components in particular and model convergence using 

multivariate Laplacian approximation.

The proposed approach successfully accounts for the dependencies between the observations 

that arise due to the same sample of test results being classified by each rater by 

incorporating a crossed random effects structure for items and raters. We demonstrate how 

rater and patient characteristics can be incorporated into the models under study to assess 

their individual effects on agreement between raters. The proposed model incorporates rater 

and item effects as fixed or random terms or both. Interactions between item and rater effects 

can be examined by including additional terms into the GLMM in (1). While fixed 

interaction terms are easily incorporated, random interactive terms are a topic of future 

research.

Hypothesis tests are described for formally testing the significance of rater and patient 

characteristics which may be influential in the determining the strength of agreement 

between raters. The class of ordinal GLMMs also provides a valuable opportunity to gain 

insight into the unique characteristics of individual raters and patients through examination 

of the conditional modes generated as part of the modeling process, for instance, comparing 

experienced raters to inexperienced raters.

Measures of agreement and association are often reported in conjunction with each other in 

agreement studies of ordered categorical classifications. These single number summaries 

provide different insights into the consistency between raters’ classifications, with measures 

of agreement (described in this paper) providing information about the levels of exact 

agreement between raters. On the other hand, measures of association also provide valuable 
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insight regarding the extent of disagreement between raters, where disagreement occurs 

when two raters provide different categorical classifications to the same patient’s test result. 

Developing a measure of association in the setting for multiple raters classifying patients’ 

test results using an ordered classification scale will be a topic of future research. The 

proposed methods in this paper can also be used in a broader setting to any study where a 

group of raters each assesses a collection of results defined according to an ordered 

categorical scale.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A - Derivation of Observed Agreement

Under the GLMM framework, observed agreement, p0, is derived as:
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where k and k′ denote the constant terms  and respectively and the 

total variances are  and .

Appendix B - Derivation of Chance Agreement

Under the GLMM framework, observed agreement pC is derived as:

Appendix C - Minimizing Chance Agreement

We are interested in determining the threshold values  with  and 

 ( ) that minimize the expression for chance agreement in 

equation (3) when raters j and j′ (j ≠ j′) come from the same group so that k = k′ and 

. Based upon the ordinal GLMM in equation (1), we define “gap” probabilities as:

Then chance agreement pc can be written as
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where k and k′ denote constant terms  and  and total variances are 

 and . Vector  and matrix I is the C × C 

identity matrix. So our goal is to minimize subject to .

We can apply the LaGrangian approach here, such that  and 

, c = 1,…,C. The only solution to these equations has all probabilities gc 

equal, hence gc ≡ 1/C. Under this configuration, the minimum value of 

. The threshold values that satisfy this condition of gc ≡ 1/C are 

derived as follows:

For c = 1:  . This 

process can be repeated for each c to obtain 

, c = 1,…., C−1.
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Fig. 1. 
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Fig. 2. 

Nelson et al. Page 23

Stat Med. Author manuscript; available in PMC 2018 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 

Nelson et al. Page 24

Stat Med. Author manuscript; available in PMC 2018 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nelson et al. Page 25

Table 1

(a) – (b). Results from six simulation studies in each table for the proposed measure of agreement  and its 

standard error . Each simulation study is based upon 1000 simulated datasets with C = 5 categories. 

Two sample sizes are examined (I = 100, J = 10) and (I = 250, J = 100) and random effect parameters in (a) 

and in (b) 

(a). Number of Categories C = 5; True parameters ( )

Model True 

I = 100 J = 10 I = 250 J = 100

Mean  (S.E.) Mean  (S.E.)

Overall 0.035 0.036 (0.007) 0.036 (0.005)

Model (a)

 xj = 0 0.035 0.037 (0.007) 0.035 (0.004)

 xj = 1 0.032 0.034 (0.006) 0.032 (0.004)

 xj = 0, xj′ = 1 0.033 0.036 (0.006) 0.032 (0.004)

Model (b)

 xi = 0 0.035 0.035 (0.004) 0.035 (0.004)

 xi = 1 0.050 0.051 (0.006) 0.050 (0.006)

Model (c)

 xi = 0, xj = 0 0.035 0.037 (0.006) 0.035 (0.004)

 xi = 0, xj = 1 0.032 0.034 (0.006) 0.032 (0.004)

 xi = 1, xj = 0 0.050 0.052 (0.009) 0.050 (0.006)

 xi = 1, xj = 1 0.046 0.049 (0.008) 0.046 (0.006)

(b). Number of Categories C = 5; True parameters ( )

Model True 

I = 100 J = 10 I = 250 J = 100

Mean  (S.E.) Mean  (S.E.)

Overall 0.264 0.262 (0.022) 0.262 (0.015)

Model (a)

 xj = 0 0.264 0.261 (0.026) 0.263 (0.018)

 xj = 1 0.233 0.232 (0.027) 0.233 (0.018)

 xj = 0, xj′ = 1 0.248 0.260 (0.027) 0.262 (0.017)

Model (b)

 xi = 0 0.264 0.261 (0.017) 0.261 (0.017)

 xi = 1 0.277 0.275 (0.017) 0.275 (0.017)

Model (c)

 xi = 0, xj = 0 0.264 0.263 (0.026) 0.263 (0.017)

 xi = 0, xj = 1 0.233 0.234 (0.026) 0.233 (0.017)
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(b). Number of Categories C = 5; True parameters ( )

Model True 

I = 100 J = 10 I = 250 J = 100

Mean  (S.E.) Mean  (S.E.)

 xi = 1, xj = 0 0.277 0.276 (0.026) 0.277 (0.017)

 xi = 1, xj = 1 0.246 0.247 (0.026) 0.247 (0.017)
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Table 3

Results for the Beam et al mammography study [2] for an ordinal GLMM with several characteristics 

including patient’s age (young = 0, old = 1), rater experience (experienced = 0, inexperienced = 1), rater’s 

annual volume of reading mammograms (<2500 mammograms = 0, ≥2500 mammograms = 1) and rater 

gender (1= male, 2 = female).

Parameter Symbol Estimate S.E. Z-value

Ordinal GLMM parameters:

Thresholds: ( )

 Between categories 1 and 2 −0.621 0.170 −3.657

 Between categories 2 and 3 0.079 0.170 0.467

 Between categories 3 and 4 1.037 0.170 6.103

 Between categories 4 and 5 2.816 0.171 16.425

Fixed Coefficients:

 Subject’s age (Older) 0.549 0.258 2.130

 Rater Inexperience (Inexperienced=1) −0.063 0.099 −0.635

 Rater Volume (Higher) 0.134 0.079 1.700

 Rater Gender (Female) 0.008 0.120 0.063

Random Effect Variance Components:

 Subject intercept 2.746 0.324

 Subject’s age slope 0.719 0.084

 Subject correlation coefficient −0.505 0.062

 Rater intercept 0.154 0.022

 Rater’s inexperience slope 0.142 0.019

 Rater’s volume slope 0.089 0.012

 Rater’s gender slope 0.009 0.001

 Rater correlation coefficient −0.126 0.097

Agreement Measures:

Experienced male radiologists with a high volume rating younger patients:

 - GLMM Observed Agreement p0 0.470

 - Model-based Kappa κm 0.306 0.016

Inexperienced male radiologists with a low volume rating older patients:
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Parameter Symbol Estimate S.E. Z-value

 - GLMM Observed Agreement p0 0.462

 - Model-based Kappa κm 0.254 0.019
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