Skip to main content
. Author manuscript; available in PMC: 2018 Sep 10.
Published in final edited form as: Stat Med. 2017 Jun 13;36(20):3181–3199. doi: 10.1002/sim.7323

Table 2.

Results for five ordinal GLMM models fitted to Beam et al’s mammography study [2]. Each ordinal GLMM varies with regards to inclusion of rater and subject characteristics, including patient’s age (young = 0, old = 1) and rater inexperience (experienced = 0, inexperienced = 1).

Model (i) Model (ii) Model (iii) Model (iv) Model (v)

Parameter Symbol Estimate (se) Estimate (se) Estimate (se) Estimate (se) Estimate (se)
Ordinal GLMM:
Thresholds: ( α0=,α5=+)
 Between categories 1 and 2
α1
−0.897 (0.135) −0.902 (0.135) −0.827 (0.138) 1.095 (0.666) 1.133 (0.670)
 Between categories 2 and 3
α2
−0.197 (0.135) −0.201 (0.135) −0.127 (0.138) 1.795 (0.666) 1.833 (0.670)
 Between categories 3 and 4
α3
0.761 (0.135) 0.757 (0.135) 0.831 (0.138) 2.753 (0.667) 2.791 (0.670)
 Between categories 4 and 5
α4
2.539 (0.137) 2.535 (0.137) 2.610 (0.140) 4.531 (0.667) 4.569 (0.671)
Fixed Coefficients:
 Subject’s age
β1
0.034 (0.012) 0.034 (0.012)
 Rater Experience (inexp =1)
β2
0.055 (0.094)
Random Effects Variance Components:
 Subject intercept
σu02
2.442 (0.288) 2.442 (0.104) 4.615 (0.543) 0.687 (0.081) 0.687 (0.079)
 Subject’s age slope
σu12
0.00145 (0.0002) 0.00014 (0.00002) 0.00014 (0.00002)
 Rater intercept
σv02
0.158 (0.023) 0.135 (0.019) 0.158 (0.023) 0.158 (0.023) 0.135 (0.019)
 Rater’s inexperience slope (inexp=1)
σv12
0.218 (0.030) 0.159 (0.022)
Fleiss’ kappa for multiple raters κF 0.297 (0.001)