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Introduction

Influenza A virus is a well-known zoonotic pathogen that can infect a broad range of 

hosts such as birds, swine, companion animals, marine animals, and humans, causing 

annual epidemics and pandemics. Currently, influenza A viruses are categorized into 

18 hemagglutinin (HA) subtypes (H1 to H16 from wild waterfowl, and H17 and H18 

from bats) and 11 neuraminidase (NA) subtypes (N1 to N9 from wild waterfowl, and 

N10 and N11 from bats) [1,2].

  In 1996, the highly pathogenic avian influenza (HPAI) H5N1 A/Goose/Guangdong/ 

1/1996 virus was first detected on a goose farm in China [3]. Since then, H5 viruses have 

developed novel characteristics by genetic reassortment with other avian influenza (AI) 

viruses that infect wild bird and poultry. For example, various subtypes of H5 highly 

pathogenic avian influenza viruses (HPAIVs) have been detected worldwide, includ-

ing H5N2, H5N5, H5N6, and H5N8 viruses that disseminate via wild birds [4-7]. Re-

cently, two novel HPAIs, H5N8 [4], and H5N6 [8], from wild migratory birds in South 

Korea caused outbreaks in domestic poultry. An H5N8 influenza virus was first report-

ed in South Korea in 2014, which belongs to clade 2.3.4.4 and spread to a large number 

of countries, including East Asia, Europe, and further to North America, and subse-

quently created novel H5Nx subtypes [9-12]. In November 2016, a novel genotype of 

the H5N6 HPAIV first isolated from migratory birds in South Korea, caused outbreaks 

in domestic poultry [8,13,14]. According to genetic analysis, this was a novel Korean 

isolate of the H5N6 HPAIV belonging to clade 2.3.4.4, which was newly reassorted by 

three different subtypes of AI viruses, namely, H5N6, H4N2, and H1N1.

  In this review, we have discussed the zoonotic characteristics of Korean H5 HPAIVs 
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Outbreaks of H5 highly pathogenic avian influenza viruses (HPAIVs) have caused economic 
loss for the poultry industry and posed a threat to public health. In South Korea, novel reassor-
tants of HPAIVs such as H5N6 and H5N8 had been circulating in poultry. Here, we will discuss 
the identity of recent novel reassortants of Korean H5 HPAIVs and the recent advances in vac-
cine development, which will be useful for controlling HPAIV transmission in poultry and for 
effectively preventing future epidemics and pandemics.
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and presented an overview of vaccine strategies for AI vaccine, 

including development of immunogenicity, vaccine safety, 

and cross-protective vaccines for controlling HPAIs in poultry.

Current Epidemiology of HPAI in South Korea

H5N1 HPAI in Korea
Since the first identification of the H5 subtype HPAI virus A/

goose/Guangdong/1/1996 (H5N1) in 1996 in China, these vi-

ruses have evolved into diverse lineages as well as reassortants, 

generating H5N2, H5N3, H5N5, H5N6, and H5N8 [14-16] strains. 

Although the HA cleavage site in the HA protein is known to 

be critical for viral pathogenicity in avian species [17], only 

the H5 and H7 subtypes of AI viruses are highly pathogenic 

for poultry.

  In Korea, the first outbreak of H5N1 HPAI caused the 2003-

2004 epidemic in poultry farms with high mortality [18,19]. 

Since then, second and third outbreaks of H5N1 HPAI occurr

ed in 2006 and 2008, respectively. The HPAI outbreak in 2008 

spread to 11 provinces and affected not only the poultry farms 

but also diverse bird species in live bird markets [20]. Based 

on the sequence of the gene encoding HA, the H5N1 HPAIVs 

of the 2008 Korean epidemic belong to clade 2.3.2, unlike those 

of the 2003 (clade 2.5) and 2006 (clade 2.2) outbreaks [20,21].

  Following the detection of the H5N1 HPAIV in migratory 

birds in 2010, a fourth outbreak of the virus was inevitable, 

and around fourteen bird species, including poultry and wild 

bird were affected [22]. Although the H5N1 HPAIVs of the 2010 

outbreak were clustered into clade 2.3.2, they were not close-

ly related to the H5N1 HPAIV of 2008.

  The causative AI viruses of the four HPAIV outbreaks be-

tween 2003 and 2011 belonged to the H5N1 subtypes; how-

ever, phylogenetic relationship indicated that the viruses be-

longed to different lineages. Therefore, from the epidemio-

logical point of view, these strains were introduced from abroad, 

rather than evolving by persistent circulation inside the country.

H5N8 HPAI in Korea
An outbreak of a novel subtype of the HPAIV progressed be-

tween January 16 and May 8, 2014, as phases I, II, and III [23]. 

The causative AI viruses were reported to be novel reassorted 

influenza A (H5N8) viruses of clade 2.3.4.6, which was later 

more frequently called clade 2.3.4.4 [24,25]. Following an out-

break in poultry in South Korea in January 2014, the H5N8 vi-

ruses rapidly spread worldwide in 2014-2015, and long-dis-

tance migratory birds played a major role in the global disse

mination of these viruses [26]. In addition, since the first out-

break of the H5N8 viruses in early 2014, these viruses were 

reintroduced into Korea by the migratory waterfowl in 2014-

2015 [27], and have caused sporadic outbreaks of HPAI in Ko-

rea ever since 2014.

  In the experimental infection study, the viral replication 

and shedding were greater in H5N8-infected ducks than in 

H5N1-infected ducks [28], and it had lower pathogenicity and 

transmissibility in poultry species compared to the previously 

reported H5N1 HPAIVs [29]. These characteristics of H5N8 

viruses might lead to late recognition of the symptoms asso-

ciated with HPAI and increase the chances of viral transmis-

sion among poultry farms. However, the transmission mech-

anism of the HPAIVs is still not fully understood. Further stud-

ies on risk factors in terms of biosecurity of poultry farms and 

transmission ecology of the virus in migratory and indigenous 

animals are required [30].

H5N6 HPAI in Korea
A reassortant clade 2.3.4.4 of the H5N6 HPAIVs was isolated 

from migratory birds in South Korea during October and No-

vember 2016 [8,27]. Subsequently, HPAI outbreaks in approx-

imately 380 poultry farms were reported by April 4th, 2017, in 

South Korea (http://www.qia.go.kr). The H5N6 HPAIVs were 

first reported in China in 2013, which disseminated not only 

within China but also in Vietnam and Laos [31,32]. While the 

first Chinese H5N6 viruses were novel reassortants of NA from 

the H6N6 viruses and seven other genes from H5N1 viruses, 

the Korean H5N6 HPAIVs were novel reassortants of Chinese 

H5N6 viruses and Eurasian low pathogenicity AI viruses of 

wild birds [14]. 

  The recently emerging H5N6 HPAIVs in Korea are continu-

ously evolving and are found in wild migratory birds [33]. Since 

the H5N6 HPAIVs are also related to human infections [34], 

additional studies on their pathogenicity, interspecies trans-

mission, and potential risk for public health and poultry in-

dustries are required.

Perspective on HPAI in Korea
The HPAIVs identified since 2003 are all H5-subtype viruses 

that are genetically distant from each other, and most of them 

were introduced from outside Korea (Table 1). The continu-

ous HPAI outbreaks by novel H5Nx viruses in Korea is closely 

related to migratory birds, and most HPAIV strains are geneti-

cally similar to those from China and Southeast Asian coun-

tries [18,26-28]. As continuous evolution and reassortment of 
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AI viruses occur in live poultry markets of China, which might 

result in the emergence of diverse AI viruses in China [31], 

future outbreaks of HPAI by other novel HPAIVs may be inev-

itable in Korea. Therefore, monitoring Chinese HPAIVs and 

predicting the HPAIV lineages that can be introduced to Ko-

rea is one of the strategies for controlling future HPAI epi-

demics. This can be accomplished with the recent advance in 

bioinformatics, which can predict evolution of strains from 

the shape of genealogical trees [35]. Using this approach, we 

collected HA sequences of Chinese H5-subtype influenza vi-

ruses and predicted lineages with high fitness in a prelimi-

nary study (Fig. 1). Two lineages, including the H5N2, H5N6, 

and H5N8 viruses of the 2014 outbreaks, were inferred to have 

high fitness, and the Korean H5N6 HPAIV (2016) belonged to 

one of those lineages, showing 97.5%-98.4% amino acid simi-

larities. This preliminary result indicates that the fitness infer-

ence tool developed by Neher et al. [35] can be applied to study 

the molecular epidemiology of HPAIVs.

  In addition, continuous monitoring of migratory birds and 

indigenous animals should be conducted to understand the 

interspecies transmission ecology of HPAIVs. Although the 

global transmission of these viruses is closely associated with 

migratory birds, their mode of transmission from migratory 

birds to poultry farms is not known. While poultry farm-based 

risk factors of HPAI outbreaks might be important as manage-

ment factors, ecological risk factors can be also investigated 

considering interspecies transmission of influenza viruses 

[29]. In our monitoring system, several indigenous avian and 

mammalian species showed serological evidence of H5-sub-

type influenza virus infections (unpublished data). Therefore, 

consideration of both biosecurity of poultry farms and the 

transmission ecology of HPAIVs in different hosts can provide 

Table 1. Subtypes and clades of HPAIVs in Korea

Year of HPAI outbreaks

2003-2004 2006-2007 2008-2009 2010-2011 2014-2015 2016-2017

Subtype H5N1 H5N1 H5N1 H5N1 H5N8 H5N6
Clade 2.5 2.2 2.3.2 2.3.2 2.3.4.4 (2.3.4.6)a) 2.3.4.4

HPAIV, highly pathogenic avian influenza virus; HPAI, highly pathogenic avian influenza.
a)Clade definition in the first reports [24,25].

Fig. 1. Predicting the evolution of Chinese H5Nx viruses. A genealogical tree of hemagglutinin sequences of H5Nx viruses by 2014 in China and 
H5N6 highly pathogenic avian influenza virus (HPAIV), 2016 in Korea. Nodes are colored according to the fitness ranking. Overall amino acids 
similarities of the input sequences were 86.2%-98.4%, while those of the lineage to which Korean H5N6 virus belonged were 97.5%-98.4%. A 
box indicates a H5N6 HPAIV in Korea, 2016. 
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additional information for the development of control policies.

Current HPAI H5 Vaccine

HPAIVs are economically important diseases of poultry. In 

particular, highly pathogenic subtypes of the H5 and H7 AI 

viruses cause devastating mortality in poultry industries, re-

duce egg production, and decrease bird weight gain. Unfor-

tunately, the AI viruses are able to infect humans, which cause 

severe diseases with high mortality rates and are a cause of 

serious public health concern [36,37]. Therefore, many scien-

tists suggest vaccination as one of the effective methods for 

prevention of AI virus infection.

  Conventional AI vaccines, which are based on inactivated 

whole viruses [38] from an HPAI outbreak or a low pathoge-

nicity isolate with a well-matched HA, have been shown to 

be effective at preventing clinical disease and decreasing vi-

rus shed. The first HPAI vaccine manufactured in China used 

the inactivated low pathogenic AI H5 virus A/Turkey/Eng-

land/N-28/1973 (H5N2) and rapidly controlled the H5N1 

outbreaks in China in 2004 [39]. However, the seed virus of 

the inactivated H5N2 vaccine was limited to the control of 

antigenic diversity within the H5N1 strains of China. To cir-

cumvent this problem, an advanced H5 vaccine using HA 

and NA from the Re-1 strain of H5N1 (A/goose/Guangdong/ 

1/1996) and 6 internal genes from A/Puerto Rico/8/1934 (PR8) 

was produced using reverse genetics, which was antigenically 

well-matched with the epidemic strains of that time [40,41]. 

The inactivated vaccines used in China were also exported to 

several other countries, including Egypt, Indonesia, Vietnam, 

Bangladesh, Burma, and Mongolia for effective control of 

H5N1 HPAIVs [42]. 

  To control H5 HPAIV epidemics, vaccine candidates are 

continuously improved and developed using a recombinant 

virus based on modified HA and NA, which is designated as 

H5N1/PR8 (2+6) (Table 2) [39,43,44]. However, since 2010, 

H5 AI virus with other NA subtypes including N2, N3, N6, 

and N8 have been detected in poultry and wild birds in Chi-

na, which may have contributed to the spread of H5N8 virus-

es to North America, Europe, and neighboring Asian coun-

tries [4, 5,12,26]. Therefore, to improve vaccine efficacy against 

the newly emerging or re-emerging H5 HPAIVs in poultry, it 

is necessary to develop or induce a bigger spectrum of pro-

tective immunity.

Generation of Novel AI Vaccines

Recombinant virus vector–based vaccines
Recombinant virus vector–based vaccines can express any 

antigen with or without modification in vivo [45]. Previous 

reports suggest that recombinant virus vector vaccines can 

stimulate a wide range of immune responses compared to 

conventional inactivated vaccines [46-48]. So far, a variety of 

recombinant H5N1 influenza vaccines have been developed 

using fowl pox virus, Newcastle disease virus (NDV), Turkey 

herpes virus, duck enteritis virus, and infectious laryngotra-

cheitis virus. In particular, a recombinant NDV vector–based 

H5N1 AI vaccine was approved for use in chickens in China 

and the bivalent recombinant NDV vector–based H5N1 AI 

vaccine was manufactured and used in chickens in China be-

tween 2006 and 2012 [49-51]. To improve the NDV vaccine 

efficacy, researchers are not only inducing AI-specific immune 

response to protect against viral infection, but are also con-

sidering the limitations of anti-NDV antibodies derived from 

routine NDV vaccination [52,53]. 

Nucleic acid–based vaccines
DNA vaccines offer a number of advantages over convention-

al vaccines [54]. For example, an administered DNA vaccine 

can elicit both humoral and cellular immunity and can be 

administered multiple times to enhance immune efficacy. 

Several studies showed that protection of highly pathogenic 

H5 virus–infected chickens or mammals was improved by 

codon optimization of DNA vaccines based on H5N1 HAs 

[55-57] DNA vaccines are usually constructed based on the 

HA of the matching subtype; however, recent studies demon-

Table 2. Vaccine strains for immunization of chickens against H5N1 
HPAIVs

Candidate vaccine virus Subtype Clade Seed name

A/turky/England/N-28/73 H5N2 Classical -
A/chicken/Legok(Indonesia)/2003 H5N1 Clade 2.1.1 -
A/duck/Novosibirsk/02/2005 H5N1 Clade 2.2 -
A/goose/Guandong/1996 H5N1 Clade 0 Re-1
A/chicken/Shanxi/2/2006 H5N1 Clade 7 Re-4
A/duck/Anhui/1/2006 H5N1 Clade 2.3.4 Re-5
A/duck/Guangdong/S1322/2010 H5N1 Clade 2.3.2 Re-6
A/chicken/Egypt/18-H/2008 H5N1 Clade 2.2.1 -
A/chicken/Liaoning/S4092/2011 H5N1 Clade 7.2 Re-7
A/pollo/Guizhou/4/13 H5N1 Clade 2.3.4.4 Re-8

HPAIV, highly pathogenic avian influenza virus. Modified from the articles by Chen 
H [39], Zeng X et al. [44].
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strated that vaccines can be developed as a mixture express-

ing HA from different clades of H5N1 viruses, and this new 

DNA vaccine candidate could protect chickens challenged 

with heterologous H5N1 viruses [57]. However, despite posi-

tive results regarding vaccine efficacy, the use of DNA vaccines 

for vaccination of poultry is still limited by the expenses of 

mass vaccination and the requirement of devices for efficient 

on-site vaccination such as jet injection [58] and electropora-

tion [59]. Although licensed DNA vaccines against AI for poul-

try are currently unavailable, several DNA vaccine candidates 

are being studied for providing protection against HPAIVs in 

poultry.

Recombinant protein vaccines
The use of current conventional egg-based H5 AI vaccines 

are limited by subtype-specific vaccine efficacy and long pe-

riod of vaccine production (approximately 6 months) [38]. 

Therefore, previous studies have suggested the use of recom-

binant protein vaccines based on bacterial [60], mammalian 

[61], and recombinant baculovirus/insect cell expression sys-

tem [62] for controlling HPAIVs. Among the viral proteins of 

H5 AI viruses, the HA and matrix protein 2 ectodomains (M2e) 

have been developed as candidate antigens for recombinant 

protein vaccines [60,62,63].

  HA is an envelope glycoprotein and it is best-suited for in-

ducing the production of neutralizing antibodies. Thus, to con-

trol H5 HPAIVs, HA is being developed predominantly using 

several recombinant expression systems [64-66]. Saczynska  

[66] and Liu et al. [67] used bacterial and baculoviral systems, 

respectively, for expressing HA of H5N1. These studies dem-

onstrated that HA was able to induce antigen-specific neu-

tralizing antibody response and vaccinated chickens could 

be protected against the highly pathogenic H5 influenza virus. 

  Matrix 2 (M2) is transmembrane protein and it plays key 

roles in viral replication and structural integrity [68,69]. The 

extracellular domain of M2 (M2e) consists of 24 amino acids 

and it is one of the highly conserved domains across different 

subtypes of influenza viruses. Thus, M2e is one of the candi-

dates for developing a universal influenza vaccine [70,71]. The 

M2e vaccine candidates have induced immune responses 

and protective efficacy against highly pathogenic H5N1 vi-

ruses in chickens [72,73]. However, several studies showed 

that M2e has lower immunogenicity, and therefore, requires 

carrier proteins [74,75] and co-administration with vaccine 

adjuvants such as water-in-oil based adjuvants [76] for induc-

ing antigen-specific immunogenicity. 

Universal vaccines
Universal vaccines provide broad cross-protective immunity 

than the currently licensed vaccines and should provide lon-

ger protection against several relevant influenza viruses. The 

globular head domain of HA plays a critical role in producing 

potent neutralizing antibodies, which indicates that HA can 

induce the production of neutralizing antibodies against only 

homologous viruses [1,77]. Therefore, many investigators dem-

onstrated that highly conserved sequences such as the stem 

region of HA (called HA2) and M2e are more desirable targets 

for generating a universal vaccine [78-80]. Consist with the 

above results, our group also confirmed that the HA2 domain 

induced the production of a broad spectrum of neutralizing 

activities against different avian strains containing H5 sub-

types (unpublished). In addition, recent studies demonstrat-

ed that different combinations of vaccines increased the effi-

cacy of universal vaccines. The prime-boost strategy with plas-

mid DNA and other vaccine candidates such as virus-like par-

ticle [81] and inactivated viruses [82] increased neutralizing 

activities with homologous and heterologous viruses. Thus, 

strategies involving recombinant proteins and combinatorial 

vaccines should be developed for generating effective and safe 

universal influenza vaccines. 

Conclusion

Nowadays, sub-lineages of influenza H5 virus are rapidly evolv

ing and they are considered to be the most likely cause of in-

fectious outbreaks in poultry. Recently, the outbreak of the 

novel and highly pathogenic H5N6 and H5N8 AI virus was 

reported in poultry in South Korea. These viruses belong to 

clade 2.3.4.4 and showed a close relationship with HPAIs iden-

tified from Eastern China and South Korea. However, the route 

of virus dissemination is still unclear. Therefore, these con-

cerns collectively call for continued virus monitoring, surveil-

lance of poultry and wild birds, and characterization and path

ogenicity assessment of these viruses, the information pertain-

ing to which should be made available before any outbreak in 

poultry.

  To protect against novel H5 HPAIs in poultry and to over-

come the limitations of conventional vaccines, we attempted 

to develop new vaccine candidates with broad cross-protec-

tivity against influenza viruses. However, H5 HPAI vaccina-

tion is still a complex issue considering scientific regulations 

and policies of vaccine application in the field.
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