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ABSTRACT Cultivation in the laboratory is essential for understanding the pheno-
typic characteristics and environmental preferences of bacteria. However, basic phe-
notypic information is not readily accessible. Here, we compiled phenotypic and en-
vironmental tolerance information for �5,000 bacterial strains described in the
International Journal of Systematic and Evolutionary Microbiology (IJSEM) with all in-
formation made publicly available in an updatable database. Although the data span
23 different bacterial phyla, most entries described aerobic, mesophilic, neutrophilic
strains from Proteobacteria (mainly Alpha- and Gammaproteobacteria), Actinobacteria,
Firmicutes, and Bacteroidetes isolated from soils, marine habitats, and plants. Most of
the routinely measured traits tended to show a significant phylogenetic signal, al-
though this signal was weak for environmental preferences. We demonstrated how
this database could be used to link genomic attributes to differences in pH and sa-
linity optima. We found that adaptations to high salinity or high-pH conditions are
related to cell surface transporter genes, along with previously uncharacterized
genes that might play a role in regulating environmental tolerances. Together, this
work highlights the utility of this database for associating bacterial taxonomy, phy-
logeny, or specific genes to measured phenotypic traits and emphasizes the need
for more comprehensive and consistent measurements of traits across a broader di-
versity of bacteria.

IMPORTANCE Cultivation in the laboratory is key for understanding the phenotypic
characteristics, growth requirements, metabolism, and environmental preferences of
bacteria. However, oftentimes, phenotypic information is not easily accessible. Here,
we compiled phenotypic and environmental tolerance information for �5,000 bacte-
rial strains described in the International Journal of Systematic and Evolutionary Mi-
crobiology (IJSEM). We demonstrate how this database can be used to link bacterial
taxonomy, phylogeny, or specific genes to measured phenotypic traits and environ-
mental preferences. The phenotypic database can be freely accessed (https://doi.org/
10.6084/m9.figshare.4272392), and we have included instructions for researchers inter-
ested in adding new entries or curating existing ones.
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Cultivation in the laboratory is one of the most valuable strategies available for
describing the morphological characteristics, growth requirements, metabolic ca-

pabilities, and environmental preferences of bacterial strains (1). However, cultivation is
often overlooked in the era of high-throughput molecular methods, where increasingly
more focus is placed on sequencing genomes or metagenomes instead of describing
the phenotypic characteristics of axenic cultures (2). This recent increase in the number
of bacteria with sequenced genomes has far outpaced the rate at which new bacterial
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strains are being cultivated and formally described. Therefore, only 30% of bacterial and
archaeal type strains have an associated public genome project (3). At the same time,
we often lack phenotypic and environmental tolerance data for many of the bacterial
genomes being deposited in sequence databases (4). Either the phenotypic data were
never collected or reported, or this information has not been compiled into searchable
databases to permit downstream analyses and integration with genomic information.

Although genomic analyses of uncultivated microorganisms are undoubtedly valu-
able (5), they are no panacea, as it can often be difficult to predict the realized
phenotypes of bacteria from the presence or absence of particular genes or inferred
metabolic pathways from genomic data alone (6, 7). For example, 27% of the differ-
ences observed in the growth yield of Escherichia coli strains could not be explained by
the presence/absence of degradation pathways (8). As another example, because the
ammonia monooxygenase gene (amoA) is homologous to the methane monooxygen-
ase gene (pmoA), the presence of an amoA gene or pmoA-like genes could indicate that
a bacterium is capable of either methane oxidation, ammonia oxidation, or both—two
completely different biogeochemical processes (9). These limitations are compounded
by the fact that a large fraction of bacterial genes are of undetermined function, and
many genes that are annotated have no experimentally validated function and thus
may be annotated incorrectly (10).

We acknowledge that cultivation-based studies of bacterial strains have their own
set of limitations (11). Many bacteria are difficult to culture (12); observed phenotypes
of a bacterial strain growing under laboratory conditions could be very different from
the phenotypes of the strain in its natural habitat (13). Additionally, laboratory assays
often do not capture the phenotypic information that is likely most relevant to
understanding the ecological and physiological attributes of bacterial strains (14).
Nevertheless, compiling phenotypic information from cultivated bacterial strains and
integrating this information with genomic or marker gene data are critical for advanc-
ing the field of microbial ecology. In particular, a database of phenotypic information
would (i) improve our ability to assess the phylogenetic breadth and coherence of
bacterial traits (15, 16); (ii) help to identify genes, gene categories, and metabolic
pathways associated with specific phenotypic traits or growth requirements (17–19);
(iii) improve assessments of functional tradeoffs in microbial communities (20); (iv) link
observed changes in the abundances of taxa determined via 16S rRNA gene sequenc-
ing to phenotypic attributes (21); and (v) divide bacterial taxa into ecologically relevant
functional groups (22, 23).

One of the best sources of phenotypic information on cultivated bacteria is the
International Journal of Systematic and Evolutionary Microbiology (IJSEM). With over
39,000 articles published since 1951, this journal has been the official journal of record
for naming bacteria and describing strain characteristics (24). In short, there is clearly a
wealth of relevant information on bacterial strains contained within the pages of IJSEM,
but this information is not currently readily searchable, and to our knowledge, there
have been no comprehensive attempts to collate information from the journal entries
in a manner that would allow for downstream analyses and broader use of this
information by microbiologists and microbial ecologists (but see BacDive [25] for a
manually curated web portal with information on cultured bacterial and archaeal
strains and also FAPROTAX [26] for a tool to map prokaryotic clades to ecologically
relevant functions).

Here, we outline an ongoing effort to compile and curate selected phenotypic
information from bacterial strains described in IJSEM. To date, we have gathered data
from a total of �5,000 bacterial strains spanning 23 different phyla with associated
information on key phenotypic characteristics for most of these strains. We demon-
strate how this database can be used to explore the diversity of bacterial phenotypes,
determine the phylogenetic coherence of phenotypic traits, and link gene content to
environmental preferences.
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RESULTS AND DISCUSSION
Description of the phenotypic database. We collected phenotypic information for

5,130 bacterial strains described in papers published in the International Journal of
Systematic and Evolutionary Microbiology (IJSEM) from 2004 to 2014 (Table 1). The
information compiled was not distributed evenly across the different categories. For
example, IJSEM entries described mostly strains from four bacterial phyla: Proteobac-
teria (mainly Alpha- and Gammaproteobacteria), the Gram-positive Actinobacteria and
Firmicutes, and Bacteroidetes (Fig. 1A). While these four phyla account for ~90% of all
cultivated bacteria (27), other phyla commonly observed using cultivation-independent
techniques like Acidobacteria, Chloroflexi, Gemmatimonadetes, or Verrucomicrobia tend
to be systematically underrepresented in culture collections (12, 28). Similarly, most
bacterial strains with a valid habitat entry were recovered from three main environ-
ments: soil, marine habitats, and plants (Fig. 1B). However, we should interpret these
results with caution, as often the habitat of isolation might not correspond to the
habitats where those strains might be found, even abundant. For example, Escherichia
coli and other human commensals can be frequently recovered from polluted waters
(29), while soil bacteria like Pseudomonas aeruginosa can occasionally become oppor-
tunistic pathogens and thus can be isolated from animal and plant tissues (30).

We also found that most of the IJSEM entries were from aerobic, mesophilic,
neutrophilic bacteria (Fig. 2). This likely reflects the cultivation approaches that are most
widely used, and these results do not necessarily imply that most environmental
bacteria grow best under those conditions. The range in commonly used culture
conditions reflects logistical and historical constraints in cultivation-based studies, more

TABLE 1 Information compiled from the International Journal of Systematic and Evolutionary Microbiology (IJSEM) publications

Category Components

Ancillary data Yr of publication, article digital object identifier (doi), taxonomic nomenclature, culture collection code
Morphology/phenotype Gram stain status, cell length, cell width, cell shape, cell aggregation, motility, spore and pigment formation
Metabolism General metabolism, sole carbon substrate use, BIOLOG information available
Environmental preferences Habitat of isolation; oxygen requirement; range and optimum for pH, temp, and salt
Sequence data GC content, 16S rRNA accession no., genome accession no.
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FIG 1 Taxonomic distribution (A) and habitat distribution (B) of the �4,000 bacterial strains present in the phenotype database. The inset in panel A shows
the strain representation of the major proteobacterial subgroups in the database. Note that in panel B the habitat is the environment from which each strain
was originally isolated (if reported) and may not accurately reflect where those strains may be most abundant.
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so than any attempt to reproduce the range of environmental conditions that bacteria
experience in situ (31). Besides this issue, bacterial strain descriptions rarely include
information on the range of possible environmental conditions under which a given
bacterial strain can grow. For example, it is often reported that a strain grows at pH 7,
but it remains unclear if that is its optimal pH for growth and how its growth at pH 7
might compare to growth at pH 4. The same problem is apparent with temperature, as
strains are often reported to grow at 30°C (Fig. 2E and F), a common temperature in
most laboratory incubators, but it is unclear if they would grow better or worse at other
temperatures. Additionally, although detailed guidelines for the characterization of
bacteria exist (24), not all phenotypic traits and environmental preferences are mea-
sured in a completely consistent manner. Thus, caution must be used when using
information collected from bacterial isolates growing under laboratory conditions to
infer the ecological attributes of these same bacteria in their natural habitat.

Many bacteria are not readily cultivable in the laboratory. This so-called “great plate
count anomaly” arose from the observation that microscopic cell counts were signifi-
cantly larger than the number of colonies growing on solid medium (32). One hypoth-
esis as to why most environmental microbes are not cultivable is that the appropriate
growth conditions are unknown and complex or not feasible to replicate in the
laboratory. Likewise, many taxa may simply be difficult to cultivate under laboratory
conditions because they replicate slowly (33). New cultivation techniques, including the
use of very dilute medium to select for oligotrophs, coculturing with other bacteria, and
novel microcultivation technologies, have and will continue to increase the taxonomic
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FIG 2 Distribution of selected traits across the �4,000 strains in the most recent version of the database, including cell shape (A), spore formation (B), motility
(C), oxygen requirements (D), temperature optimum (E), and pH optimum (F). The number of strains with information for a particular trait is indicated in
parentheses.
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breadth of cultivated bacteria (31). For example, a recent study showed that the
common practice of autoclaving agar and phosphate buffer together to prepare solid
growth medium inhibits the cultivation of environmental bacteria (11). These biases
have been long known (32), and it is acknowledged that traditional cultivation tech-
niques will tend to favor faster-growing, cosmopolitan distributed microorganisms with
potentially broad metabolic capabilities (27).

Phylogenetic signal of phenotypic traits. Besides a general description of the
database and its biases and limitations, we demonstrate how this information could be
useful for evolutionary microbiologists and microbial ecologists. First, we had near-full-
length 16S rRNA gene sequences for 4,188 bacterial strains, and we used this marker
gene information to assess the evolutionary relationships between strains and calculate
the phylogenetic signal (i.e., similarity among species related to phylogenetic related-
ness) of categorical and continuous traits (Table 2). While widespread traits like pigment
formation had weak phylogenetic signal (Fig. 3A), morphological traits like Gram stain
result, spore formation (Fig. 3B), or cell shape tended to show the strongest phyloge-
netic signal. Salinity and pH optima did not exhibit a significant phylogenetic signal
across bacterial strains (Fig. 3C). Previous studies have observed a phylogenetic signal
in salinity tolerance across aquatic bacterial taxa (34); such a signal may be more
apparent when comparing salinity tolerances across specific lineages from a subset of
environments or in studies that capture uncultivated as well as cultivated taxa. Tem-
perature optimum showed a weak phylogenetic signal (Fig. 3D), mainly driven by the
adaptation to extremely hot environments of deep-branching phyla, including the
Aquificales and Thermotogae (35).

Overall, our results confirm three previous general observations. First, most bacterial
traits tend to show a significant phylogenetic signal, but the signal is often weak and
the ability to predict a phenotypic trait from phylogeny alone will vary greatly depend-
ing on the trait of interest (7). Second, complex traits like spore formation or photo-
synthesis are more likely to be highly conserved (15, 16), with these phenotypes often
predictable at even coarse levels of taxonomic resolution. Third, the phylogenetic signal
tends to be weak for environmental preferences (16), including pH, temperature, and
salinity optima. Thus, predicting the environmental preferences from phylogenetic
information alone remains difficult, particularly for lineages that are not well described.
Together, this work adds to the large body of evidence that, due to the promiscuity of
horizontal gene transfer, convergent evolution, and gene loss, bacterial taxa with highly
similar 16S rRNA sequences can potentially display very distinct phenotypic character-
istics (36). Any attempt to predict phenotype from phylogeny or taxonomy alone
(including the widely used PICRUSt approach [37]) should be pursued with caution.

Linking genomic information to pH and salinity optima. We were able to find
whole-genome data for 29% of the database strain entries to link gene content and the
presence/absence of gene categories and metabolic pathways to pH optima (67% of

TABLE 2 Phylogenetic signal of bacterial traits

Trait Typea Phylogenetic signalb

Spore Categorical 1.225
Pigment Categorical 0.219
Shape (rod) Categorical 0.628
Shape (coccus) Categorical 0.703
Aggregation (chain) Categorical 0.182
Gram stain Categorical 1.516
Flagella Categorical 0.495
Aerobe Categorical 0.575
Anaerobe Categorical 0.593
Temp preference Continuous 0.226
pH preference Continuous 0.006
Salinity preference Continuous 0.023
a�D � 1 for categorical, Blomberg’s K for continuous.
bValues in bold are significant (P � 0.05).
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strains with a genome reported a value) and salinity optima (52% of strains with a
genome reported a value) using an enrichment analysis based on logistic regression.
Recent work has linked gene expression profiles and genomic attributes to bacterial
phenotypes (38, 39), trophic strategies in marine bacteria (18), microbial growth rates
(17), bacterial life history strategies (19, 40), and even habitat breadth in soil bacteria
(21). We wanted to determine if we could also use genomic information to predict pH
and salinity preferences, traits that are important given that pH and salinity are key
factors that often shape bacterial communities in a wide range of environments,
including soil (41), aquatic environments (42), and human skin (43). Likewise, given that
there are many uncultivated (or difficult-to-culture) taxa for which we can now readily

A B

C D

FIG 3 Phylogenetic signal of selected traits: presence of pigment (A), spore formation (B), pH optima (C), and temperature optima (D). For categorical variables
(A and B), the red columns indicate presence. For continuous variables (C and D), the red columns indicate the reported value.
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obtain genomes via single-cell or metagenomic sequencing (2, 5), estimating the pH
and salinity preferences from genomes of uncultivated taxa will aid in the design of
medium conditions for more effective cultivation.

Previous research shows that adaptation or acclimatization to saline or extreme pH
environments is often related to the complement of cell surface transporters that a
bacterium possesses or expresses (44–46). Our KEGG ortholog (KO) enrichment analysis
strongly supports this conventional wisdom. Of the 33 and 14 enriched KOs for pH and
salinity, respectively, 26 (79%) and 9 (64%) were known to mediate a transport function
in bacteria. Also, the sign of the logistic regression coefficients was consistent with
selection for growth under high salinity or low pH (Table 3). We observed a tendency
for the absence of a high-affinity potassium transport system (kdpABC; K01546 to
K01548) to correlate with a higher salinity optimum (47). We also saw a tendency for
strains with higher pH optima to encode an Na�/H� antiporter (mnhACDEFG), previ-
ously suggested to be adaptive under alkaline conditions (46, 48). Interestingly, we
observed several KOs that were correlated strongly with pH but encoded functions
typically associated with salinity tolerance. For example, we found that KOs encoding
synthesis of the osmoprotectant ectoine (K06718 and K06720) were correlated with pH

TABLE 3 Putative genomic markers associated with pH and salinity optima

KO IDa Optimum Descriptionc Sign of coefficient TCDBb present

K01546 Both K�-transporting ATPase ATPase A chain � Yes
K01547 Both K�-transporting ATPase ATPase B chain � Yes
K01548 Both K�-transporting ATPase ATPase C chain � Yes
K03310 Both Alanine or glycine:cation symporter, AGCS family � Yes
K03499 Both Trk system potassium uptake protein � Yes
K07301 Both Cation:H� antiporter � Yes
K08974 Both Putative membrane protein � No
K03543 pH Membrane fusion protein, multidrug efflux system � Yes
K03446 pH MFS transporter, DHA2 family, multidrug resistance protein � Yes
K08677 pH Kumamolisin � No
K07799 pH Membrane fusion protein, multidrug efflux system � Yes
K06045 pH Squalene-hopene/tetraprenyl-beta-curcumene cyclase � Yes
K15495 pH Molybdate/tungstate transport system substrate-binding protein � Yes
K15496 pH Molybdate/tungstate transport system permease protein � Yes
K14393 pH Cation/acetate symporter � Yes
K02168 pH Choline/glycine/proline betaine transport protein � Yes
K07393 pH Putative glutathione S-transferase � No
K06718 pH L-2,4-Diaminobutyric acid acetyltransferase � No
K06720 pH L-Ectoine synthase � No
K09908 pH Uncharacterized protein � No
K06213 pH Magnesium transporter � Yes
K05565 pH Multicomponent Na�:H� antiporter subunit A � Yes
K05567 pH Multicomponent Na�:H� antiporter subunit C � Yes
K05568 pH Multicomponent Na�:H� antiporter subunit D � Yes
K05569 pH Multicomponent Na�:H� antiporter subunit E � Yes
K05570 pH Multicomponent Na�:H� antiporter subunit F � Yes
K05571 pH Multicomponent Na�:H� antiporter subunit G � Yes
K14683 pH Solute carrier family 34 (sodium-dependent phosphate cotransporter) � Yes
K14445 pH Solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 2/3/5 � Yes
K03451 pH Betaine/carnitine transporter, BCCT family � Yes
K03308 pH Neurotransmitter:Na� symporter, NSS family � Yes
K08714 pH Voltage-gated sodium channel � Yes
K03826 pH Putative acetyltransferase � No
K03975 Salinity Membrane-associated protein � Yes
K08223 Salinity MFS transporter, fosmidomycin resistance protein � Yes
K07646 Salinity Two-component system, OmpR family, sensor histidine kinase KdpD � No
K03549 Salinity KUP system potassium uptake protein � Yes
K03699 Salinity Putative hemolysin � No
K02276 Salinity Cytochrome c oxidase subunit III � No
K07160 Salinity UPF0271 protein � No
aKO ID, entry in KEGG ortholog (KO) database.
bTCDB indicates whether the enriched KO was included in the Transporter Classification Database.
cAbbreviations: AGCS, alanine or glycine cation symporter; MFS, major facilitator superfamily; BCCT, betaine carnitine choline transporter; NSS, neurotransmitter
sodium symporter; KUP, K uptake permease.
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but not salinity optima (Table 3). Recent work suggests that ectoine may have a role in
stabilizing enzymes at extreme pH values (49). Our result indicates that pH homeostasis
may be another role for ectoine in bacteria. Similarly, we observed significant correla-
tions between two KOs related to compatible solute transport (K02168 and K03451)
and pH (Table 3), suggesting that the acquisition of compatible solutes may also have
a secondary role in pH tolerance.

Although we overwhelmingly enriched for transport proteins, the nontransporter
KOs also revealed an imprint of osmotic or pH-based selection. For example, one of the
nontransporter enriched KOs for salinity optimum (K07646) is a well-characterized,
sensor histidine kinase (kdpD) that regulates expression of a high-affinity potassium
transport operon (kdpABC) (47). All of these genes (kdpD and kdpABC) were negatively
associated with salinity optimum across the strains in our database (Table 3). Further,
a nontransporter KO enriched in our pH optimum models (K08677; negatively associ-
ated with pH optimum) encodes kumamolisin, which is a peptidase known to have high
activity under low-pH conditions (50, 51).

Together, these analyses serve as simple examples of the opportunity to link
ecological traits to genome content through the use of a bacterial phenotypic trait
database. We observed a number of putative genotype-phenotype links that are
consistent with previous species-specific genetic studies, but we also identified a
number of previously uncharacterized proteins that should be further explored as
playing a role in phenotypic adaptation. Although we were able to infer pH and salinity
preferences of cultured bacterial strains based on a few functional categories, further
experimental work is required to determine how well these pH and salinity markers can
predict pH and salinity preferences in the environment.

Future research. Trait-based approaches have advanced our mechanistic under-
standing of ecological processes from populations to ecosystems (52). Along these
lines, the Unified Microbiome Initiative recently stated: “Simply knowing which genes
are present in a microbial population, without understanding their physical linkage,
precludes organism-based insights into community function and dynamics” (53). That
being so, cultivation of bacteria is essential for understanding bacterial phenotypes and
their ecological attributes. However, phenotypic information is not readily accessible
and phenotype is often difficult to infer from taxonomic, phylogenetic, or genomic
information alone. Here, we described the phenotypic and environmental tolerance
information from �5,000 bacterial strains described in the International Journal of
Systematic and Evolutionary Microbiology (IJSEM). We encourage other researchers to
curate the initial version of the phenotypic database (https://doi.org/10.6084/m9
.figshare.4272392) and also to contribute with new entries.

We demonstrated how this phenotypic database from IJSEM publications can be
used to explore the diversity of bacterial traits, assess the phylogenetic signal of
phenotypic traits and environmental preferences, and link genomic attributes to pH
and salinity optima. We believe that the database described here will ultimately be of
value to researchers exploring bacterial functional trait tradeoffs, assessing community-
aggregated traits derived from metagenomics and their relationship with ecosystem
functions (20), informing environmental surveys in search of novel strains to isolate,
and dividing bacterial taxa into ecological guilds based on phenotypic character-
istics (22, 23).

MATERIALS AND METHODS
Database compilation and curation. The International Journal of Systematic and Evolutionary

Microbiology (IJSEM) is the official publication of the International Committee on Systematics of Pro-
karyotes and the Bacteriology and Applied Microbiology Division of the International Union of Micro-
biological Societies and the official journal of record for novel bacterial and archaeal taxa (http://ijs
.microbiologyresearch.org/content/journal/ijsem/). We manually searched IJSEM articles to extract
phenotypic, metabolic, and environmental tolerance data of bacterial strains described in the notification
list from 2004 to 2014 (Table 1). Although not all information could be retrieved for each bacterial strain,
this subset of characteristics provided relevant information on the morphological, metabolic, and
ecological attributes of the described strains and tended to be reported in a consistent manner for most
strains. We note that we did not collect all available information reported for each strain. We ignored
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those phenotypic characteristics that were (i) collected for only a small subset of strains (e.g., cell
stoichiometry), (ii) difficult to compare across strains (e.g., reported growth rates on individual medium
types), or (iii) deemed to be of limited utility (e.g., specific information on phospholipid-derived fatty acid
profiles).

In this initial census, we focused on the most recent entries as they presumably used standardized
and state-of-the-art methods and up-to-date taxonomic nomenclature, most strains had easily retriev-
able 16S rRNA gene sequence data, and many strains also had publicly available genome sequence data
available (24). Data were manually collected using Google Forms as variable structure of the articles and
inconsistent reporting of relevant information (i.e., phenotypic information tends to be semantically
opaque and needs to be interpreted in a biological context) precluded the use of automatic text parsing
algorithms (although we acknowledge that human indexing is error prone). For example, articles
reporting “nitrate reductase activity found,” “denitrification activity,” “nitrate reductase present,” “positive
reduction of nitrate,” “positive nitrate reduction,” “positive for nitrate reductase,” “capable of nitrate
reduction,” or “nitrate reducer” all point to the same process of anaerobic growth in the presence of
nitrate. That is, authors of taxonomic publications may describe the same or very similar features using
different terms across articles or even within the same article. Additionally, some terms are unique for
specific taxonomic groups. For example, aggregation in chains is reported both for filamentous cyano-
bacteria and for growth-rate-dependent chains in stationary-phase cultures of many heterotrophs.
However, natural processing algorithms to extract phenotypic data from prokaryotic taxonomic descrip-
tions are an active area of research (54). The generated raw file was curated using automated scripts and
manual checks to detect data entry errors, duplicated entries, and format inconsistencies. Raw data and
curated data can be freely accessed in figshare (https://doi.org/10.6084/m9.figshare.4272392), and we
have included specific instructions for outside users interested in adding to this database.

Phylogenetic signal analyses. From the total of 5,130 bacterial strains, we associated valid,
complete, and nonduplicated 16S rRNA gene entries with ~4,200 strains. To infer the evolutionary
relationships among the bacterial strains, we first aligned the complete 16S rRNA gene sequences using
PyNAST (55) with the Greengenes database (56) as a template. The resulting multiple sequence
alignment was trimmed to remove positions which are gaps in every sequence, and a phylogenetic tree
was reconstructed with the FastTree approximate maximum-likelihood algorithm (57) using the mid-
point method for rooting.

We measured the phylogenetic signal of continuous traits with Blomberg’s K (58) using the function
phylosignal in the Picante R package (59). This metric expresses the deviation from a Brownian motion
evolutionary model (K � 0 corresponds to no phylogenetic signal; K � 0 corresponds to a trait that is
more conserved than expected by chance). For categorical traits, we used the D value using the function
phylo.D (60) in the caper R package. This metric compares observed sister-clade differences against those
expected for a random phylogeny. In order to compare with Blomberg’s K, we transformed the D value
into �D � 1 (�D � 1 � 0 corresponds to no phylogenetic signal; �D � 1 � 0 corresponds to a
conserved trait) (16). Statistical significance was estimated by permuting phenotypic trait values across
the tips of the phylogenetic tree 1,000 times.

Association between genomic attributes and environmental preferences. We matched the
associated complete 16S rRNA gene sequences against a 16S rRNA database from sequenced bacterial
genomes at �99% identity and �95% coverage. For the 29.4% of strains that had publicly available
closely related genome sequence data, we downloaded genomic data and annotated functional gene
information from the Integrated Microbial Genomes (IMG) database (https://img.jgi.doe.gov/) (61). We
used the 754 strains with available closely related genomes to provide a simple demonstration of the
utility of linking phenotypic traits from our database to genomic information. We selected pH and salinity
optima for this purpose because these were continuous traits that displayed no phylogenetic signal
(Table 2). When pH and salinity were exclusively reported as a range, we calculated the optimum as the
equidistant value between the reported maximum and minimum. Of the 754 bacterial strains in our
database that had a genome sequence, 503 had a known pH optimum value and 391 had a known
salinity optimum. To identify putative genomic markers of these traits, we conducted a simple enrich-
ment analysis using logistic regression. We used KEGG ortholog (KO) presence-absence in each of the
strain genomes (http://www.genome.jp/kegg/), accessed from IMG, as our response variable. The prob-
ability of the presence of each KO in a strain’s genome was modeled as a function of the strain’s salinity
or pH optimum. The presence of a significant salinity or pH coefficient in the logistic regression, after
Bonferroni correction, indicated a putative link between a KO and the phenotypic trait. We selected an
overall alpha value of 0.05, meaning that after Bonferroni correction for the 6,889 model fits (one for each
KO in the IMG data set), the significance cutoff for any individual logistic regression was 7.3e�6. Because
previous work has shown the involvement of cell surface transporters in adaptation and acclimatization
of individual bacteria strains to both salinity and pH (44, 45), we classified enriched KOs as transporters
based upon their inclusion in the Transporter Classification Database (http://tcdb.org/) (62).
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