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Abstract

Small-angle X-ray scattering (SAXS) has become an increasingly popular technique for 

characterizing the solution ensemble of flexible biomolecules. However, data resulting from SAXS 

is typically low-dimensional and is therefore difficult to interpret without additional structural 

knowledge. In theory, molecular dynamics (MD) trajectories can provide this information, but 

conventional simulations rarely sample the complete ensemble. Here, we demonstrate that 

accelerated MD simulations can be used to produce higher quality models in shorter time scales 

than standard simulations, and we present an iterative Bayesian Monte Carlo method that is able to 

identify multistate ensembles without overfitting. This methodology is applied to several ubiquitin 

trimers to demonstrate the effect of linkage type on the solution states of the signaling protein. We 
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observe that the linkage site directly affects the solution flexibility of the trimer and theorize that 

this difference in plasticity contributes to their disparate roles in vivo.

Graphical abstract

1. INTRODUCTION

Characterizing the inherent flexibility of biomolecular complexes remains one of the key 

challenges in modern biophysics research.1 Over the years, a wealth of both experimental 

and computational techniques have been developed that can explore the solution dynamics 

of proteins on a vast range of time and length scales. One particularly useful method for 

studying these properties is small-angle X-ray scattering (SAXS).2,3 Unlike X-ray 

crystallography, which requires cohesive repeats of a singular representative structure in 

nonnative conditions, SAXS experiments probe the entire ensemble of a protein in 

physiologically relevant environments. SAXS experiments are relatively easy to perform and 

produce data that represent an ensemble average of all states at room temperature with 

results that are not influenced by factors such as lattice packing forces. Nevertheless, these 

advantages come at a cost: the primary data resulting from SAXS experiments, the scattering 

curve, is of low dimensions and can be difficult to interpret.2 As a result, the analysis of 

SAXS data typically requires ancillary structural information provided by complementary 

methods, such as crystallography or spectroscopy,4–7 which possess their own limitations 

with regard to system size and intrinsic disorder.8,9

In principle, the conformational ensemble of a system can be fully characterized with 

molecular dynamics (MD) simulations. However, in practice MD is limited by both the 

amount of sampling that can be performed as well as the accuracy of the underlying models. 

Recent advances in computing power and enhanced sampling techniques have opened the 

door to MD-based methods that can probe biomolecular dynamics that occur on the μs-ms 

time scale.10–18 For example, in replica exchange methods, multiple copies of the same 

system are simulated at either different temperatures or with different Hamiltonians, and a 

Markov Chain Monte Carlo algorithm is used to transfer information between neighboring 

replicas.11,12 Metadynamics provides an alternative enhancement method in which the 

potential energy landscape underlying a system is smoothed through a history-dependent 

bias, thereby reducing the amount of sampling time required to escape local minima and 

increasing the conformational space sampled in a simulation.17,18 Accelerated molecular 

dynamics (aMD) speeds sampling through the introduction of a “boost” potential that 

reduces the depths of energy wells and thus increases the rate of barrier crossings.10,19 

Unlike methods such as Hamiltonian replica exchange or metadynamics, aMD does not 

require the definition of a reaction coordinate along which to bias, and acceleration can be 
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achieved without performing multiple concurrent simulations. On the other hand, aMD does 

disturb the Boltzmann distribution of states observed in a simulation and calculating the 

physically relevant populations of states from an aMD simulation can be difficult, especially 

for large biomolecular complexes.

The relative strengths and weaknesses of SAXS and enhanced sampling methods make them 

a natural complement to one another.20 Indeed, several tools have been developed to directly 

use the high-resolution structures from enhanced sampling simulations to produce an 

ensemble-based interpretation of low-resolution SAXS data. For example, the SASSIE Web 

server conducts Monte Carlo samplings of molecular torsions and subsequently evaluates 

scattering states in a single interface.21–24 In the BILBOMD protocol, multiple timestepping 

algorithms are coupled with high temperatures, and observed structures are subsequently 

reweighted using a genetic algorithm.25 In another approach, collective modes gathered from 

an elastic network model of a protein are amplified during MD simulations, and 

representative structures are fit by the genetic algorithm implemented in the Ensemble 

Optimization Method of the ATSAS package.26,27 A fourth method, BSS-SAXS, utilizes 

coarse-grained simulations to form a scattering basis and then distributes the ensemble 

population through a Bayesian Monte Carlo reweighting scheme.28

These methods are particularly useful for flexible molecules where a single conformation 

cannot sufficiently describe the observed profiles. However, further conversation is required 

with regard to overfitting multistate models. That is to say, the parameters of an ensemble 

model can create arbitrarily strong goodness-of-fit values through the introduction of too 

many subpopulations. This can be viewed as a violation of Occam’s Razor,29 where the 

addition of extra scattering states corresponds to an overly complicated model that contains 

irrelevant components. Therefore, an accurate model ensemble must resist this overfitting 

tendency and instead report the minimum number of states required to achieve good 

agreement with experimental scattering data.

Ubiquitin chains represent prototypical examples of highly flexible systems that are difficult 

to characterize through SAXS or MD methods alone. Within these oligomers, ubiquitin units 

are linked to one another through an isopeptide bond that forms between the C-terminus of 

one monomer and the ε-amino group of one of seven ubiquitin lysines (K6, K11, K27, K29, 

K33, K48, and K63; see Figure 1) or the N-terminus (M1). The dogma is that chain linkages 

dictate biological function. For example, K48-linked chains are typically involved in 

proteasomal degradation,30 whereas K63-linked chains act as scaffolds for the formation of 

multiprotein complexes.31,32 In vitro, ubiquitin subunits may be connected to one another 

through non-native linkages, such as with thiol–ene coupling, to quickly and robustly 

generate libraries of diverse chain linkages.33,34 These non-native linkages generally have 

similar structural properties as those of native isopeptide bonds; however, they can be 

significantly easier to produce.35

Here, we used SAXS experiments along with enhanced sampling MD simulations to 

characterize the conformational ensemble of seven ubiquitin chains. To do this, we 

developed a modified BSS-SAXS approach in which cMD and aMD simulations are 

combined with an iterative Bayesian population reweighting approach to rapidly model 
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SAXS data. Our methods place an emphasis on determining ensembles that simultaneously 

minimize goodness-of-fit while resisting overfitting of the data. Results are compared for 

both conventional MD (cMD) and aMD simulations, and it was found that cMD simulations 

never outperformed the aMD trajectories in model quality or convergence speed. In fact, 

some aMD simulations produced better models up to an order of magnitude faster than cMD 

simulations of the same system. In all, these systems show that aMD enhanced sampling 

provides a straightforward method for quickly producing robust all-atom models from 

SAXS experiments.

2. METHODS

2.1. Experimental Details

2.1.1. Expression and Purification of Ubiquitin Variants—Lysine to cysteine 

mutations were introduced at specified sites in the DNA sequence of ubiquitin (Ub 1–76) 

using splice overlap extension. Primers containing the TGC mutation were inserted at the 

desired codon position. A codon extending the C-terminus of ubiquitin with D77 was 

introduced using reverse primer to afford all five constructs (UbKxC-D77, where x 
represents the position of the native lysine residue that was replaced), and then they were 

ligated into a pET22b vector (Novagen). Wild-type ubiquitin and its variants were expressed 

and purified from Rosetta 2(DE3)pLysS cells (Novagen) as previously described.33,35

2.1.2. Generation of Native and Non-Native Ubiquitin Trimers—As previously 

described, the yeast C-terminal hydrolase Yuh1 was used to append allylamine (AA) to the 

C-terminus of ubiquitin to afford UbKxC-AA variants.33 Irradiation of UbKxC-AA (2 mM) 

lithium acyl phosphinate (LAP) (0.5 mM) in 250 mM NaOAc pH 5 for 30 min at 4 °C 

yielded UbKxC oligomers with non-native thiol–ene-derived linkages.33,35 All ubiquitin 

trimers were purified using size exclusion chromatography (Hiload 26/600 Superdex 75 pg, 

GE Healthcare).

2.1.3. SEC-SAXS Measurements and Data Processing—Size-exclusion 

chromatography small-angle X-ray scattering (SEC-SAXS)37 experiments were performed 

at BioCAT (beamline 18-ID, Advanced Photon Source at Argonne National Laboratories). 

The camera included a focused 12 keV (1.03 Å) X-ray beam, a 1.5 mm quartz capillary 

sample cell, and a Pilatus 1 M detector (Switzerland). The q-range sampled was ~0.0045–

0.35 Å−1. To ensure sample monodispersity, we used an in-line SEC setup, which included 

an AKTA-pure FPLC unit and a Superdex-75 10/300 GL column (GE Healthcare Life 

Sciences). The column was run at 0.8 mL/min, and the outlet was directly connected to the 

SAXS sample cell. One second exposures were collected every two seconds during the gel-

filtration chromatography run. Samples were analyzed at room temperature in 50 mM 

HEPES pH 7.5, 50 mM KCl, 5 mM MgCl2, and 1 mM TCEP. Exposures before and after the 

elution of the sample were averaged and used as the buffer blank curve, and the exposures 

during elution (coincident with the UV peak on the chromatogram) were treated as protein 

plus buffer curves. Data were corrected for background scattering by subtracting the buffer 

blank curve from protein plus buffer curves. The radius of gyration (Rg) for each system was 

determined with the aid of PRIMUS,38 and the resulting Rg values obeyed the limitation 
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qmax·Rg < 1.3. To minimize the impact of low-q beamstop effects on model quality, 

experimental data were filtered such that all low-q points with a signal-to-noise ratio of 10.0 

or below were manually removed and not used in the fitting protocol. Data were also 

truncated at q = 0.2 Å−1 due to the inherent limitation of implicit hydration layer SAXS 

calculations.39

2.2. Simulation Details

2.2.1. Construction of the Triubiquitin Systems—Initial structures were obtained 

from the Protein Data Bank for monoubiquitin (PDB: 1UBQ36), K11-linked diubiquitin 

(PDB: 3NOB40), K6-linked diubiquitin (PDB: 2XK541), K29-linked diubiquitin (PDB: 

4S2242), K48-linked diubiquitin extracted from K48-linked cyclic tetraubiquitin (PDB: 

3ALB43), and K63-linked tetraubiquitin (PDB: 3HM344). Any missing or mutated residues 

in these structures were corrected by comparison with the 1UBQ structure of monoubiquitin 

with missing coordinates taken by aligning 1UBQ with the monomer of interest. K63-linked 

triubiquitin was constructed by removing one monomer from the tetraubiquitin crystal 

structure. The K6-, K29-, and K48-linked systems were constructed by overlapping two 

copies of the corresponding diubiquitin structures and then removing the overlapped 

monomer. Finally, the K11-linked triubiquitin was constructed by adding the monoubiquitin 

structure to the K11-linked diubiquitin crystal structure. Table S1 provides an overview of 

the PDB structures used to construct each system.

To match the prepared ubiquitin samples, all five linkage types were simulated with a non-

native thiolene linkage between monomers instead of the native isopeptide bond (Figure 2). 

Additionally, two of the systems, K48 and K63, were also simulated with native isopeptide 

linkage to determine how linkage chemistry affects molecule dynamics and the solution 

ensemble. Both sets of linkage parameters were generated with GAFF with partial charges 

derived from a restrained electrostatic potential (RESP) fit to the electrostatic potential 

computed at the HF/6-31G* level using Gaussian 09.45 Each system was solvated in a box 

of TIP3P water46 with 12 Å of padding in each dimension; then, sodium and chloride ions 

were added to a 0.15 M concentration. The Amber force field ff14SB was used47 along with 

the isopeptide and thiolene modifications described above.

2.2.2. Conventional Molecular Dynamics—Initial equilibration was performed at 

constant temperature in both the constant volume and constant pressure ensembles with a 2 

fs time step. Before the equilibration phase, the solvent was energy minimized using both 

the steepest descent and conjugate gradient algorithms. In the equilibration phase, the 

system was first heated in the NVT ensemble to 310 K over 50 ps with restraints on all non-

hydrogen atoms of the solute. Next, the systems were simulated for 500 ps in the NPT 

ensemble with restraints on all non-hydrogen atoms of the solute to allow the density of the 

solvent to equilibrate. Finally, the restraints were slowly relaxed over 3 ns. No restraints 

were applied during the production phase, which was carried out for 500 ns in the NPT 

ensemble. Frames were saved every 5 ps during the production phase.

The temperature of the system was maintained at 310 K using Langevin dynamics with a 

collision frequency of 1.0 ps−1. The pressure was maintained at 1.0 bar by means of 

Bowerman et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isotropic coordinate scaling utilizing the Berendsen barostat and a relaxation time of 1.0 

ps.48 All hydrogen bonds were constrained using SHAKE.49 A cutoff of 10.0 Å was used for 

direct nonbonded interactions, and long-range electrostatics were treated with the particle 

mesh Ewald (PME) method with a 1 Å grid spacing.50 All simulations were performed with 

the gpu-accelerated version of pmemd in Amber 14,13,51 and Rg time series were calculated 

using cpptraj.52

2.2.3. Accelerated Molecular Dynamics—Following the minimization and 

equilibration phase simulations, each system was also simulated in the NPT ensemble using 

accelerated molecular dynamics (aMD).10 The aMD simulations were performed using the 

dual-boost variant19 in which a boost potential is applied to the whole potential with an extra 

boost to the torsions. The boost is defined by four aMD parameters, Ed, αd, Ep, and αp, 

where Ep/d defines the energy threshold below which the boost should be supplied and αp/d 

is the acceleration factor that controls the shape of the modified potential. Values for Ed, αd, 

Ep, and αp were calculated individually for each system based on the number of atoms, 

dihedrals, and average energies from the first 50 ns of the cMD simulations (see Table S1).53 

For K6-linked triubiquitin, these parameters were insufficient to attain the desired sampling 

level (see section S4 for further discussion), so Ep and Ed were each incremented by the 

value of the corresponding α. All aMD simulations were carried out for 150 ns using the 

same simulation parameters as described above. Lastly, aMD ensembles were not 

reweighted according to the Boltzmann weight of the applied boosts, as populations of states 

were extracted directly from fitting to SAXS data after the simulation was completed.

2.3. Bayesian Modeling of SAXS Data

We developed and utilized an iterative Bayesian reweighting scheme to determine the 

ensemble of structures from our simulations that best represented the solution SAXS 

measurements (Figure 3). In summary, MD trajectories were subjected to two rounds of 

clustering: one based on their structures and another based on their theoretical scatting 

profiles. Structural clustering allowed us to focus on atomic scale structures that were 

sufficiently unique from one another, and the scattering clustering step allowed us to only 

consider structures that were experimentally distinguishable from one another. Ensembles of 

increasing size of theoretical scattering curves were then considered with a Bayesian Monte 

Carlo algorithm until overfitting was observed, at which point the statistically best-fit model 

was chosen.

2.3.1. Creation of Scattering Clusters—For decorrelating the configurations sampled 

in our MD simulations, N structural states were isolated using an agglomerative clustering 

algorithm.54,55 For each structural state, a theoretical SAXS scattering profile was calculated 

by multipole expansion.56 For the K nonredundant and experimentally distinguishable 

SAXS profiles from these N scattering curves to be determined, another agglomerative 

clustering was then utilized with the distance between scattering profiles metric defined as

(1)
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where Ii(q) and Ij(q) are the scattering intensities of profiles i and j at momentum transfer q, 

σ(q) is the experimental scattering error, and Ns is the number of data points. The 

summation was subsampled based on the Nyquist–Shannon sampling theorem to ensure that 

data points in the scattering profiles were decorrelated from one another.57 In this metric, an 

Si,j of 1 suggests that two profiles are indistinguishable within the experimentally observed 

noise. In this way, the 2σ approach to signal recognition corresponds to clustering the 

similarity scores to a value of Si,j = 2.

2.3.2. Bayesian-Based Population Estimates—The theoretical scattering profile for 

the ensemble of K scattering states is calculated as the population weighted average of the 

individual states27,28

(2)

where Ii(q) is the scattering profile of state i and wi is its fraction of the total population. 

Although multiple well-established techniques have been developed to calculate Ii(q) from 

atomic coordinates,56,58–60 determining the population of states wi is a nontrivial task. Here, 

we employed a modified and iterative implementation of the BSS-SAXS28 approach to 

determine the population of states.

The posterior distribution of Bayes’ theorem is defined as61

(3)

where X represents the experimental scattering profile (I(q)), θ is the set of population 

weights ({wi}), p(X) is the marginal likelihood of the data, p(θ) is the prior distribution 

(probability distribution for the set of population weights {wi}), p(X|θ) is the likelihood 

function (the probability that the set of weights {wi} can reproduce the experimental 

scattering profile), and p(θ|X) is the posterior distribution from which the set of weights 

{wi} that best models the experimental data are extracted. The likelihood function 

 is employed because experimental SAXS errors are approximately 

Gaussian,62–64 but model qualities are reported as reduced  values, as this is the 

colloquial value used when reporting SAXS models. The  metric is used in place of the 

standard χ2 as it is a more accurate measure of model quality and less prone to overfitting 

(section S2).63 A reduced  can be calculated analogously to the reduced χ2 metric, but 

the nonreduced form was used in the likelihood function. In theory, a prior distribution with 

many features could be calculated from the MD trajectory. However, the sampling of the 

simulations presented here was sufficient to explore a variety of conformations but 

insufficient to discern their relative populations of states. Therefore, the prior distribution of 

population weights was assumed to be uniform.
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A Baysian Monte Carlo algorithm was used to explore the θ parameter space and 

subsequently map the posterior distribution. For overfitting through an excessive number of 

possible scattering states to be avoided, an iterative “bottom-up” method was employed to 

determine the minimal number of structures required. First, the goodness-of-fit for each 

individual scattering state was determined, along with an associated Akaike information 

criterion (AIC)65

(4)

where ν is the number of model parameters and  is the maximum observed likelihood (i.e., 

the minimum observed ). The AIC penalizes a model’s goodness-of-fit from arbitrarily 

increasing the number of model parameters (see section S1 of the Supporting Information 

for more details). Following the inspection of all single states, all permutations of ensembles 

that contained two states were considered. This procedure was repeated with incrementally 

increasing basis set sizes until the model AIC was not improved. Following these 

permutations, the minimum AIC model was reported as the one that best fits the 

experimental data.

2.3.3. Implementation—Initially, the MD ensembles from each simulation were 

structurally grouped using the hierarchical clustering protocol implemented in cpptraj.52 

Coordinates from every 20 ps of simulation were least-squares fit according to their 

backbone atoms, and distances between members were defined using the RMSD of Cα 
atoms. To determine the effect of structural clustering on the final number of scattering 

states, several different structural bases were produced by defining the total number of 

clusters (N) to be 25, 50, 100, 200, 300, and 500. For each structural basis, the central 

member of each cluster was selected as the representative state, and the scattering profile of 

each representative was calculated using Crysol.56 Structural clusters were then further 

grouped into scattering states separated by a similarity score of Si,j = 2. Most systems did 

not display a large deviation in scattering numbers when more than 300 initial structures 

were considered, so N = 300 initial structural clusters was chosen for all systems (see 

below). For the sampling convergence calculations, if the total number of frames was less 

than or equal to 300, then no structural clustering was conducted, and the K scattering states 

were clustered from the theoretical profiles of every frame.

The number of Shannon channels for determining  was defined using the SHANUM 

program of the ATSAS suite.66 For each basis subset permutation, ten randomly initiated 

Monte Carlo searches were conducted for a total of 10,000 steps, and the last 9,000 steps of 

each run were combined and normalized to create the observed posterior distribution. The 

population of state i was defined as the average of the marginal posterior in wi, and the 

uncertainty was defined as the standard deviation.
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3. RESULTS

3.1. SAXS Experiments

Experimental data were gathered for seven different triubiquitin systems, five of which 

contained non-native thiolene linkages (K6, K11, K29, K48, and K63) and two of which 

contained native isopeptide bonds (nK48 and nK63). Beam smearing effects were observed 

at low q, but the SAXS intensity was otherwise well-resolved for each system (Figure S2). 

Differences in both the scattering curves and Rg values suggest these systems adopt a range 

of shapes and sizes, and differences in the values of each system suggest varying shapes and 

sizes based on linkage type (Table 1) with K11 linkages being the most compact and K63 

the most extended.

3.2. aMD and cMD Sampling Inefficiencies

The inefficacy of the aMD and cMD simulations to accurately sample the experimental 

ensemble without reweighting the population of states can be established by comparing the 

Rg values of each trajectory (columns two and three of Table 1) with experimental 

measurements. The cMD-based Rg calculations are too compact in five systems (K6, K11, 

nK48, K63, and nK63), and only the Rg value of the K11-linked trimer is within 1.0 Å of the 

experimental value. In contrast, the aMD-based predictions are undervalued for every 

system. Indeed, both simulations are close to being within the error of predicting the Rg of 

one system: the nK48-linked trimer. However, the Rg predictions of our ensemble-based 

approach (discussed in detail below) are able to capture nearly every Rg value within the 

error.

3.3. Identifying Scattering Clusters

For the appropriate method for forming scattering clusters to be determined, the full 150 ns 

aMD trajectories were analyzed. Each simulation was structurally grouped into a range of 

total numbers of clusters (N), and then each set of structural representatives was 

subsequently clustered according to similarity values (Si,j) of 1, 2, and 3 (Figure 4 and 

Figure S10). At each number of structural states, the most scattering states were identified 

when a similarity score of 1 was enforced, and the fewest number of scattering states were 

identified for a similarity score of 3. A similarity restriction of 2 was selected because it 

identified an intermediate number of scattering states and is analogous to a 2σ result in 

identifying one profile from another. In most simulations, the number of identified scattering 

states increased with the number of initial structural clusters until N = 300, after which there 

was little change. To test if a larger basis set N would affect our results, the non-native K63-

linked system was also clustered according to the scattering profiles of all N = 7,500 frames 

and showed the same number of scattering states (K = 14) for 7,500 frames as for N = 300 

structural states.

3.4. Preventing Overfitting with Iterative Inclusion

One inherent difficulty in producing multimember models is the potential of overfitting to 

experimental data. To demonstrate that our iterative Bayesian approach avoids overfitting, 

the full basis fitting of the non-native K63 aMD simulation is presented in detail. Initially, 
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the full ensemble of all 14 scattering states was reweighted using a Bayesian Monte Carlo 

approach (Figure 5). This produced a model with a reduced  value of 1.12, significantly 

better than any single scattering state. Although all 14 members were considered in the 

Monte Carlo, only clusters 2 and 3 contributed more than 0.1 of the population individually 

and combined for a net 39% of the total ensemble. As a result, the remaining 61% of the 

population was spread in small amounts throughout the other 12 clusters. This could be the 

result of overfitting through a large number of model parameters, or it could be the effect of 

the Monte Carlo sampling along a 14-dimensional hypersurface pooling small amounts of 

the population to unfavorable states.

For the minimal basis size that best fits the experimental data to be determined, all 

combinations of basis subsets were considered, and the best-fit model qualities from each 

subset size were compared (Figure 6). The best single-state model had a modest fit to the 

experimental data with  of 2.9. The inclusion of a second conformation drastically 

improved the fit of our model, lowering the best observed  to 0.96 for the combination 

of clusters 2 and 9. This improved goodness-of-fit was met with a decrease in the AIC value 

from 14.9 in the single-state to 6.5 in the two-state model, justifying the increase in model 

parameters. In contrast, the optimum three-state model modestly improved the goodness-of-

fit  but also increased the AIC value to 8.4, suggesting that the benefit of a three-

state model in place of the two-state is outweighed by the increase in the number of model 

parameters. All subsequent basis sizes displayed a consistent increase in AIC value, which 

suggests that the extra parameters have no beneficial effect on  reduction and indicates a 

substantial degree of overfitting.

Surprisingly, clusters 2 and 3, the two most populated members in the full basis ensemble, 

are not the same combination that form the best two-state model. In fact, a two-state fit using 

only clusters 2 and 3 resulted in a distribution of nearly the entire population into cluster 3 

(reduced ), which is significantly worse than the best individual scattering state 

(reduced ), the best two-state model (reduced ), and the full 14-member 

model (reduced ). Therefore, the 14-state model appears to represent a drastic 

overfitting of a poor choice in which two states are most important to the net scattering 

profile.

3.5. aMD Enhances Model Convergence Relative to that of cMD

Comparisons of aMD and cMD simulations demonstrate that models generated from the 

accelerated simulations generally converge to lower  values quicker than their 

corresponding conventional simulations (Figure 7 and Figure S11). In two cases, K11 and 

K29, the convergence speed and quality of the aMD models are comparable to those 

produced by cMD. However, these systems also had the best initial fits , 

suggesting the comparable performance may be due to the overall quality of the initial 

conformations.
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In contrast, the initial K6 model was quite poor , and the cMD simulation never 

converged to an acceptable goodness-of-fit even after 500 ns of simulation (data not shown). 

However, the aMD simulation converged to an acceptable model  within 

roughly 70 ns. Combined with the larger deviations in backbone RMSD values in this 

regime (Figure S3), this system highlights the ability of aMD to sample a wider variety of 

conformations. Similarly, the nonnative K48 linkage had a large discrepancy between aMD 

and cMD models (reduced  of 0.7 and 2.8, respectively). The cMD trajectory identified 

a single state that is more extended (Rg = 24.3 Å) than is suggested by the experimental data 

(Rg = 22.3 Å). In contrast, the aMD model accurately predicts the molecular size (Rg = 22.4 

Å). Given the trend of the convergence time series (Figure 7), the cMD simulation would 

likely reach an acceptable solution if the simulation times were significantly extended.

Furthermore, SAXS data were gathered for both native and non-native linkages of K48- and 

K63-linked trimers. In all four systems, the aMD simulations experienced the best initial 

improvements to the goodness-of-fit, but the native cMD simulations of both linkage sites 

eventually converged to the best model in the same time scale as their aMD counterparts. On 

the other hand, the non-native aMD models outperformed the cMD simulations at all time 

scales. This disparity between native and non-native convergence is likely due to performing 

a single simulation of each system and not due to any inherent difference between native and 

non-native linkages.

3.6. Triubiquitin Ensembles Depend on Linkage Type

Models for all seven triubiquitin systems were produced using both aMD (Table 2 and 

Figures S12–S17) and cMD (Table S2) simulations. Acceptable models  were 

found for most systems with the K6-linked cMD simulation having the largest deviation 

from experimental results at a reduced  value of 8.7. Additionally, for all but two 

systems, model ensemble Rg values were within 1 Å of the experimentally determined Rg 

values (Table 1). Four of the seven systems were best represented by two-state ensembles, 

whereas the other three were identified as one-state models.

In the two-state models (K11, nK48, K63, and nK63), the final ensemble is generally 

composed of an open and compact state with the geometry of each varying based on the 

linkage. The difference between open and closed conformations is significant in the K63, 

nK63, and nK48 systems with the closed states possessing Rg of ~25 Å and the open states 

possessing Rg values between 27 and 32 Å. This range in Rg is a direct result of the 

separation between distal members with the distal groups separated up to 69 Å in the 

extended states and compacted as low as 27 Å in the closed state. In the K11 system, the 

difference between open and compact is more subtle with the open and compact states 

possessing Rg values of 22.5 and 20.7 Å, respectively. Similarly, the distal groups are 

separated by 35.9 Å in the open and 27.4 Å in the compact states.

The one-state models show a wide variety of geometries based on linkage type. In K6, the 

best fitting model possessed an Rg of 21.8 Å and a separation distance of 33.4 Å between 

distal units. In contrast, the molecular size of the K29-linked system was noticeably larger at 

an Rg of ~25 Å and distal separation of 44.6 Å.
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The non-native K48 linkage was also identified as a single state with an Rg of 22.4 Å and a 

distal separation of 37.1 Å. As previously mentioned, the native K48 linkage was identified 

as a two-state model, and both the native and non-native K63 linkages were two-state 

models as well. A comparison of the experimental SAXS profiles from native and non-

native K63 shows nearly identical profiles, whereas the non-native K48 is significantly 

different from its native counterpart, leading to the differences in identified computational 

models. Together, these results suggest that the solution ensemble of ubiquitin oligomers 

may be more affected by non-native linkages at some sites than at others.

4. DISCUSSION

Here, we have developed and applied an ensemble fitting method that utilizes MD 

simulations to fit experimental SAXS data. One critique of ensemble fitting is the potential 

of overfitting, where a large number of possible states leads to a better goodness-of-fit 

primarily by increasing the number of model parameters. However, our iterative Bayesian 

approach avoids this by not assuming the necessity of a particular population size but instead 

considering the full permutation of increasing subset sizes. By evaluating the AIC value of 

each ensemble, models that benefit solely from an increasing parameter space are correctly 

rejected in favor of smaller population sets, as is shown in the analysis of K63-linked 

triubiquitin (Figure 6). This ability to consider multistate models is in better agreement with 

the current understanding of solution ensembles than forcing a single representative fit.

Although this AIC protocol is functional in practice, it is important to note that the identified 

states are not necessarily representative of the full ensemble. Because of the inherently low 

resolution of SAXS data, increasing subset sizes may be routinely dismissed as long as the 

average shape and size of the ensemble is modeled by a combination of fewer members. In 

the future, the addition of further structural information, such as from FRET or NMR 

experiments, could be incorporated into the Bayesian likelihood function, and this higher 

resolution data may better differentiate between essential and trivial additional states.67–71

This study presents, to our knowledge, the first example of using aMD simulations to rapidly 

produce atomistic models of experimental SAXS data. In each ubiquitin trimer, the aMD 

trajectories produced models equal to or better than their cMD counterparts in up to a 

magnitude less simulation time. This is rooted in the fact that aMD typically supplies not 

only larger maximum variations in structural RMSDs but also reduces the correlation time 

by significantly lowering energy barriers between states. However, a wide variety of other 

possible enhancement methods could be employed to the same end.11,12,17,18,72 

Nonetheless, many of these methods may require producing multiple copies of the same 

system that must all be simulated simultaneously or performing simulations over a period of 

time to compute a history-dependent bias, potentially creating large computational overhead. 

In contrast, aMD requires no additional system replicas and is straightforward to apply with 

minimal computational cost.73,74 Therefore, aMD may act as a user-friendly method for 

those interested in atomistic SAXS modeling without access to high-performance computing 

resources.
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Our protocol was applied to simulations of seven ubiquitin trimers with varying linkage 

types. Regardless of one- or two-state models, both aMD and cMD results agree with 

previous studies that K63-linked oligomers adopt extended conformations in solution in 

contrast to the typically compacted state of K48-linked polyubiquitin chains.75–78 In 

addition, our results for the so-called atypical chains reveal that K6 and K11 trimers favor 

more compact states,79 whereas K29 trimers favor a more open/intermediate state. The 

biological functions of these atypical chains are not well-characterized, and it has been 

suggested that there is a built-in redundancy in the recognition and/or signaling of ubiquitin 

chains.80 For example, K48-linked ubiquitin chains are the canonical proteasomal 

degradative signal, but K11-linked ubiquitin chains can also target substrates to the 

proteasome in the context of cell cycle progression.81 As another example, K6- and K63-

linked chains are both involved in DNA damage response.82 Lastly, K29-linked chains are 

thought to have roles in both proteasomal degradation signaling and regulation of mRNA 

stability.83,84 Thus, it appears that a compact structure does not always lead to one biological 

function and an open structure to another; thus, there is currently no simple correlation 

between oligomer compaction and cellular response.

Specific to the role of polyubiquitin chains as proteasomal degradation signals, it has been 

previously theorized that the tight compaction of K48-linked chains might allow for the 

formation of octamers that could bridge the ~90 Å distance from ubiquitin receptors Rpn10 

to Rpn13 of the 26S proteasome.85,86 Interestingly, our two-state model of K11-linked 

trimers identified a state with the same globular size as that of the K48-linked trimer, 

suggesting that it is possible for homotypical K11-linked octamers to satisfy a similar spatial 

ensemble as that of the K48 octamer. However, proteasomes are able to distinguish between 

these two modes of polyubiquitin linkage.87 In our K48-linked trimer models, the 

hydrophobic patch is packaged around the I44 residue of the central and proximal monomers 

(Figure 8), and the alternative hydrophobic binding site of the I36 patch is exposed.88 The 

opposite scenario is true in one state of our K11-linked model, and the fully compact state of 

K11 trimers buries all three I36 patch residues while simultaneously exposing all three I44 

patch residues. Indeed, domains have been observed to bind selectively with these two 

sites,89 and their differing levels of exposure likely contribute to the disparate modes of 

interactions between K11- and K48-linked polyubiquitin chains and the proteasome.

The overall varying degree of flexibility associated with each different linkage is also likely 

the major contributing factor to their biological roles.80,87,90,91 The dynamic nature of 

ubiquitin chains that can allow their recognition by numerous protein partners is perhaps 

dictated by the linkage position. Comparison of our models of native isopeptide and non-

native thiolene linkages suggest that certain positions (i.e., K48) may be significantly more 

affected by the local chemistry of the linkage than others (i.e., K63). Some of these effects 

may be more apparent in trimers than dimers,35 and these differences may propagate in 

longer polyubiquitin chains into effects that are significant enough to be discerned by the 

relatively low-resolution SAXS observations. The methodology developed in this study is 

primed for investigating longer ubiquitin chains as well as more complex ubiquitin systems 

including ubiquitin chains bound to receptor proteins, mixed chains, and branched chains, 

among others, in an effort to better understand the complex role of ubiquitin chain function 

in cells.
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Figure 1. 
Crystal structure of ubiquitin monomer (PDB: 1UBQ).36 Shown in sticks are the five lysine 

sites presented in this study. Other potential linkage sites exist but are not shown (M1, K27, 

and K33). The C-terminus (“C-term”) of one ubiquitin monomer forms an isopeptide or 

thiolene linkage with the amino group at one of these sites.
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Figure 2. 
Depiction of the native isopeptide linkage between ubiquitin monomers (left) and the non-

native thiolene linkage used in this study (right).
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Figure 3. 
Schematic of the iterative Bayesian ensemble refinement workflow. MD trajectories were 

first clustered into similar structures that were subsequently clustered based on their 

scattering patterns. The full permutation of iteratively increasing subset sizes were then used 

to produce models through a Bayesian Monte Carlo until overfitting was observed.
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Figure 4. 
Number of identified scattering states vs the number of initial structural clusters from the 

K63 triubiquitin aMD simulation. At a similarity restriction of Si,j = 2, the number of unique 

scattering states is unaltered when considering more than 100 structural states.
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Figure 5. 
Representative ensemble of the non-native K63 aMD model using the full 14-member 

scattering basis (A,B) and the best two-state model (C-G). (A) Populations of the individual 

states of the 14-member model, where error bars indicate the standard deviation of each 

marginal posterior distribution. Individual goodness-of-fit values are denoted above the 

corresponding population bar. (B) Comparison of the ensemble averaged scattering profile 

(red) against the experimental data (black). (C) Relative populations of the best two-state 

combination with individual  values above the plot. (D) Individual scattering profiles of 

each state. (E) Ensemble-averaged scattering of the two-state model compared with 

experimental data. (F) Representative member of the compacted cluster. (G) Representative 

member of the extended cluster.
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Figure 6. 

Lowest observed reduced  goodness-of-fit (blue) and the corresponding AIC value 

(green) for each basis subset size in the non-native K63 aMD model. Although the 

value of a 3-state ensemble is a modest improvement over the 2-state model, the increased 

AIC value suggests that this is a result of increased overfitting by the 3-state case.
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Figure 7. 

Reduced  goodness-of-fit of identified ensembles vs sampling time for aMD (blue) and 

cMD (green) simulations of (a) non-native K63, (b) native K63, (c) non-native K48, and (d) 

native K48 linkages. Remaining systems can be found in Figure S11. In the systems 

presented above, the aMD simulations are the quickest to escape poor initial models, as 

shown by the more rapid initial decrease in  in comparison to the cMD models.
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Figure 8. 
Orientations of I36 (green) and I44 (purple) hydrophobic residues in the (a) closed K11-

trimer state, (b) open K11-trimer state, and (c) K48-linked trimer model. Although both the 

open K11 and K48 configurations display similar levels of compaction according to Rg, they 

expose different access to the hydrophobic patch: I44 in K11 and I36 in K48. Furthermore, 

the highly compacted K11 state buries all three I36 moieties into the same region, thus 

exposing all three I44 moieties. The deviations in modes of hydrophobic exposure may 

contribute to the binding disparities of K11- and K48-linked polyubiquitin chains with both 

proteasomes and deubiquitinating enzymes.
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Table 1

Rg for Each System As Determined from a Guinier Analysis of the Experimental Data, Analysis of the cMD 

and aMD Trajectories, and from the Bayesian Ensemble Fitting Protocola

system experiment (Å) cMD (Å) aMD (Å) ensemble (Å)

K6 22.9 ± 0.1 19.0 ± 0.1 19.3 ± 0.2 21.8 ± 0.1

K11 21.4 ± 0.1 20.5 ± 0.1 19.5 ± 0.1 21.7 ± 0.6

K29 23.3 ± 0.3 24.6 ± 0.1 20.3 ± 0.2 24.9 ± 1.5

K48 22.3 ± 0.1 23.6 ± 0.3 21.3 ± 0.3 22.4 ± 0.3

nK48 23.7 ± 0.1 22.4 ± 1.0 23.4 ± 0.2 24.1 ± 0.6

K63 28.0 ± 0.1 25.0 ± 0.2 22.5 ± 0.2 28.3 ± 0.3

nK63 27.0 ± 0.2 25.6 ± 0.3 21.1 ± 0.5 28.6 ± 1.1

a
The Rg of a ubiquitin trimer appears to be directly related to the geometry of the linkage. Furthermore, ensemble reweighting produces better 

agreement with experimental values than the raw MD trajectories. nK48 and nK63 denote trimers with the native isopeptide linkage.
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