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Abstract

Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system,
affecting more than 37 million people around the world. While combinatorial antiretroviral
therapy (CART) has lowered mortality rates and improved quality of life in infected individuals,
the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated
cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins
may be involved in this decline, and several studies have indicated that the HIV protein
transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically,
data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the
function of the dopamine transporter and specifically damaging dopamine-rich regions of the
CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the
mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission
may be, at least partially, a mechanism by which HIV infection directly or indirectly induces
dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the
dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS
induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic
neurotransmission. Further, this will provide a discussion of the experiments needed to further
these investigations, and may help to identify or develop new therapeutic approaches for the
prevention or treatment of these disorders in HIV-infected individuals.

Introduction

There have been a number of excellent reviews detailing the effects of HIV-1 Tat on the
CNS, and a growing body of research suggests that HIV infection specifically damages
and/or dysregulates the dopaminergic system in the CNS (Cass et al., 2003; Czub et al.,
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2004; Ferris et al., 2008; Fitting et al., 2015; Gaskill et al., 2013; Gaskill et al., 2014;
Koutsilieri et al., 2004; Purohit et al., 2011). A number of recent studies suggest that these
changes to the dopaminergic system specifically involve Tat; therefore, this review will
focus specifically on the Tat protein and its effect on dopaminergic neurotransmission. This
review will briefly discuss both the pathogenesis of HIV in the CNS and dopamine
neurotransmission in the brain, and then review what is known about the Tat protein itself.
This will be followed by discussion of the model systems used to explore the effects of Tat
on the dopaminergic system, the direct effects of Tat on neuropathogenesis and the brain
regions implicated in Tat modulation of cognitive function. The review will then explore the
direct impact of Tat on the dopamine transporter and on the dopamine receptors. Finally, the
discussion will briefly discuss the specific impact of Tat on the dopaminergic effects of
psychostimulants, as well as other drugs of abuse. Although the impact of Tat on
neuropathogenesis has been covered at length recently (Dahal et al., 2015; Hauser and
Knapp, 2014; Maubert et al., 2015; Mediouni et al., 2015a), these sections will provide a
distinct viewpoint on the subject, focusing specifically on the potential synergistic effects of
Tat and drug abuse on dopaminergic neurotransmission.

I. HIV Neuropathogenesis

Globally, approximately 37 million people are infected with the human immunodeficiency
virus. In 2014, more than 1.2 million people died as a result of this infection (UNAIDS
2015). HIV is a lentivirus which principally targets the immune system, primarily infecting
CD4+ T-cells, macrophages and monocytes. Untreated, HIV infection progressively destroys
the immune system, leading to the development of acquired immunodeficiency syndrome
(AIDS) (Derdeyn and Silvestri, 2005; Moir et al., 2011; Stevenson, 2003). The development
of combinatorial antiretroviral therapy (cCART) has successfully reduced rates of death and
improved length and quality of life (UNAIDS, 2015; Weber et al., 2013), transitioning HIV
infection from a terminal to a chronic diagnosis (Deeks et al., 2013). This success has
increased the prevalence of HIV, particularly among vulnerable populations, such as drug
abusers (El-Bassel et al., 2014). Currently, the prevalence of HIV is 22 times higher among
injection drug users than among the general population (Beyrer et al., 2010; Crime, 2014;
Mathers et al., 2008) and even the use of non-injection drugs greatly increases the risk of
acquiring HIV (Kipp et al., 2011). The mechanism(s) by which different types of drugs of
abuse increase the risk of acquiring or exacerbating HIV is not clear, and understanding
these processes is critical, as drug abuse exacerbates the development of AIDS in both the
periphery and in the central nervous system (CNS) (Baum et al., 2009; Lucas et al., 2006).
The direct effects of HIV infection on the reward pathway and drug-seeking behavior are not
fully understood, but numerous studies have suggested HIV affects the dopaminergic system
(Aylward et al., 1993; Berger et al., 1994; Chang et al., 2008; Itoh et al., 2000; Jenuwein et
al., 2004; Kieburtz et al., 1991; Nath et al., 2000; Obermann et al., 2009a; Sardar et al.,
1996; Scheller et al., 2010; Wang et al., 2004).

While a majority of studies on HIV focus on the effects on the peripheral immune system,
infection of the CNS is a growing health concern. HIV enters the CNS rapidly following
initial infection (Davis et al., 1992; Valcour et al., 2012). Infection of the CNS leads to a
constellation of neurocognitive impairments, including cognitive dysfunction, behavioral
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changes, motor deficits, and dementia, that are currently known as HIV-associated
neurocognitive disorders (HAND) (Antinori et al., 2007; Navia et al., 1986; Price et al.,
1988; Sacktor et al., 2002; Simioni et al., 2010). Prior to the implementation of CART
(combinatorial antiretroviral therapy, then called HAART) in 1996, around 16% of HIV-
infected individuals manifested HIV encephalitis (Davies et al., 1998), and between 5 and
20% were diagnosed with HIV-associated dementia (HAD) (Janssen et al., 1989; Maschke et
al., 2000; McArthur et al., 1994; Sacktor, 2002). With cART, the more severe neurological
manifestations have become rare (Ellis et al., 2007; Heaton et al., 2010a; Joska et al., 2010;
Sacktor, 2002), but 40 — 70% of infected individuals still suffer from HAND (Cysique et al.,
2004; Heaton et al., 2010a; Heaton et al., 2011a; Simioni et al., 2010; Tozzi et al., 2005).
Further, the prevalence of HAND is increasing as these individuals have longer life
expectancy (Brew and Chan, 2014; Heaton et al., 2010b; Simioni et al., 2010). HAND is still
found among individuals with viral suppression (Heaton et al., 2011b; Robertson et al.,
2007), which suggests that factors other than viral replication are involved. A number of
studies indicate that drug abuse may exacerbate both the neuropathogenesis of HIV and the
neurocognitive impact of infection in both cART-naive and cART-treated individuals (Chana
et al., 2006; Langford et al., 2003b; Meade et al., 2011a; Meyer et al., 2014; Nath, 2010;
Starace et al., 1998). However, other studies show that drug-abuse does not increase the
neurological deficits induced by HIV+ infection (Basso and Bornstein, 2003; Byrd et al.,
2011b; Grassi et al., 1995); hence, the precise impact of drug abuse on HIV
neuropathogenesis remains unclear.

HIV is thought to enter the brain primarily by using infected monocytes as “Trojan Horses”
to move across the blood-brain barrier (I1zquierdo-Useros et al., 2010; Kim et al., 2003;
Peluso et al., 1985). Within the brain, the monocytes mature into macrophages and produce
new HIV virions, spreading the infection throughout the brain. In the CNS, HIV primarily
infects perivascular macrophages and microglia (Gonzalez-Scarano and Martin-Garcia,
2005; Joseph et al., 2015; Kure et al., 1990). The presence of HIV has also been shown in
astrocytes both /in vitro (Eugenin and Berman, 2007) and /n vivo (Churchill et al., 2009;
Tornatore et al., 1994), but the mechanism of entry into these cells, and the overall role of
astrocytes in HIV neuropathogenesis remains unclear (Gray et al., 2014; Joseph et al., 2014;
Luo and He, 2015). Infected cells, primarily macrophages, monocytes and microglia
produce and secrete a variety of inflammatory host and viral factors, including cytokines,
chemokines and viral proteins. These factors result in chronic neuroinflammation and
neurotoxicity, which are thought to be central to the development and persistence of HAND
(Gannon et al., 2011; Gill et al., 2012; Hong and Banks, 2015; Kraft-Terry et al., 2009;
Zayyad and Spudich, 2015).

Il. The Transactivator of Transcription (Tat)

Among the neurotoxic viral proteins released by infected cells is the viral protein Tat (Chang
etal., 1997; Ensoli et al., 1993; King et al., 2006; Rayne et al., 2010a). Tat is short for trans-
activator of transcription, and is required for the successful transcription of full-length HIV
mRNA. This protein is one of the first genes expressed in the HIV replication cycle. The
viral mMRNA of Tat consists of two exons. The first exon is comprised of amino acids 1 — 72,
and contains the transcriptional functions of the protein. The second exon, comprised of

Neurobiol Dis. Author manuscript; available in PMC 2018 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gaskill et al.

Page 4

amino acids 73 — 101 or amino acids 73 — 86, houses the integrin binding domains. The
longer form of Tat (~101 aa) is far more common and is found in the majority of HIV
clinical isolates, while the shorter form of Tat (~86 aa) is mostly found in laboratory adapted
strains and is the result of a single nucleotide polymorphism in the second exon which
creates a stop codon (Campbell et al., 2005; Jeang, 1996; Jeang et al., 1999). Perhaps due to
the prevalence of this premature stop codon in the laboratory-adapted, clade B strains of
HIV that are common in North America and Western Europe, the shorter form of Tat is
much more commonly used in research. Some studies examining multiple forms of Tat have
shown functional differences between the shorter and wild type forms of Tat (Bertrand et al.,
2013; Campbell et al., 2005), while others do not find such differences (Ma and Nath, 1997).
Thus, the effects of wild-type Tat on many of the biological functions studied using the
shorter forms of Tat are unclear.

The first exon of Tat can be divided into a number of distinct regions generally defined as
the N-Terminal (residues 1-21), cysteine-rich (residues 22-37), core (residues 38-48), basic,
protein transduction or arginine-rich (residues 49 — 60) and glutamine-rich or C-Terminal
(residues 60 — 72) domains (Campbell and Loret, 2009; Derse et al., 1991; Jeang et al.,
1999; Kuppuswamy et al., 1989), as depicted in Figure 1. Each of these regions has been
found to have numerous distinct functions, although many functions also span more than one
region. For example, the placement of tRNA onto the viral RNA genome involves the
cysteine-rich, the core, and the basic and glutamine-rich domains (Kameoka et al., 2002).
While the minimal functional domain of Tat encompasses the first 48 amino acids, the role
of specific residues in the N-terminal domain, a proline rich region, is undefined (Derse et
al., 1991; Jeang et al., 1999). Mutation studies have shown that the cysteine-rich domain is
necessary for the transactivation function of Tat (Green and Loewenstein, 1988; Jeang et al.,
1999; Kuppuswamy et al., 1989; Rice and Carlotti, 1990), and coordinates Zn2* binding,
which induces folding of the protein and stabilizes the interaction of Tat with microtubules
(Egele et al., 2008; Tahirov et al., 2010). This region has also been shown to induce
synaptodendritic injury in hippocampal cell culture (Bertrand et al., 2013). The core domain
is also necessary for Tat to mediate transactivation, and the residues in this region increase
the specificity of binding to the TAR RNA complex and are necessary for Tat function
(Jeang et al., 1999; Rana and Jeang, 1999). The arginine-rich or basic domain contains the
well-conserved sequence RKKRRQRRRAP. This sequence is critical to the nuclear
localization function of the protein, and to the interaction of Tat with the TAR RNA
complex, which is a short stem-loop structure in HIV RNA (TAR RNA) bound to a number
of cellular factors (Dingwall, 1991; Jeang et al., 1999; Rana and Jeang, 1999; Vives et al.,
1997). This region also enables Tat to translocate across the plasma membrane into the
cytosol (Futaki et al., 2001), and is responsible for interactions with
phosphatidylinositol-4,5-bisphosphate (P1(4,5)P,) that lead to the accumulation of Tat on the
cytosolic side of the plasma membrane (Rayne et al., 2010b). The glutamine-rich region is
also important for binding the TAR complex (Bayer et al., 1995; Churcher et al., 1993),
which greatly enhances transactivation (Green et al., 1989). One study found that mutations
in this region alter the ability of Tat to induce T-cell apoptosis (Campbell et al., 2004). The
second exon of Tat houses the integrin binding modality. Some studies also indicate that it is
necessary for the transactivation function /7 vitro (Campbell and Loret, 2009).
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Several forms of Tat, including full length Tat-101, a shorter form comprised of only the first
exon, Tat 1-72, and another form made up of the first exon and small portion of the second
exon, Tat 1-86, are commonly used to study the effects of Tat on the CNS (Aksenova et al.,
2009; Eugenin et al., 2007; King et al., 2010; Mishra et al., 2008; Moran et al., 2014)
(Figure 1). Although there are numerous studies using these different forms of Tat, the
existing literature lacks a comprehensive comparison of different Tat forms on cellular
functions in the CNS and specifically dopamine neurotransmission. This review will touch
on some of the differences below, but future studies are needed to address this critical
knowledge gap.

Tat acts as a transcriptional regulator of HIV gene expression by binding to the TAR
element, as well as a complex of cellular transcription factors, such as P-TEFb. These
interactions upregulate transcription from the HIV long terminal repeat (LTR) at least 1000-
fold and promote the elongation phase of HIV transcription (Feinberg et al., 1991; Jeang et
al., 1999; Karn and Stoltzfus, 2012). Tat has also been shown to interact with a number of
different host proteins and affect a variety of cellular functions, interacting with different
cellular structures and signaling pathways, as well as triggering angiogenesis and cell
growth (Bagashev and Sawaya, 2013; Emerman and Malim, 1998; Ptak et al., 2008; Romani
et al., 2010). Additionally, numerous studies indicate that Tat can be neurotoxic, acting
through diverse pathways (Aksenov et al., 2003; Fields et al., 2015; King et al., 2006; Nath,
2002; Silvers et al., 2007).

To initiate the HIV transcription process, Tat is produced during the first round of abortive
transcription, before transcription of the full length viral DNA or most other viral proteins.
Once translated, Tat returns to the nucleus to enable transcription of full length HIV (Jones
and Peterlin, 1994; Kao et al., 1987). In addition to these intracellular functions, Tat is also
secreted from infected cells in a temperature dependent manner without lysis of the infected
cell (Chang et al., 1997; Ensoli et al., 1990; Ensoli et al., 1993; Rayne et al., 2010a) and /n
vitro studies demonstrate that Tat can be taken up rapidly by H9, HelLa and U937 cells
through lipid-raft dependent micropinocytosis (Frankel and Pabo, 1988; Mann and Frankel,
1991; Wadia et al., 2004). These findings are supported by our own data in Figures 2 — 4,
which show uptake of Tat from conditioned media by HEK 293 cells, midbrain mouse
microglia and midbrain mouse neurons after 48 hours. /17 vivo, immunohistochemical
staining was used to identify Tat protein in monocytes, astrocytes and oligodendrocytes in
the frontal cortex and white matter of 3 HIV-infected patients (Del Valle et al., 2000), and in
the cytoplasm of astrocytes and microglia in gray and white matter from 10 HIV-infected
brains (Bonwetsch et al., 1999). A third study also used immunohistochemistry to identify
Tat positive cells in the subcortical frontal white matter of 3 out of 4 HIV-infected brain
specimens (Hofman et al., 1994). Although the movement and localization of Tat /n vivo are
not fully resolved, these data suggest that Tat could be taken up by CNS-specific cells in
infected areas of the brain. A number of studies have found that low-level HIV replication
persists in the CNS of HIV-infected individuals on cART (Chun et al., 2005; Dahl et al.,
2014; Eden et al., 2010; Ferretti et al., 2015; Hatano et al., 2010; Palmer et al., 2008). Thus,
even in CART-treated patients, Tat could be locally released into the central nervous system
by HIV-infected macrophages, microglia or monocytes and influence the surrounding cells.
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In both cART-naive and cART treated patients, HIV infection of the CNS produces
substantial neuropathology in dopaminergic regions. This includes high levels of HIV
infection (Brew et al., 1995; Glass et al., 1995), basal ganglial atrophy (Aylward et al., 1995;
Aylward et al., 1993; Becker et al., 2011; Hestad et al., 1993), nigral degeneration (Itoh et
al., 2000; Reyes et al., 1991), impaired striatal activity (Ortega et al., 2015; Plessis et al.,
2015), altered metabolism and metabolite ratios (Gongvatana et al., 2013; Rottenberg et al.,
1987; Yiannoutsos et al., 2004) and increased neuroinflammation (Vera et al., 2016).
Decreased expression of both D2 receptors and tyrosine hydroxylase (TH), the rate-limiting
enzyme for the dopamine synthesis, as well as changes in the dopamine concentrations,
abnormal dopamine metabolism and altered dopamine transporter (DAT) expression and
function in the basal ganglia, as measured by fMRI, have been shown to correlate with the
cognitive deficits in HIV patients (Chang et al., 2008; di Rocco et al., 2000; Kumar et al.,
2011; Obermann et al., 2009b; Zauli et al., 2000). Overall, these data suggest that the
infection of CNS macrophages and microglia, and the subsequent release of Tat in
dopaminergic regions of the CNS may be one mechanism by which HIV negatively impacts
the dopaminergic system. As HIV infection has become a chronic disease, this interaction
could persist for the life of the infected individual, causing progressively greater
dopaminergic dysfunction. Thus, it is critical to improve our understanding of these effects
and to better develop therapeutic strategies that maintain normal dopaminergic function in
long-term HIV-infected individuals.

lll. Caveats Regarding the Use of Tat in Model Systems

Most studies examining the impact of Tat on dopaminergic neurotransmission are performed
in vitro or in rodent models, although some studies have also been performed in primate
models. Table 1 describes the model system, type and amount of Tat used in the studies
referenced in this review. Both /n vitro systems and animal models provide an important
modality for evaluating the effects of HIV on the dopaminergic system /n vivo, and have
provided invaluable contributions to our understanding of the mechanisms of HIV- and Tat-
mediated neuropathology. Although the data from some of the studies in these systems are
now being reexamined, it is important to note that these early studies identified important
concepts and knowledge gaps in the field. Recent technical and methodological advances
have enabled us to build upon these data, leading to new advances in the field while
clarifying both the benefits and limitations of each model system. Thus, careful evaluation of
data from these systems requires the consideration of a few caveats. First, it is not clear how
accurately the amount of Tat used in these studies mimics that found in the CNS of HIV-
infected individuals. This is because the precise concentration of Tat and other HIV proteins
in the CNS of HIV-infected individuals, and how those concentrations vary across different
regions of the CNS, is not known. This is an area that requires further study, and without it
the physiological relevance of these systems will remain unclear.

What is known is that Tat is secreted from infected cells (Ensoli et. al., 1990, 1993, Chang
et. al., 1997, Rayne et. al., 2010) and taken up rapidly by endocytosis (Frankel and Pabo et.
al., 1988, Mann et. al., 1991). This is also shown in Figures 2, 3 and 4, as well as in
supplemental Figure 1. These figures demonstrate that HEK 293 cells (Fig. 2, Suppl. Fig. 1),
midbrain mouse microglia (Fig. 3) and midbrain mouse neurons (Fig. 4) can both release
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and take up Tatyp; from the surrounding milieu. While the data presented here, as well as
other studies have shown uptake of Tat produced by infected cells, the extent to which this
occurs in human CNS cells such as neurons, astrocytes and microglia is not well-defined. In
HIV-infected primary CD4+ T-cells, while 2/3 of the Tat produced was released, the
concentration resulting from that release was only 0.25 nM Tat! (Rayne et al., 2010b). The
concentration of Tat in the serum of HIV+ individuals is around 0.1 nM, and from 0.1 and
0.4 nM in the media of cultures of HIV; g infected human H9 T-cells or cultures of
transfected mouse T53 cells (Albini et al., 1998; Westendorp et al., 1995). It is still not clear
how much Tat is present in specific regions of the human CNS, although 1 — 3 nM Tat can
potentiate or inhibit neurotransmitter release in rodent or human synaptosomes (Feligioni et
al., 2003; Musante et al., 2010; Zucchini et al., 2013). Further, the neurotoxic concentration
of Tat /n vivois unknown, although the amount of Tat needed to generate neurotoxicity /n
vitro has been studied extensively and found to be as low as 1 nM (Agrawal et al., 2012;
Bansal et al., 2000; Eugenin et al., 2003). Again, this suggests that very low amounts of Tat
could potentially impact neurological function. Like many small molecules, local
concentrations of Tat may be greater in different compartments, especially in highly infected
regions, such as the lymph nodes, lungs or specific regions of the CNS. However, because
the concentration and distribution of Tat in the human brain are not known, the extent to
which Tat mediates these effects in humans remains unclear.

These concerns are particularly acute regarding the analysis of data from animal models
with constitutive protein expression, because these models do not produce viral proteins by
means of the same regulatory process(es) as HIV infection. In these systems Tat is not
produced from the same type(s) or quantities of cells, nor from the same brain regions, as it
is in natural infection. Additionally, the Tat protein aggregates regularly, so it is possible that
constitutive production of Tat may produce larger and/or less active Tat multimers (Hategan
et al., 2016). Thus, degree to which the concentration, distribution and multimerization of
Tat in the CNS of these animal models approximates HIV-infected human CNS is not clear,
and therefore careful consideration must be given to the data derived from these systems.

The final caveat, which applies more specifically to animal models examining the effects of
Tat on the dopaminergic system, is the dissimilar size of the human brain relative to the
brains of primates and rodents (Barton and Harvey, 2000; MacLeod et al., 2003). These
increases in size not only lead to changes in the number of specialized sub-regions of the
CNS, they also create significant changes in the microstructure of the CNS (Passingham,
2009). Furthermore, while mammalian dopaminergic systems overall are fairly similar, (Joel
and Weiner, 2000; Johnston et al., 1990; Murphy et al., 1996) there are substantial
anatomical differences between rodents and primates, as well as some between humans and
lower primates. For example, in primates there is a distinct separation between the caudate
and the putamen that does not exist in rodents. There are species specific differences in the
proximity and orientation of globus pallidus and subthalamic nucleus, and the dopaminergic

170 better compare all experiments, the molar concentration of HIV-Tat in each experiment was calculated from the reported amounts
of Tat used in these studies. The molecular weight of HIV-1 Tat is 9860 Daltons (Da), or 9860 grams per mole. This means that 9860 g
of Tat (approximately 1 mole) in 1000 mL is approximately 1 M, and that 9860 ng in 1 mL is approximately 1uM. Using this
calculation, 1 ng/mL is equivalent to 0.1 nM, and 4 ng/mL is equivalent to 0.4 nM.
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terminals in those regions, relative to other dopamine-rich brain regions, and changes in the
amount and destination of striatal projections (Joel and Weiner, 2000; Zeiss, 2005). Primates
and rodents also show distinct ratios of different types of neurons in the substantia nigra
(Poirier et al., 1983). Primates have greater levels of dopaminergic innervation in the
thalamus than do rodents (Garcia-Cabezas et al., 2009), while humans have significantly
greater levels of dopaminergic innervation in the frontal cortex than do macaques (Raghanti
et al., 2009). Additionally, there are differences in the metabolism of dopamine and other
biogenic amines in rodents, primates and humans (Meiser et al., 2013). This could lead to
changes in the concentration and/or distribution of dopamine in the CNS, as well as the
response to different dopaminergic drugs. For example, the ratios of monoamine oxidases
(MAO) A and B are different in rodent versus primate brains, resulting in most dopamine
oxidation being carried out by MAO-A in rodent brains but MAO-B in primate brains
(Garrick and Murphy, 1980; Napolitano et al., 1995). These comments are not to say that
data from in vitro studies and animal models should be ignored, as they are extremely
valuable sources of information regarding the direct and indirect impact of HIV proteins on
dopaminergic neurotransmission. However, the important caveats associated with these
systems must be carefully considered when interpreting the data.

IV. Dopaminergic Neurotransmission, HIV infection and Tat

Dopamine (DA) plays a critical role in a number of CNS functions, including motor control,
reward, cognition, motivation, executive function, and maternal behavior (Beaulieu and
Gainetdinov, 2011; Klanker et al., 2013; Nieoullon, 2002; Nutt et al., 2015). Although
clusters of dopaminergic neurons can be found in several different regions of the CNS, the
majority of dopamine neurotransmission occurs within four known pathways, which are
shown in Figure 5. These pathways are the nigrostriatal pathway (pink), the
tuberoinfundibular pathway (orange), and the mesolimbic (red) and mesocortical pathways
(yellow). In the brain, dopamine is synthesized in dopaminergic and adrenergic neurons,
where the rate-limiting enzyme tyrosine hydroxylase (TH) converts L-tyrosine to L-DOPA,
the precursor of dopamine (Flatmark, 2000; Hornykiewicz, 2002). Dopamine can be
released via two distinct mechanisms. The first mechanism is through classical vesicular
release, while the second mechanism is through DAT-mediated dopamine efflux
(Gainetdinov et al., 1997; Goodwin et al., 2009; Jones et al., 1999b; Khoshbouei et al., 2003;
Wall et al., 1995). The second mechanism, DAT-mediated dopamine efflux, has been
predominantly studied in the context amphetamine and methamphetamine regulation of
dopamine release. Like other neurotransmitters, dopamine is released from synaptic vesicles
fused with the plasma membrane following an action potential (Sulzer and Galli, 2003;
Sulzer et al., 2005), shown in Figure 6. However, dopamine-transporter mediated dopamine
efflux transports dopamine from inside the neuron to outside via an action potential-
independent mechanism (Sulzer and Galli, 2003; Sulzer et al., 2005), albeit under certain
conditions, such as exposure to amphetamines, as detailed in Figure 7. Therefore, changes in
the firing rate of dopamine neurons and DAT-mediated dopamine efflux directly affect
dopamine concentration in the synapse and extracellular space (Butler et al., 2015).

Early in the HIV epidemic, it was shown that HIV infection impacts the dopaminergic
system and dopamine metabolism in the CNS (Berger et al., 1994; di Rocco et al., 2000;
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Kieburtz et al., 1991; Koutsilieri et al., 1997; Koutsilieri et al., 2002a; Koutsilieri et al.,
2002b; Larsson et al., 1991; Nath et al., 2000; Sardar et al., 1996; Silvers et al., 2006). Even
in the era of cART, several studies have shown HIV infection alters dopamine concentrations
and metabolism in the brain (Horn et al., 2013; Kumar et al., 2009; Kumar et al., 2011,
Meulendyke et al., 2014; Scheller et al., 2010). Elevated dopamine has been shown to
increase HIV infection of macrophages, the primary target for and source of HIV in the CNS
(Gaskill et. al., 2009, 2014), potentially creating a vicious cycle by which dopaminergic
dysfunction spurs greater infection, which then exacerbates dopaminergic dysfunction.
While previous studies have examined the effects of HIV infection and viral protein
expression on dopamine neurotransmission indirectly by evaluating changes in
dopaminergic proteins, the direct effects of HIV infection, or of the Tat protein, on the
regulation of firing activity or excitability of dopamine neurons in the brain remain
undetermined.

As shown in Figure 5, there are three primary clusters of DA neurons, two in the mid-brain
and one in the hypothalamus. In the midbrain, cluster A9 is found in the substantia nigra
pars compacta (SNc) and cluster A10 is in the ventral tegmental area (VTA). A third smaller
cluster, A8, can be found in the retrorubral area (RR) (Bjorklund and Dunnett, 2007; Fu et
al., 2012; Nestler, 2009; Zaborszky and Vadasz, 2001). Despite resembling each other in
many respects, dopamine neurons of the SNc and VTA area mediate distinct functions and
exhibit dissimilar responses to toxins and addictive agents (Choi et al., 2015; Teo et al.,
2004). Since the discovery of dopamine as a neurotransmitter (Carlsson et al., 1962) and the
observation that dopamine was significantly depleted in the SNc of patients with Parkinson’s
disease (Benazzouz et al., 2014; Hornykiewicz and Kish, 1987; Tremblay et al., 2015), the
regionally selective vulnerability of dopamine neurons has been the focus of a large number
of studies (Bernheimer et al., 1973; Braak and Braak, 1986; Braak et al., 2003; Burns et al.,
1983; Damier et al., 1999; Double et al., 2010; Fearnley and Lees, 1991; German et al.,
1992; Gibb and Lees, 1991; Greenfield and Bosanquet, 1953; Halliday and Tork, 1986;
Hirsch et al., 1989; Poulin et al., 2014).

It is not clear whether HIV infection or the Tat protein differentially affect distinct clusters
of dopamine neurons in the brain. This type of regional difference has been shown in the
differential vulnerability of dopaminergic neurons in the VTA and SNc when exposed to
neurotoxins such as MPTP (Elsworth et al., 1990; Rothblat and Schneider, 1994; Rothblat et
al., 2001; Schneider et al., 1987). Some patients with HIV dementia develop acute onset
Parkinsonism and dystonia when treated with dopamine receptor antagonists (Hriso et al.,
1991), and patients on cART can also develop parkinsonism (Tisch and Brew, 2009). In
methamphetamine-treated rodents, an intra-nigral infusion of 10 pg/pL (approximately 1
mM) Tat was shown to exacerbate Parkinson-like locomotor deficit (Liu et al., 2014). This is
consistent with reports showing methamphetamine-induced behavioral sensitization were
enhanced in HIV-1 Tg rats (Kass et al., 2010). These data suggest Tat might directly or
indirectly affect the cluster of dopamine neurons involved in regulation of locomotor
activity. Recent reports suggest VTA dopamine neurons might also be a target of the Tat
protein. In transgenic mice with doxycycline-induced Tat protein expression in the brain
(GT-tg bigenic mice), reward thresholds were elevated by 20% in Tat™ mice compared with
Tat™ mice. Additionally, dopamine levels were increased in the caudate putamen and
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decreased in the nucleus accumbens (Kesby et al., 2016b). Studies in this animal model have
also shown an increased sensitivity to cocaine-induced psychomotor responses in the Tat*
GT-tg bigenic mice (Paris et al., 2014a). These studies suggest Tat expression, in the absence
of active HIV replication, may target the dopaminergic neurons in the mesolimbic and
mesocortical pathways, although the specific mechanism remains undetermined. However, a
recent study by Fan and He, using a doxycycline-inducible, astrocyte-specific HIV-1 Tat
transgenic mouse model, demonstrated that increased Tat expression led to aggregation of
GFAP, and the induction of a UPR in astrocytes (Fan and He, 2016a). The induction of UPR
causes increased lysosomal exocytosis from astrocytes, which leads to astrocyte-mediated
neurotoxicity (Fan and He, 2016b). This data from the doxycycline-inducible animal model
suggests that Tat mediated neurotoxic effects may not be specific to dopaminergic systems,
and also reinforces the concerns noted above regarding the unknown effects of Tat
expression in animal models.

Although several studies using total striatal tissue homogenates from rodents have examined
the impact of Tat on DAT function, these are difficult to correlate with the precise
dopaminergic neurons clusters being affected due to the lack of anatomical specificity in the
homogenates. To address these concerns, future studies could examine the amount of Tat
expressed in different dopaminergic compartments in the brains of Tat-expressing animal
models. This could then be correlated with changes in the expression of dopaminergic
proteins such as DAT, TH or dopamine receptors in these regions.

In the substantia nigra, studies showed a significant decrease in tyrosine hydroxylase (TH)
and phosphorylated TH (pTH) in HIV-infected adult human tissues (Gelman et al., 2006;
Silvers et al., 2006). This suggests an alteration in dopamine production, as TH
phosphorylation at Ser40, and to a lesser degree at Ser31, increases TH activity and
subsequently catecholamine synthesis (Dunkley et al., 2004; Salvatore et al., 2001).
Additionally, in rodents stably transplanted with Tat-producing C6 glioma cells in the
striatum, Tat is transported from the striatum to the substantia nigra, resulting in
neurotoxicity and decreased TH expression in that region (Bruce-Keller et al., 2003). This is
consistent with reports by Zauli and colleagues showing a Tat-mediated decrease in TH
expression in rat neurons (Zauli et al., 2000). These data suggest dopaminergic neurons in
the substantia nigra may be more susceptible to Tat-induced neurotoxicity, providing an
alternate explanation for the reduction of TH staining in Tat exposed model systems.
Although the underlying mechanism(s) is not understood, these and other studies suggest
that HIV infection and/or Tat expression can result in a loss or dysfunction of dopamine
neurons in the substantia nigra (Itoh et al., 2000; Obermann et al., 2009a; Reyes et al.,
1991). Positron emission tomography studies have shown decreased DAT expression in the
putamen and ventral striatum of infected patients with HIV-associated dementia (Wang et
al., 2004); however, Gelman and colleagues found an increase in DAT expression in
postmortem human striatal tissue homogenate (Gelman et al., 2006).

This discrepancy might be due to the differences in the development of the infection, as HIV
infected patients who display dementia have decreased DAT levels as compared to those
with HIV who do not have dementia (Itoh et al., 2000; Wang et al., 2004). The disparate
conclusions might be due to methodological differences. For example, Itoh et al., examined
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the size and density of pigmented and non-pigmented neurons in the SNc; whereas, Gelman
et al., have used striatal tissue homogenate containing terminal regions. Overall, these and
other studies showing HIV and/or Tat-associated neuropathology in dopaminergic regions
may describe a potential mechanism for the clinical symptoms, such as Parkinson-like
movement disorders, bradykinesia, tremor or postural instability in HIV patients (Arendt et
al., 1994; Navia et al., 1986) even after antiretroviral therapy (Valcour et al., 2008).
However, the conflicting results of these studies, the relatively small number of region
specific studies and the relative difficulty of interrogating these questions /n vivo have kept
the precise mechanism(s) by which both HIV and/or Tat impact the dopaminergic system
unclear. Importantly, the specificity of the untoward effect(s) of Tat on dopaminergic
neurons in the SNc is unclear, as there is no information on the effects of Tat on other
neuronal types in this brain region. Therefore, further studies specifically examining the
effect of Tat and/or HIV infection on the activity of different clusters of dopaminergic
neurons and terminal regions are necessary to better understand and potentially treat the
various effects of Tat and/or HIV infection on dopamine neurotransmission.

V. Tat and Cognition: The Dopamine Link

Due to the success of combined antiretroviral therapy (CART), the prevalence of HIV-
associated neurocognitive disorders (HAND) is growing as individuals infected with HIV
live longer. While HIV infection of the CNS produces a variety of neurocognitive deficits,
(Anderson et al., 2015; Berger et al., 1994; Byun et al., 2016; Heaton et al., 2014; Janssen et
al., 2016; Plessis et al., 2015; Plessis et al., 2014), the mechanisms underlying these deficits
are poorly understood. Currently, between 40 and 70% of HIV-infected individuals suffer
from some form of HAND (Cysique et al., 2004; Heaton et al., 2010a; Heaton et al., 2011a;
Simioni et al., 2010; Tozzi et al., 2005), although the frequency of the more severe
pathologies and neurocognitive disorders such as encephalitis and HIV dementia has
declined significantly in the cCART era. Similarly, the frequency of individuals with HAND
who are asymptomatic or have minor cognitive impairments has significantly increased
(Ellis et al., 2007; Heaton et al., 2011a). While it is commonly accepted that
neuroinflammation and the resultant neurotoxicity play a central role in the development of
HAND, there are also a number of studies implicating alterations in neurotransmission in the
development of these disorders. Dopaminergic, glutamatergic and cholinergic
neurotransmission have all been studied as a central factor in the development of HIV-
associated neurological disorders (Fitting et al., 2010; Hargus and Thayer, 2013; Koutsilieri
et al., 2000; Ozdener, 2005).

Prior to cART, numerous studies found that patients with HIV Associated Dementia (HAD)
exhibit many symptoms common to diseases involving dopaminergic dysfunction, such as
damage to the basal ganglia and substantia nigra, psychomotor impairment, attention
difficulties, obsessive ruminations and decreases in coordination (Aylward et al., 1994;
Aylward et al., 1993; Czub et al., 2001; Itoh et al., 2000; Kieburtz et al., 1991; Koutsilieri et
al., 2001; Maj, 1990; Nath et al., 1999; Navia and Price, 1987; Reyes et al., 1991; Sardar et
al., 1996). Individuals with HAD on stable cART therapy also show decreased DAT
availability in the putamen and ventral striatum, correlating with decreased neurocognitive
performance (Chang et al., 2008; Wang et al., 2004). Similar results show association
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between dopamine deficits, microglial activation and regulation of cAMP signaling in the
brains of SIV-infected monkeys (Jenuwein et al., 2004; Scheller et al., 2005). Moreover, this
and other studies have identified a direct correlation between the higher plasma viral load in
patients with HIV dementia and lower DAT expression in the caudate and putamen (Berger
et al., 1994; Kramer and Sanger, 1990; Wang et al., 2004). As discussed above, recent
studies suggest Tat may influence dopamine neurotransmission by altering DAT function
(Midde et al., 2012; Midde et al., 2015b; Yuan et al., 2015b; Yuan et al., 2016; Zhu et al.,
2009), and therefore some portion of HIV-mediated cognitive impairment may be the result
of impaired dopaminergic neurotransmission due to dysfunction in dopamine transporter
proteins. This will be discussed in detail in the following section.

Supporting this idea, several studies treating animals with Tat alone have demonstrated
cognitive and behavioral impacts similar to those seen in HIV-infected individuals. Studies
using GT-tg bigenic mice have found that doxycycline induction of Tat produces deficits in
working and spatial memory. Also, MRI studies in these mice have found a significant
reduction in gray matter in areas associated with learning and memory including the
entorhinal cortex, hippocampus and amygdala (Carey et al., 2013). Studies in this animal
model also suggest the association of Tat with other psychiatric complications. One week of
doxycycline-mediated Tat induction produced anhedonia, increased the animals’ sensitivity
to psychostimulant-induced reward enhancement (Kesby et al., 2016b), and also increased
anxiety-like behaviors (Paris et al., 2014b). Similar symptoms can be found in HIV infected
individuals, who also display an increased propensity for anxiety disorders and disruption of
the reward system (Anderson et al., 2015). In a rat model, intra-hippocampal injection of Tat
disrupts the acoustic startle response and pre-pulse inhibition (Fitting et al., 2006). Pre-pulse
inhibition (PPI) is a neural mechanism is used to measure adaptive inhibition mechanisms,
and has been shown to be decreased in patients with HAND, but not HIV-infected
individuals without neurocognitive deficits (Minassian et al., 2013). It is important to note
that while suggestive of a direct link with Tat, none of these studies have examined the
amount or distribution of Tat in the brain region(s) relevant to the reported
neurophysiological measures described above, therefore, the causal bearing of these effects
requires further investigation.

Notably, these studies are all focused on the shorter-term impact(s) of Tat on cognition, with
the longer-term neurological consequences of Tat exposure not being studied. However, the
pivotal role of dopamine neurotransmission in synaptic plasticity and cognition are well
established (Backman et al., 2010; Jay, 2003; Otani et al., 2003); therefore, Tat-mediated
disruption of DAT function may also impact synaptic plasticity. Treatment of rat CA1
hippocampal slices with Tat suppresses long-term potentiation (LTP), which is representative
of suppression of learning and memory (Behnisch et al., 2004; Li et al., 2004). Tat also
affects synaptic plasticity by decreasing excitatory synapses and increasing inhibitory
synapses (Fitting et al., 2013; Hargus and Thayer, 2013), by altering the expression of
dendritic spines and distribution of synaptic proteins (Fitting et al., 2010; Hahn et al., 2015)
and by modulating interaction between microglial-neuronal “synapse” interaction (Tremblay
et al., 2013). Only one behavioral study has examined the long-term effect of Tat on
cognition (Hahn et al., 2015). Hahn and colleagues found mice expressing Tat in the CNS
for 3 months exhibited deficits in open-field ambulation, with male mice also demonstrating
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motor memory deficits, both behaviors linked to dopaminergic damage (Hahn et al., 2015).
It is essential to increase the number of long-term studies examining the prolonged effect(s)
of Tat on cognition, because as antiretroviral therapies continue to improve, so will the
number of long-lived HIV-infected individuals with expression of viral proteins in the CNS.
Collectively these data strongly suggest HIV and Tat alone can impact the dopaminergic
system and thus cognition. Therefore, it is critical to conduct further research addressing the
medium and longer term impact of HIV infection and Tat on dopamine-driven cognitive
processes, so that we are better prepared to treat the deficiencies resulting from living with
HIV long-term.

VI. Tat and Dopamine Transporter Function

The dopamine transporter (DAT) plays a central role in dopaminergic neurotransmission as
the primary regulator of extracellular dopamine concentrations. The DAT removes dopamine
from the synapse by transporting it into the pre-synaptic neuron across the plasma
membrane using the concentration gradient generated by Na*/K* ATPase (Khoshbouei et al.,
2003; Sonders et al., 1997). Dopamine returned to presynaptic neurons is then placed in
synaptic vesicles for storage and reuse. The reuptake process is critical, as it controls the
magnitude and duration of dopamine receptor activation on the pre- and postsynaptic
neurons (Gainetdinov et al., 1999; Sulzer et al., 2016). Loss of DAT activity leads to
decreased tissue dopamine levels (Jones et al., 1999a; Rocha et al., 1998; Salahpour et al.,
2008; Zhuang et al., 2001) and has been implicated in several neurodegenerative diseases,
attention deficit hyperactivity disorder (ADHD), and altered sensitivity to psychostimulants
(Bowton et al., 2010; David et al., 2008; Mazei-Robison et al., 2008; Nakamura et al., 2010;
Volkow et al., 2014). A significant number of studies over the last 20 years have led to the
discovery of molecular and cellular mechanisms involved in DAT regulation and it
availability at the plasma membrane of the dopamine neurons. A plethora of different
kinases, scaffolding proteins, and receptors regulate DAT-mediated dopamine uptake,
dopamine efflux, conformational state of DAT, oligomerization, and trafficking of the
transporter (Aksenov et al., 2008; Bowton et al., 2014; Cartier et al., 2015; Fog et al., 2006;
Guptaroy et al., 2009; Hamilton et al., 2014; Hansen et al., 2014; Kahlig et al., 2005;
Khoshbouei et al., 2004; Lute et al., 2008; Reddy et al., 2016; Sakrikar et al., 2012; Speed et
al., 2011; Wei et al., 2007). The cell specificity and complexity of DAT regulation highlight
the potential perils of cursory approach when examining Tat modulation of DAT function.
There are a number of studies in the field that have begun to describe the effect of HIV-1 Tat
on the activity of DAT (Aksenova et al., 2006; Bucci, 2015; Ferris et al., 2009; Midde et al.,
2012; Midde et al., 2013; Midde et al., 2015a; Zhu et al., 2016). While these and other
recent studies suggest Tat may interact with DAT to modulate its functions, technical
limitations such as the lack of available Tat specific antibodies and the large amount of Tat
used in these studies limit interpretation (Midde et al., 2012; Midde et al., 2013; Midde et
al., 2015a; Yuan et al., 2015a; Yuan et al., 2016; Zhu et al., 2011; Zhu et al., 2009; Zhu et al.,
2015). Despite these limitations, these studies suggest the effects of HIV infection on the
dopaminergic system may, at least in part, be mediated by Tat-specific changes in DAT
function. (Chang et al., 2008; Maragos et al., 2003; Perry et al., 2010; Wang et al., 2004). In
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order to build upon these results, future studies should focus on examining the molecular
mechanisms in the biologically relevant model systems using Tat specific antibodies.

HIV-infected patients who display dementia have decreased DAT levels as compared to both
controls and those with HIV who do not have dementia. Specifically, the loss of DAT
molecules is most apparent in the caudate and putamen region, similar to Parkinson’s
disease and other frontal-striatal pathologies (Itoh et al., 2000; Wang et al., 2004). Though
the loss of DAT has been implicated in HIV infection of the CNS, and the Tat protein has
been shown to regulate DAT activity through decreased DAT expression, a correlation has
not been fully established between the rate of HIVV-mediated CNS disease progression, loss
of neuronal activity and ultimately neuronal damage or death. Therefore, future studies are
needed to measure decreased DAT activity at earlier stages of HIV infection using acutely
infected individuals prior to the initiation of therapy, and to measure Tat production and loss
of DAT at the later stages of HIVV-mediated neurological disorders.

Several studies reported that Tat, in the absence of viral replication, may negatively affect
dopamine transmission by targeting DAT activity, without affecting total DAT levels in
striatal homogenates. In rat striatal synaptosomes, Tat reduced DAT mediated dopamine
uptake without changing total DAT immunoreactivity (Aksenova et al., 2006; Wallace et al.,
2006; Zhu et al., 2009), although changes in the distribution of DAT to the membrane and
intracellular compartments were not examined. As functional DAT molecules are located at
the plasma membrane (Bowton et al., 2010; Bowton et al., 2014; Cremona et al., 2011,
Sakrikar et al., 2012), a decrease in DAT activity usually correlates with increased
intracellular DAT, as internalization represents decreased activity of the transporter.
However, it is possible that direct or indirect (via DAT’s partner proteins) interaction
between DAT and Tat reduces DAT activity by altering DAT conformation to obscure DA
binding sites on DAT molecules without affecting its trafficking. Consistent with the latter
hypothesis, DAT antagonists have shown to block both the activity and trafficking of the
transporter. As the protein is readily detected in tissues or cell lysates, immunolabeling of
membrane DAT should be used to more conclusively determine the mechanism(s) of Tat
mediated changes in DAT function.

To date there is only one study that has directly examined the role of Tat in the highly
regulated cellular processes controlling DAT. This study examined Tat regulation of cell
surface redistribution of DAT, and indicated that Tat may induce DAT internalization via a
PKC dependent mechanism (Midde et al., 2012). It is not known, however, whether Tat
affects regulated DAT trafficking, i.e. amphetamine or methamphetamine regulation of DAT
trafficking, or cocaine-induced increases in DAT at the plasma membrane (Daws et al.,
2002). Recent studies by Blakley and colleagues have shown that PKC-regulation of the
constitutive and regulated DAT trafficking is complex. Accelerated rates of constitutive
endocytosis and recycling of DAT may show no change in the total or surface DAT, but
significantly affect the kinetics of DAT trafficking (Mazei-Robison et al., 2008; Sakrikar et
al., 2012). Given the relatively high percentage of HIV+ individuals who abuse
psychostimulants (Beyrer et al., 2010; Crime, 2014; Mathers et al., 2008), it is important to
determine whether and how Tat affects the kinetics of DAT at the plasma membrane
following methamphetamine or cocaine exposure. For example, it has been shown that
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amphetamines’ regulation of DAT trafficking is two-fold; they cause DAT internalization
(Guptaroy et al., 2009; Holton et al., 2005; Hong and Amara, 2013; Kahlig and Galli, 2003;
Kahlig et al., 2006; Moron et al., 2003; Mortensen and Amara, 2003; Saunders et al., 2000;
Wu et al., 2015) via CaMKII and PKC-dependent mechanisms as well as a DAT-dependent
membrane depolarization (Boudanova et al., 2008; Hong and Amara, 2013; Mortensen et al.,
2008; Navaroli et al., 2011; Richardson et al., 2016). This suggests DAT trafficks via a
voltage-dependent mechanism in addition to PKC- and CaMKII-mediated DAT
phosphorylation. On the contrary, cocaine has been shown to rapidly increase surface DAT
level (Daws et al., 2002). Therefore, a careful examination of the Tat regulation of DAT
trafficking will provide critical mechanistic information on how acute or prolonged exposure
to Tat regulates dopamine neurotransmission.

Though the time-dependent and the precise level of Tat in the CNS of HIV-infected
individuals are unknown, studies have shown that much higher concentrations of Tat,
between 1 and 10 pM, decrease dopamine uptake through DAT (Aksenov et al., 2008; Zhu et
al., 2009). But it is not clear whether Tat directly or indirectly regulates dopamine uptake by
modulating the activity of other membrane proteins or intracellular targets known to
modulate dopamine uptake via DAT. As an example, estrogen appears to reduce Tat
enhancement of oxidative stress and protect against DAT loss (Wallace et al., 2006). This
may explain why male mice exposed to Tat have more severe motor deficits and greater
changes in striatal neuronal morphology as compared to their female counterparts (Hahn et
al., 2015). Recent studies have generally focused on the outcome of the interaction of Tat
and DAT, but the mechanism underlying this potential interaction remains unclear. Studies
by Zhu et al. suggest Tat acts as an allosteric modulator of DAT, as opposed to a reuptake
inhibitor or a substrate-type releaser (Zhu et al., 2011; Zhu et al., 2009).

Surface plasmon resonance analysis performed in rat striatal synaptosomes suggests Tat
directly interacts with DAT in a concentration-dependent manner (Zhu et al., 2009).
Additional studies from this group concluded that Tat binds to Tyr470 on the DAT, as
mutation of this residue attenuated the effects of Tat on dopamine uptake in CHO cells
transfected with human DAT (Midde et al., 2013). Interactions with the DAT residues Tyr88
and Lys92 have been shown to be required for Tat mediated inhibition of DAT, as mutation
of these residues also altered the DAT response to Tat binding (Midde et al., 2015a; Yuan et
al., 2015a). Studies by Yuan et al. (2015) suggest Tat may stabilize the inward facing
conformation of DAT, which limits the availability of extracellular dopamine binding sites
on the transporter molecule, thereby attenuating dopamine uptake (Midde et al., 2015a; Yuan
et al., 2015a). However, it is not clear whether Tat regulation of dopamine uptake is a
consequence of its binding to the external or internal domains of DAT molecules.
Additionally, as the specificity of Tat/DAT interaction has not been examined, it is possible
that Tat modulates DAT activity through indirect binding to different membrane proteins.
Future studies in this area should address these possibilities, and also address the fact that
dopamine uptake and efflux are independently regulated (Khoshbouei et al., 2004). This
would enable determination of whether Tat simply increases the inward facing conformation
of DAT that is expected to increase dopamine efflux, or if it acts as an antagonist to block
both uptake and efflux.
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Currently, there is no information about Tat regulation of DAT conductance and biophysical
properties of the transporter. The molecular and biophysical mechanism by which the
Tat/DAT interaction governs DAT function, the potential Tat-mediated alterations in Na*/CI~
coupling of DAT molecules, lipid rich versus lipid poor membrane distribution of the
transporter, the kinetic of DAT trafficking, its interaction with partner proteins or its
phosphorylation levels, all of which known to regulate DAT activity, are yet to be
determined (Butler et al., 2016; Cervinski et al., 2010; Cremona et al., 2011; Erlendsson et
al., 2014; Foster and Vaughan, 2011; Hong and Amara, 2010; Pizzo et al., 2013; Sakrikar et
al., 2012; Sorkina et al., 2013). While further investigation is necessary to determine the
mechanism(s)by which Tat regulates DAT activity and the firing activity of dopamine
neurons, the existing literature suggest that Tat alters dopamine neurotransmission within the
CNS. This is consistent with the susceptibility of HIV-1 infected patients to abuse of illicit
drugs, such as cocaine and methamphetamine, that target monoaminergic systems such as
midbrain dopamine neurons (Goodwin et al., 2009; Lin et al., 2016; Saha et al., 2014), and
to the higher sensitivity of (GT-tg bigenic mice) mice to psychostimulants (Kesby et al.,
2016a; Mediouni et al., 2015a; Paris et al., 2014a). Further developing our understanding of
the precise mechanism(s) by which of Tat regulates DAT might be a key in the development
of effective therapeutic approaches designed to ameliorate the damaging and disruptive
effects of Tat and HIV infection on DAT activity and the dopaminergic system.

VII. Tat and Dopamine Receptors

The data described above suggest Tat is involved in at least some of the dopaminergic
dysfunction described in HIV-infected individuals. While studies clearly show a link
between Tat and DAT, the direct effect(s) of Tat on the dopamine receptors is unclear.
Dopamine mediates its regulatory actions by means of G-protein coupled receptors (GPCR)
called dopamine receptors, which can be separated into two subtypes: D1-like (D1 and D5)
and D2-like (D2, D3 and D4) receptors (Figure 6). The D1-like receptors couple to Gagoif,
activating adenylyl cyclase and D2-like receptors couple to Gajq, inhibiting it. The
difference subtypes of dopamine receptors also activate a number of other distinct and
overlapping signaling pathways. (Beaulieu and Gainetdinov, 2011; Missale et al., 1998).

There are few studies investigating the direct interaction of dopamine receptors and Tat. A
number of studies by Booze and colleagues have found, in rat midbrain neurons, blockade of
D1-like receptor by SCH23390 decreases the neurotoxic effects of Tat in the presence or
absence of methamphetamine (Aksenova et al., 2006; Silvers et al., 2007). These data
suggest that D1-like receptors play a role in Tat-mediated neurotoxicity, albeit with a less
understood molecular mechanism. There are even fewer studies that have specifically
examined the interaction of Tat with D2-like dopamine receptors, either on neurons or on
cell types such as macrophages, which are infected with HIV and express D2-like receptors
(Gaskill et al., 2009; Gaskill et al., 2012). In a recent study, Gaskill and colleagues proposed
there might be a link between HIV entry and Ca2* flux that is mediated by activation of both
D1-like and D2-like receptors, but this study did not investigate the specific interaction of
the Tat protein with either subtype of dopamine receptor (Gaskill et al., 2014).
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This paucity of data suggests that there is a significant need for studies directly addressing
the impact of Tat on dopamine receptor mediated signaling. To this end, other studies
examining the impact of Tat on other drug-related GPCR, such as opioid and cannabinoid
receptors, might provide a template for investigation of possible mechanisms for Tat
regulation of dopamine receptors. For example, studies by Turchan-Cholewo et al. found
that Tat prevented morphine-induced downregulation of opioid receptor expression on the
plasma membrane of microglia and astrocytes (Turchan-Cholewo et al., 2008). A more
recent study found that macrophage migration toward the Tat protein was significantly
inhibited by endogenous cannabinoid agonists for the CB2 receptor (Raborn and Cabral,
2010). These reports suggest Tat could potentially influence multiple cellular processes,
such as receptor expression and cell migration, potentially through interactions with GPCR.
G -subtype coupled receptors are promiscuous, where the nature of host environment will
determine their signaling outcomes. Thus, it is possible that Tat-GPCR interactions mediate
diverse signaling cascade per the nature of host system and its level of activity. Future
investigations will determine the specific molecular interaction(s) between the dopamine
receptors and Tat, and the possible functional outcomes of this interaction.

VIII. Tat and Psychostimulant Abuse

Throughout the AIDS epidemic, drug abuse has been an important comorbidity in HIV
infection (El-Bassel et al., 2014; Halkitis et al., 2001; Kumar et al., 2014; Vongsheree et al.,
2001). Substance abuse is far more common among HIV-infected individuals than in the
general population (Beyrer et al., 2010; Crime, 2014; Mathers et al., 2008), and increases the
risk of acquiring HIV infection by engendering risky behaviors (El-Bassel et al., 2014;
Halkitis et al., 2001; Huff, 2006), but the biological effects of drugs of abuse on HIV
infection are less clear. While a number of studies have found that psychostimulant abuse
accelerates the progression of HIV and related diseases, irrespective of its effects on
adherence (Baum et al., 2009; Burbano et al., 2001; Kipp et al., 2011; Lucas et al., 2006;
Moore et al., 2004; Webber et al., 1999), other reports contradict this finding. (Cofrancesco
et al., 2008; Edelman et al., 2015; Milloy et al., 2016; Thames et al., 2016).

The effects of drugs of abuse on HIV neuropathogenesis are similarly unclear. A number of
studies have found that the interaction of HIV and drug abuse accelerated neuropathology
and/or neurocognitive dysfunction, compared with both non-HIV infected drug abusers
(Gray et al., 1992; Makrigeorgi-Butera et al., 1996) or HIV-infected non-drug abusers
(Carey et al., 2006; Kousik et al., 2012; Langford et al., 2003a; Meade et al., 2011b; Nath et
al., 2002; Rippeth et al., 2004; Starace et al., 1998; Tomlinson et al., 1999). However, many
of these studies examine therapy-naive individuals, and several studies have also shown that
drug abuse combined with HIV has little impact on cognition (Basso and Bornstein, 2003;
Byrd et al., 2012; Byrd et al., 2011a). Therefore, the precise impact of drug abuse on the
development of HIV-associated neurocognitive disorders, particularly in the era of cART
remains undefined. Numerous studies have also examined specifically the effects of the Tat
protein in conjunction with drugs of abuse, both as a surrogate for general HIV infection and
as a stand-alone protein (Bokhari et al., 2009; Cass et al., 2003; El-Hage et al., 2008; El-
Hage et al., 2005; Fitting et al., 2014; Flora et al., 2005). Much of this data is summarized in
several excellent recent reviews (Fitting et al., 2015; Hauser and Knapp, 2014; Maubert et
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al., 2015; Mediouni et al., 2015b), thus this section will focus on the direct impact of Tat
specifically on the dopaminergic system.

In both the pre- and post-CART eras, research in infected individuals has shown high levels
of HIV infection and associated neuropathology throughout the basal ganglia (Aylward et
al., 1993; Becker et al., 2011; Fujimura et al., 1997; Gongvatana et al., 2013; Hestad et al.,
1993; Vera et al., 2016; Wright et al., 2014; Yiannoutsos et al., 2004) where the highest
density of dopaminergic terminals are located (Alexander et al., 1986; Haber, 2014;
Lanciego et al., 2012). Therefore, the neurotoxic effects of psychostimulants, such as
cocaine and methamphetamine, on the dopaminergic terminals are predicted to be
exacerbated in during HIV infection. These drugs directly target dopamine neurons in the
basal ganglia, and increase CNS dopamine by blocking dopamine reuptake (Ritz et al.,
1987; Volkow et al., 1997) and inducing dopamine efflux (Branch and Beckstead, 2012;
Goodwin et al., 2009; Sulzer et al., 2005).

Although the underlying mechanisms for the interaction between HIV and
methamphetamine are not fully understood, methamphetamine seems to synergize with Tat
to affect a number of neurocognitive processes (Mediouni et al., 2015a), including direct
damage the dopaminergic system. Using proton magnetic resonance spectroscopy (*H-
MRS), Chang and colleagues have found additive effects of HIV and chronic
methamphetamine abuse on brain metabolite abnormalities (Chang et al., 2005). In an /n
vivo rodent model, Tat and methamphetamine synergistically increase loss of striatal
dopamine terminals (Cass et al., 2003; Maragos et al., 2002; Theodore et al., 2006g;
Theodore et al., 2006b; Theodore et al., 2007). The cooperative effects of Tat and
methamphetamine have also been shown to enhance the motor-stimulant response to a
recurrent exposure to methamphetamine, a demonstration of behavioral sensitization (Liu et
al., 2009). One possible mechanism by which methamphetamine could enhance the effects
of Tat in humans is through an increase in extracellular dopamine by inhibition of dopamine
uptake, which could increase HIV replication (Gaskill et al., 2009; Scheller et al., 2000).
However, the synergy between methamphetamine and Tat seen in the studies described
above cannot result from this mechanism because there is no HIV replication in rodents.

In vitro studies also show Tat and methamphetamine synergistically increase the
neurotoxicity in human fetal cortical dopaminergic neurons (Maragos et al., 2002) and
rodent midbrain neurons (Aksenov et al., 2012) relative to either substance alone. Similarly,
in SH-SY5Y (neuroblastoma) cells, Tat and methamphetamine together induce a small but
significant increase in apoptosis (Qi et al., 2011). In methamphetamine treated rats, where
Tat was delivered directly to the substantia nigra, Tat potentiated methamphetamine induced
dopamine deficits in the striatum and enhanced deficits in dopamine-driven behaviors such
as the rotarod and open field tests (Liu et al., 2014). Rodents treated with both Tat and
methamphetamine show 60% — 78% reductions in the basal ganglia dopamine levels,
particularly striatal dopamine levels. These are accompanied by a severe loss of tyrosine
hydroxylase (TH) immunoreactivity relative to animals treated with Tat or
methamphetamine alone (Cass et al., 2003; Maragos et al., 2002; Theodore et al., 2006b).
The loss of TH positive neurons in dopaminergic regions may also be the mechanism by
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which Tat exaggerates methamphetamine-mediated disruption of pre-pulse inhibition
(Moran et al., 2012).

Notably, serotonin levels in the CNS of these animals are unaffected (Maragos et al., 2002),
suggesting that the interaction of Tat and methamphetamine uniquely impacts the
dopaminergic system. Similar data are found in human HIV-infected methamphetamine
abusers, who are at increased risk for basal ganglia dysfunction (Chang et al., 2005; Taylor
et al., 2007) and show decreased levels of the brain metabolite A-acetylaspartate (NAA), a
marker correlated with dementia and other neuropathological disorders (Ben Salem et al.,
2003; Enzinger et al., 2004; Griffith et al., 2008).

Cocaine has also been shown to increase viral replication in macrophages (Swepson et al.,
2016), as well as Tat-induced oxidative stress and neurotoxicity in rat hippocampal neurons
(Aksenov et al., 2006). In mice treated with Tat, cocaine has been shown to induce a
hyperdopaminergic tone suggesting a profound dysregulation of dopamine transmission in
these animals (Ferris et al., 2010). These data suggest cocaine and methamphetamine may
potentiate Tat-induced damage to dopaminergic terminals. Changes in the dopamine-
regulated behavioral responses in rodents exposed to Tat and cocaine support this
conclusion. Rats injected with Tat and treated with cocaine show a significant elevation in
cocaine-induced locomotor behavior relative to control (Harrod et al., 2008). Expression of
Tat in the CNS of animals treated with cocaine results in increased conditioned place
preference to cocaine (Paris et al., 2014a), increased sensitivity to the reinforcing effects of
cocaine and an increased abundance of low-affinity DAT binding sites in animals receiving
chronic cocaine (Mclntosh et al., 2015). Because HIV does not infect neurons directly, nor
do rodent models involve HIV replication, it is not yet clear how well these data model the
impact of Tat on the human dopaminergic system during HIV infection. However, there are a
number of similarities between the neurobiological and behavioral effects seen in rodents
and humans. Taken together with the data discussed in earlier sections, these data suggest
the direct effects of Tat on the dopaminergic system could be amplified by the concurrent
use of psychostimulants, resulting in a much broader impact on dopamine system that is
induced by either Tat or drugs of abuse alone.

IX. Tat and Other Substances of Abuse

Unlike psychostimulants, other drugs of abuse such as opioids, as well as a number of legal
abused substances, such as cannabinoids, nicotine and alcohol indirectly act on the
dopaminergic system. Opioids, cannabinoids and nicotine act primarily through their
cognate receptors (Dani et al., 2011; Iversen, 2003; Pathan and Williams, 2012), while
alcohol has effects on multiple receptor systems including GABA, opioid and cannabinoid
receptors (Cruz et al., 2008; Cui et al., 2013). While the use of these drugs does not directly
increase CNS dopamine, they do increase extracellular dopamine concentrations through
activation of the mesolimbic dopaminergic system, with the precise mechanism and release
pattern varying with the substance used (Dani et al., 2011; Di Chiara, 1995; Fadda et al.,
2005; Nestler, 2005; Vander Weele et al., 2014; Yorgason et al., 2014).
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The neuropathological interactions of Tat with different drugs of abuse have been studied
extensively, particularly in conjunction with opioids, but relatively little research has
examined the direct effects of Tat and non-psychostimulant drugs on dopaminergic
neurotransmission. Studies show that Tat in conjunction with morphine induces large
reductions in dendritic spine density within the striatum (Fitting et al., 2010). This brain
region has the highest number of DAT-positive terminals, and damage to this region may
enhance LTD (Monfils and Teskey, 2004; Nagerl et al., 2004; Zhou et al., 2004). Further,
dendritic spines aid in neurotransmission and plasticity (Chen et al., 2014), and alterations in
dendritic spines in dopaminergic regions could accelerate the development of dopaminergic
dysfunction in HAND. Indeed, both postmortem and fMRI studies of patients with HIV-1
have revealed extensive white matter and cortical damage along with large losses in
neocortical dendrites (Archibald et al., 2004; Masliah et al., 1992). Additionally, increases in
neuronal intracellular of Ca2* induced by Tat and opioids in astrocytes and neurons
(Haughey et al., 1999) could disrupt alternative dopamine receptor signaling through the
PLC / Gqq pathway (Beaulieu and Gainetdinov, 2011; Bergson et al., 2003), as well as
damage to dopaminergic neurons (Fitting et al., 2014).

In addition to opioids, a few studies also suggest that the substances nicotine, cannabinoids
and ethanol may also synergize with Tat to impact the dopaminergic system. In rats,
injection of Tat into the VTA alters nicotine-induced locomotor activity as well as CAMP
and ERK1/2 signaling (Zhu et al., 2015). As nicotine can modulate dopamine release
through nicotinic acetylcholine receptors expressed on dopaminergic neurons in the VTA
(Zoli et al., 2002), these data suggest Tat may modulate the impact of nicotine on
dopaminergic neurons in this region. Research on the synergistic effects of cannabinoids and
Tat have shown that the injection of Tat into the pre-frontal cortex of rats induced a decrease
in GABAergic neurotransmission, which could be blocked with a CB1R antagonist (Xu et
al., 2016). Hyperpolarization of GABAergic neurons can result in excitation of
dopaminergic neurons through disinhibition mechanism (Johnson et al., 1992). Therefore,
these effects could also increase dopamine concentrations in the pre-frontal cortex.
Moreover, in Gt-tg bigenic mice, there is a 3-fold increase in ethanol-induced conditioned
place preference (McLaughlin et al., 2014), suggesting that Tat potentiates the rewarding
effects of alcohol. The biological relevance of these effects is not clear; future research will
reveal whether Tat directly or indirectly alters dopaminergic neurotransmission and
behavioral sequelae. Nevertheless, together with the findings detailed in the previous
section, these data suggest Tat could have a significant impact on the dopaminergic system
in the CNS of drug abusers, albeit with less understood mechanism. Further studies
specifically evaluating the impact of Tat on the dopaminergic effects induced by different
types of drugs of abuse are needed to help develop drug-type specific therapies for HIV-
infected substance abusers using those substances.

X. Concluding remarks

This review has examined recent investigations into the interactions between the Tat protein
and dopaminergic neurotransmission. The studies described herein provide a large amount
of information regarding the impact of HIV, and the Tat protein, on the brain, specifically
regarding neurotransmission. Although we have seen correlations between HIV infection

Neurobiol Dis. Author manuscript; available in PMC 2018 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gaskill et al. Page 21

and dopaminergic dysfunction for more than 20 years, understanding the causal
mechanism(s) requires further investigation. The majority of the existing studies have
examined the effects of Tat in the context of individual brain structures or heterologous
systems /n vitro, resulting in a great deal of information about the neurotoxic and
immunomodulatory effects of Tat. Over the past decade there have also been a small but
growing number of studies examining the effects of HIV and Tat on dopaminergic system
proteins, using both /n vitro systems and rodent models, and this is the area of research that
has been and needs to continue to grow. However, as noted above, while data from model
systems and /n vitro studies are valuable, they come with significant caveats, and further
efforts should be made to better correlate these research modalities with the hallmarks of
HIV neuropathogenesis in the human brain.

Future studies warrant development of more sophisticated and relevant animal models that
accommodate the current problems and lack of information regarding the expression,
localization and concentration of Tat in the CNS. Animal models must also carefully account
for the significant species specific differences between primate and rodent dopaminergic
systems (Garcia-Cabezas et al., 2009; Garrick and Murphy, 1980; Raghanti et al., 2009).
Additional investigation is needed to elucidate the possible differences in the mechanism(s)
by which Tat alters neuronal circuits and affects communication in distinct brain regions. For
instance, it is not clear if the untoward effects of Tat are similar between the dopamine
neurons in the ventral tegmental area involved in motivated behavior and the more sensitive
dopamine neurons in the substantia nigra involved in movement disorder, or if other regional
differences exist. Technological advances in imaging and electrophysiology, as well as the
development of more sophisticated rodent models, can further reveal how synaptic
connectivity is altered in response to HIV-1 Tat.

Improving our understanding of the effect of HIV on dopamine transmission is of specific
importance, because a substantial percentage of the HIV-infected population abuse illicit
drugs that directly or indirectly target the dopamine system. Further, significant numbers of
HIV infected individuals suffer from psychiatric disorders, such as major depressive disorder
or generalized anxiety disorder (Brandt, 2009; Jallow et al., 2017; Nanni et al., 2015; Salters
etal., 2016). HIV induced changes in dopaminergic neurotransmission could worsen the
impact of drugs of abuse, or hinder the effectiveness of different treatments for mental
illness. Overall, a better understanding of the mechanism(s) by which Tat interactions with
and disrupts the dopaminergic system will provide better avenues for treatment of HIV-
associated neurocognitive disorders, and perhaps a greater understanding of the overall
mechanism of HIV neuropathogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. lllustration of the different regions of the HIV-1 Tat protein
The first exon of the HIV-1 Tat protein, which can be found is all three forms of the protein

(e.qg., Taty_7, Taty.gg, and Taty_101), IS composed of five distinct regions: an acidic or proline
(Pro)-rich domain (the N-terminal), a cysteine (Cys)-rich domain, a core domain, a basic or
arginine (Arg)-rich domain, and a glutamine (GlIn)-rich domain (the C-terminal). The second
exon of the HIV-1 Tat protein, which spans from amino acid residues 73-101, comprises the
integrin binding modality and can be found in two forms of the protein (e.g., Tat;_gg and
Tatj.101). Note that the letters N and C represent the N-terminal and C-terminal of the

protein, respectively.

Neurobiol Dis. Author manuscript; available in PMC 2018 September 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Gaskill et al.

Page 42

Flag-Tat

Conditioned Media ® Direct Transfection »

Flag-Tat

Figure 2. HIV-1 Flag-Tat;-191 Uptake In HEK cells
A. HEK cells were transfected with 1 ng of a plasmid containing the HIV-1 FLAG-Tat1g;

gene (pcDNA3.1+/Tatyg1-flag(PEV280), NIH AIDS Reagent Cat. No. 10453),
immunostained with the monoclonal ANTI-FLAG® M2 primary antibody (Sigma-Aldrich,
St. Louis, MO, USA) and secondary antibody conjugated to Alexa 488, and imaged 72 hours
post-transfection on a Nikon Multiphoton/Super Resolution Imaging System (Nikon
A1RMPsi-STORM 4.0, 20X Magnification). N = 5 independent experiments. B. A separate
set of HEK cells was incubated with conditioned media containing the HIV-1 Flag-Tat
protein for 48 hours, immunostained as above, and imaged (20X Magnification). Flag-Tat is
detected in virtually all cells under this experimental configuration. As shown in the image,
almost all cells express Flag-Tat. N = 6 independent experiments. Scale bar = 50 um. C.
Depth-coded 3D Z-stack of HEK cells from panel B.
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Figure 3. HIV Flag-Tat191 Uptake in Midbrain Microglia
A. Mouse midbrain microglia in a mixed glia culture at postnatal day 2 were transfected

with 1 pg of a plasmid containing the HIV-1 Flag-Tat;p1 gene (pcDNA3.1+/Tat1g1-
flag(PEV280)), immunostained with the monoclonal ANTI-FLAG® M2 primary antibody
(Sigma-Aldrich, St. Louis, MO, USA), polyclonal Ibal primary antibody (Wako Pure
Chemical Industries, Ltd., Richmond, VA, USA), and secondary antibody conjugated to
Alexa 488 (Green) or 647 (Red), mounted with DAPI (Blue) Fluoromount-G
(SouthernBiotech, Birmingham, AL, USA), and imaged 24 hours post-transfection on a
Nikon Imaging System (Nikon A1IRMPsi-STORM 4.0, 20X Magnification). N = 6
independent experiments (midbrain of 3-5 mice used for each experiment). B. Another set
of mouse midbrain microglia in a mixed glia culture at postnatal day 2 was incubated with
conditioned media containing the HIV-1 Flag-Tat protein, immunostained as described
above, and imaged 24 hours later (20X Magnification). N = 5 independent experiments
(midbrain of 3-5 mice used for each experiment). C. Images represent a depth coded 3D Z-
stack of one microglia cell from the 60X magnified image in panel A (Zgp) and panel B
(bottom). Scale bar = 50 pum in 20X images and 25 pm in 60X images.
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Figure 4. HIV Flag-Tat1g1 Uptake in Midbrain Dopaminergic Neurons
A. Midbrain neuronal cultures were obtained from a mouse strain that contained the

TH::RFP transgene, which labels neurons with the red fluorescent protein driven by the
tyrosine hydroxylase (TH) promoter. The TH:RFP transgene was constructed by ligating a
4.5kb Hindllll EcoR1 fragment of the rat tyrosine hydroxylase promoter with DsRed2-1
(Clontech, Palo Alto, CA, USA). Dopaminergic neurons (Red) at postnatal day 2 were
grown on a monolayer of glia and transfected with 1 pg of a plasmid containing the HIV-1
Flag-Tatio; gene (pcDNAS3.1+/Tatqg1-flag(PEV280)). The neurons were immunostained
with the monoclonal ANTI-FLAG® M2 primary antibody (Sigma-Aldrich, St. Louis, MO,
USA) and secondary antibody conjugated to Alexa 488 (Green), mounted with DAPI (Blue)
Fluoromount-G (SouthernBiotech, Birmingham, AL, USA), and imaged 24 hours post-
transfection (20X magnification and 60X magnification of one dopaminergic neuron from
20X image in corner). N = 6 independent experiments (midbrain of 3-5 mice used for each
experiment). B. Another set of mouse midbrain neuronal cultures at postnatal day 2 was
incubated with conditioned media containing the HIV-1 Flag-Tat protein, immunostained as
previously described, and imaged 24 hours later (20X Magnification (large box) and 60X
Magnification (small box in the corner of 20X image). N = 5 independent experiments
(midbrain of 3-5 mice used for each experiment). C. Images represent an orthogonal XY,
XZ, and YZ projection of a Z-stack of one neuron from the 60X magnified image in panel A
(top) and panel B (bottom). Scale bar = 50 um in 20X images and 25 pm in 60X images.

Neurobiol Dis. Author manuscript; available in PMC 2018 September 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Gaskill et al.

Page 45

Sagittal Mouse Brain Section

Figure 5. Diagram of the Dopamine Pathways in the Brain
In both animals and humans, the neurotransmitter, dopamine, is transmitted from neurons in

the substantia nigra (SN) pars compacta to cells in the caudate putamen (CP) through the
nigrostriatal pathway (pink). Dopamine can also be transmitted from neurons in the ventral
tegmental area (VTA) to cells in the nucleus accumbens (NAcc) through the mesolimbic
pathway (red), from neurons in the VTA to cells in the prefrontal cortex through the
mesocortical pathway (yellow), and from neurons in the infundibular nucleus of the
hypothalamus to cells in the pituitary gland (PG) through the tuberoinfundibular pathway
(orange).
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Figure 6. lllustration of Dopamine Neurotransmission

In neurons, the amino acid, tyrosine, is converted to dopamine by two enzymatic reactions.
First tyrosine is converted into L-dihydroxyphenylalanine (L-DOPA) by the rate-limiting
enzyme, tyrosine hydroxylase (TH), which is then converted into dopamine by the enzyme,
DOPA decarboxylase (DDC). Dopamine can be released by neurons into the synaptic cleft
via two distinct mechanisms, which are labeled 1 and 2. First, after an action potential has
been generated (1) or through the dopamine transporter (DAT) via efflux mechanism (2).
Upon release of dopamine into the synaptic cleft, dopamine can bind to G protein-coupled
dopamine D1.-like or Do-like receptors to regulate downstream signaling mechanisms
involving protein kinase A (PKA), diacylglycerol, or inositol triphosphate (IP3). Gajss, the
alpha subunit of the stimulatory (s) or inhibitory (i) G protein. PLC, phospholipase C. AC,

adenylyl cyclase.
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Figure 7. Dopamine Transporter has three distinct modes of activity in dopamine neurons
Independent of dopamine neuron firing, the dopamine transporter, DAT, an integral

membrane protein, transports the neurotransmitter, dopamine (DA), along with two sodium
ions (Na*) and one chloride ion (CI") across the plasma membrane by three mechanisms: (1)
uptake which involves a conformational change in DAT that is induced by the sequential
binding of the ions and dopamine to the transporter and the subsequent release of the ions
and dopamine into the cytosol (2) reverse transport or efflux mechanism which involves
reverse transport of cytosolic dopamine to the extracellular space. The reverse transport of
dopamine via DAT occurs via multiple mechanisms. These include but not limited to,
conditions when the transporter is in an inward facing conformation, as occurs following
exposure to psychostimulants such as amphetamine, when there is excess intra-neuronal DA,
or when there is phosphorylation of the N-terminal domain of DAT. The third mechanism is
a channel-like mechanism (3) where dopamine is transported via the DAT across its
electrochemical gradient.
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